Page 1

3GPP TSG-SA5 Meeting #145

 DOCPROPERTY MtgTitle * MERGEFORMAT -e
S5-225387
Online, , 15th Aug 2022 - 24th Aug 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	32.158
	CR
	0061
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.158 Correct and clarify numerous smaller issues

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	REST_SS, TEI17
	
	Date:
	2022-08-05

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)
Rel-19
(Release 19)

	
	

	Reason for change:
	There are numerous smaller issues that need to be clarified and corrected.

	
	

	Summary of change:
	Numerous smaller issues are clarified and corrected.

	
	

	Consequences if not approved:
	Numerous smaller issues may lead to interoperability issues.

	
	

	Clauses affected:
	6.3.1, 6.3.3, 6.4.1, 6.4.3, A.1, A.2.3, A.3.4, A.6.1, A.6.4, A.7.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	Begin of modifications

6.3.1
Introduction
HTTP PUT allows to replace (overwrite) a complete resource on the MnS Producer with the new representation in the request body. It cannot be used for partial updates of a resource.

For partial updates of a single resource HTTP PATCH (RFC 5789 [11]) shall be used. With PATCH, a set of changes to be applied to the target resource is described in the request message body. The set of changes carried in the message body is called patch document. The format of the patch document is identified by its media type. RFC 5789 [11] does not define any patch format, only the PATCH method.

The HTTP PATCH method is atomic, as per RFC5789 [11]. The MnS Producer shall apply the entire set of changes atomically and never provide (e.g., in response to a GET during this operation) a partially modified representation. If the entire patch document cannot be successfully applied, then the MnS Producer shall not apply any of the changes. PATCH thus has transaction semantics.
For JSON, IETF has defined two patch formats for the use with the HTTP PATCH method: JSON Merge Patch (RFC 7396 [12]) and JSON Patch (RFC 6902 [13]). The usage of these patch formats is described in the following clauses.

	Next modification

6.3.3
JSON Patch

The JSON Patch format is specified in RFC 6902 [13]. The patch document is a JSON array. Each array item is a JSON object describing a modification to be applied to the target resource. The modifications shall be applied to the target resource sequentially in the order they appear in the array. The media type of JSON Patch is "application/json-patch+json".
Each modification is defined by three properties: The operation ("op"), the identification of the secondary resource within the target resource to be manipulated ("path") and a value ("value"). When removing a secondary resource, the "value" property is absent. When moving or copying an existing value, the "value" property is absent, too, and a "from" property is present instead. The value of the "from" and "path" property is a JSON Pointer in string representation as defined in clause 5 of RFC 6901 [14].

In contrast to JSON Merge Patch, JSON Patch allows to modify individual items of an array. Array items are identified based on their position (index) in an array. The first item has the index "0". The "-" character is used by the operations "add" and "move" to index the end of the array for appending a new array item. Its use in any other operation is forbidden.
The target URI identifies the resource to be modified. As for JSON Merge Patch, the target URI shall have no query and no fragment component. The target resource must exist, otherwise the error status code "404 Not Found" shall be returned.
[image: image1.png]MnS Consumer

| 1. PATCH .. fresource(PartialResourceRepresent

MnS Praducer

ation) !

12200 0K

(ResourceRepresentation) or 204 No

Content !

MnS Consumer

MnS Praducer

Figure 6.3.3-1: Flow for partially updating a resource with JSON Patch
The procedure flow is as follows:

1)
The MnS Consumer sends an HTTP PATCH request to the MnS Producer. The resource to be updated is identified with the target URI. The message body shall carry a JSON Patch document describing a set of modification instructions to be applied to the target resource.

2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resource in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
As JSON Merge Patch, also JSON Patch shall be used for patching the target resource only. The patch format shall not be used for creating, modifying or deleting child resources of the target resource in the same request, even if the child resources are included in the schema definition of the target resource. This is because JSON Patch can address items in an array only based on the position of the item in the array, and not based on an identifier independent from the position of the item in the array. A patch document could hence not address descendant resources of the target resource based on their "id". This is prone to conflicts in multi-client scenarios, where the position of resource items in an array can change due to the concurrent creation or deletion of resource items in the same array. Risk mitigation would require complex ETag calculations in the resource hierarchy.
The following example adds a new attribute "attrA" to an "XyzFunction" (assuming "attrA" does not exist yet).

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "add",

 "path": "/attributes/attrA",
 "value": "abc"

 }

]

The following example replaces the value of "attrA" with "def".

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/json-patch+json
[

 {

 "op": "replace",

 "path": "/attributes/attrA",
 "value": "def"

 }

]

	Next modification

6.4.1
Introduction

Clause 6.1 discusses a method for retrieving multiple resources with a single HTTP GET request. This clause specifies methods allowing to manipulate (create, update, delete) multiple resources with a single request.
The specified methods use the HTTP PATCH method and provide extensions to the JSON Merge Patch and JSON Patch formats. As described in clause 6.3, JSON Merge Patch and JSON Patch are used for partial updates of a single resource. The extensions specified in the following clauses are designed to allow for efficient manipulation of multiple resources with a single HTTP PATCH request. The target resource and all its descendant resources are ascessible with a single request.

The extended patch formats are called 3GPP JSON Merge Patch and 3GPP JSON Patch.

It is reminded that the HTTP PATCH method is atomic as explained in clause 6.3.1.
	Next modification

6.4.3
3GPP JSON Patch

3GPP JSON Patch is a 3GPP defined extension to JSON Merge Patch (RFC 6902 [13]).

Like 3GPP JSON Merge Patch, it allows, using a single patch document, to update the target resource (as does JSON Patch) and to update, create or delete descendant resources, which JSON Patch does not allow, at least not based on resource identifiers.

This extension is that the "path" and "from" properties of a patch operation define an offset to the target resource as specified by the request URI. This offset is relative to the target URI. It has a first component pointing to a resource below the target resource, and a second component pointing to a secondary resource within the resource identified by the first component.

The first component of "path" or "from" is built from URI path components. It follows the same syntax as the path components of the target URI. The second component is a URI fragment with a JSON pointer in the URI fragment identifier representation as defined in clause 6 of RFC 6901 [14], i.e. the second component starts with the "#" character. Both components are concatenated without a delimiter.
For example, assume the target URI is "/SubNetwork=SN1" and the "userLabel" attribute of a child of class "ManagedElement" with the id "ME1" is to be patched, then the first path component is "/ManagedElement=ME1/" and the second path component is "#attributes/userLabel". This results in the following path:

 "path": "/ManagedElement=ME1/#attributes/userLabel".

The target URI shall identify a common ancestor resource of the resources to be patched.

When creating new resources ("op"="add"), the object class name of the resource to be created shall be included in the "value" property of the operation.

The media type of 3GPP JSON Merge Patch is "3gpp-patch+json". This media type is defined by 3GPP and is not registered with IANA. Patch documents using this media type must conform to the "application/json" media type.
The procedure is as follows:

1)
The MnS Consumer sends a HTTP PATCH request to the MnS Producer. The message body carries a 3GPP JSON Patch document describing a set of modification instructions to be applied to the identified resources.
2)
The MnS Producer returns the HTTP PATCH response to the MnS Consumer. On success, "200 OK" together with the representation of the updated resources, constructed according to either the flat or hierarchical response construction method described in clause 6.1.1, in the message body or "204 No Content" shall be returned. On failure, the appropriate error code shall be returned. The response message body may provide additional error information.
A single operation in a 3GPP JSON Patch document shall patch a single (primary) resource only. Different operations in a patch document can patch different resources though. The consequence of this restriction is for example that subtrees with multiple resources cannot be created or deleted with a single patch operation. Each resource needs to be created or deleted with an own patch operation in the patch document. This behaviour is aligned with those of the PUT and DELETE methods.

Note that the "replace" operation of (3GPP) JSON Patch has replace semantics like PUT and not merge semantics like JSON Merge Patch. When multiple attributes or attribute fields of a resource are patched, then a patch operation for each update is required, for example

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 }
]

To streamline partial updates of single resources, 3GPP JSON Patch introduces a new patch operation named "merge". For that operation, the JSON object contained in the "value" property shall be merged into the target resource referenced by "path" using the rules of JSON Merge Patch (RFC 7396 [12]). An MnS Producer shall verify if a "merge" operation is for a single resource by checking if the "path" property contains the string "#/attributes" and shall reject the request with "422 Unprocessable Entity" if it doesn't.
With the "merge" operation, the updates in the previous example can be expressed as follows.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "#/attributes",

 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }

]

The following example is invalid. It attempts to patch, besides the target resource, which is allowed, the contained "ManagedElement" resources, which is not allowed.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",

 "path": "",

 "value": {

 "attributes": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 },

 "ManagedElement": [

 {

 ...
 }

]

 }

 }

]

	Next modification

A.1
Example data model

The following JSON instance document is used for the examples in this clause.

	{

 "SubNetwork": [

 {

 "id": "SN1",
 "objectClass": "SubNetwork",
 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",
 "objectClass": "ManagedElement",
 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",
 "objectClass": "XyzFunction",
 "objectInstance":"SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",
 "objectInstance":"SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",
 "objectClass": "PerfMetricJob",
 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",
 "objectClass": "ThresholdMonitor",
 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

 }

]

}

The corresponding JSON schema is

	{

 "SubNetwork": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "userLabel": {

 "type": "string"

 },

 "userDefinedNetworkType": {

 "type": "string"

 },

 "plmnId": {

 "type": "object",

 "properties": {

 "mcc": {

 "type": "integer"

 },

 "mnc": {

 "type": "integer"

 }

 }

 }

 }

 },

 "ManagedElement": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "userLabel": {

 "type": "string"

 },

 "vendorName": {

 "type": "string"

 },

 "location": {

 "type": "string"

 }

 }

 },

 "XyzFunction": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "attributeA": {

 "type": "string"

 },

 "attributeB": {

 "type": "integer"

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "PerfMetricJob": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "granularityPeriod": {

 "type": "integerstring"

 },

 "perfMetrics": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "objectInstances": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "ThresholdMonitor": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "objectClass": {

 "type": "string"

 },

 "objectInstance": {

 "type": "string"

 },

 "attributes": {

 "type": "object",

 "properties": {

 "thresholdLevels": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "level": {

 "type": "string"

 },

 "thresholdValue": {

 "type": "integer"

 }

 }

 }

 }

 }

 },

 "required": ["id"]

 }

 }

 },

 "required": ["id"]

 }

 }

 }

}

The corresponding XML instance document is provided below as well. It can be helpful when evaluating XPath expressions.
	<?xml version="1.0" encoding="UTF-8" ?>

<SubNetwork>

 <id>SN1</id>
 <objectClass>SubNetwork</objectClass>

 <objectInstance>SubNetwork=SN1</objectInstance>
 <attributes>

 <userLabel>Berlin NW</userLabel>

 <userDefinedNetworkType>5G</userDefinedNetworkType>

 <plmnId>

 <mcc>456</mcc>

 <mnc>789</mnc>

 </plmnId>

 </attributes>

 <ManagedElement>

 <id>ME1</id>

 <objectClass>ManagedElement</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1</objectInstance>
 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 <XyzFunction>

 <id>XYZF1</id>

 <objectClass>XyzFunction</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1</objectInstance>

 <attributes>

 <attrA>xyz</attrA>

 <attrB>551</attrB>

 </attributes>

 </XyzFunction>

 <XyzFunction>

 <id>XYZF2</id>

 <objectClass>XyzFunction</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2</objectInstance>

 <attributes>

 <attrA>abc</attrA>

 <attrB>552</attrB>

 </attributes>

 </XyzFunction>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <objectClass>ManagedElement</objectClass>

 <objectInstance>SubNetwork=SN1,ManagedElement=ME2</objectInstance>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <objectClass>PerfMetricJob</objectClass>

 <objectInstance>SubNetwork=SN1,PerfMetricJob=PMJ1</objectInstance>
 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <objectClass>ThresholdMonitor</objectClass>

 <objectInstance>SubNetwork=SN1,ThresholdMonitor=TM1</objectInstance>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

NOTE:
Void

The following examples do not always follow the URI structure specified in clause 4.4. For simplicity reasons, the path component "/{MnSName}/{MnSVersion}" is often omitted. Also the Domain Component (DC) is omitted in DNs carried by "objectInstance" attributes. Though this is a valid implementation as per TS 32.300 [3], it is recommended to have "DC=example.org" or "DC=org, DC=example" as first components of DNs.
	Next modification

A.2.3
Retrieval of multiple complete resources using scoping and filtering

The following example selects the "SubNetwork" as base object at scope level "0" and all objects at scope level "1":

	GET /SubNetwork=SN1?scopeType=BASE_SUBTREE&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The base object and all objects at scope level "1", irrespective of their object class, are included in the response. When using the hierarchical response construction method, the response looks as follows:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 },

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

The response constructed with the flat response construction method looks like:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "SN1",

 "objectClass": "SubNetwork",

 "objectInstance": "SubNetwork=SN1",

 "attributes": {

 "userLabel": "Berlin NW",

 "userDefinedNetworkType": "5G",

 "plmnId": {

 "mcc": 456,

 "mnc": 789

 }

 }

 },

 {

 "id": "ME1",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 },

 {

 "id": "PMJ1",

 "ojectClass": "PerfMetricJob",

 "objectInstance": "SubNetwork=SN1,PerfMetricJob=PMJ1",

 "attributes": {

 "granularityPeriod": "5",

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 },

 {

 "id": "TM1",

 "ojectClass": "ThresholdMonitor",

 "objectInstance": "SubNetwork=SN1,ThresholdMonitor=TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

The "objectInstance" of each returned object is present in the response, as required in clause 6.1.4.
When only objects at scope level "1" are requested to be returned, the request looks like:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=1 HTTP/1.1

Host: example.org

Accept: application/json

The response does not include the attributes of "SubNetwork" any more, only its "id" is included:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

Similarly, for reading all objects on scope level "2", the MnS Consumer may send:

	GET /SubNetwork=SN1?scopeType=BASE_NTH_LEVEL&scopeLevel=2 HTTP/1.1

Host: example.org

Accept: application/json

When using the hierarchical response construction method, the response includes the complete representations of the two "XyzFunction" objects. The "SubNetwork" and "ManagedElement" are present with their "id" only; they provide the containment nodes for the "XyzFunction" objects.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

The "PerfMetricJob" and "ThresholdMonitor" are not included altogether, not even with the "id" only. This is because these nodes do not represent necessary path components to the scoped objects on the second level.

When using the flat response construction method, the response includes only the two "XyzFunction" objects without containment nodes.
	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

[

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF1",

 "attributes": {

 "attrA": "xyz",

 "attrB": 551

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "objectInstance": "SubNetwork=SN1,ManagedElement=ME1,XyzFunction=XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

The following example selects all objects of any class on scope level "1" that have a "location" attribute whose value is equal to "Grunewald":

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=1\

 filter=/*/*[attributes[location="Grunewald"]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "ManagedElement" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

]

}

The input document to the XPath expression is a document whose root node is the object identified by the path component of the target URI and that includes the object representations of the scoped objects. In this example the root node is the "SubNetwork", but it is not scoped and hence included in the input document with its "id" only, i.e. without the "attributes" node. The input document includes furthermore all scoped objects on level "1" with their complete representations (without name-contained objects). These are the two "ManagedElement" objects, the "PerfMetricJob" object, and the "ThresholdMonitor" object.
	{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "attributes": {

 "userLabel": "Berlin NW 1",

 "vendorName": "Company XY",

 "location": "TV Tower"

 }

 },

 {

 "id": "ME2",

 "attributes": {

 "userLabel": "Berlin NW 2",

 "vendorName": "Company XY",

 "location": "Grunewald"

 }

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1",

 "attributes": {

 "granularityPeriod": 5,

 "perfMetrics": [

 "Metric1",

 "Metric2"

],

 "objectInstances": [

 "Obj1",

 "Obj2"

]

 }

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1",

 "attributes": {

 "metric": "Metric1",

 "thresholdLevels": [

 {

 "level": "1",

 "thresholdValue": 10

 },

 {

 "level": "2",

 "thresholdValue": 20

 },

 {

 "level": "3",

 "thresholdValue": 30

 }

]

 }

 }

]

}

An implementation may be based on available XPath tools. In that case the JSON document may have to be converted to a XML document. Note that a valid XML document has one and only one root element. For that reason the "SubNetwork" element needs to be added as root element.
	<SubNetwork>

 <id>SN1</id>

 <ManagedElement>

 <id>ME1</id>

 <attributes>

 <userLabel>Berlin NW 1</userLabel>

 <vendorName>Company XY</vendorName>

 <location>TV Tower</location>

 </attributes>

 </ManagedElement>

 <ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

 </ManagedElement>

 <PerfMetricJob>

 <id>PMJ1</id>

 <attributes>

 <granularityPeriod>5</granularityPeriod>

 <perfMetrics>Metric1</perfMetrics>

 <perfMetrics>Metric2</perfMetrics>

 <objectInstances>Obj1</objectInstances>

 <objectInstances>Obj2</objectInstances>

 </attributes>

 </PerfMetricJob>

 <ThresholdMonitor>

 <id>TM1</id>

 <attributes>

 <ThresholdLevels>

 <level>1</level>

 <thresholdValue>10</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>2</level>

 <thresholdValue>20</thresholdValue>

 </ThresholdLevels>

 <ThresholdLevels>

 <level>3</level>

 <thresholdValue>30</thresholdValue>

 </ThresholdLevels>

 </attributes>

 </ThresholdMonitor>
</SubNetwork>

In this example the complete "ManagedElement" object is the result of applying the XPath expression:

	<ManagedElement>

 <id>ME2</id>

 <attributes>

 <userLabel>Berlin NW 2</userLabel>

 <vendorName>Company XY</vendorName>

 <location>Grunewald</location>

 </attributes>

</ManagedElement>

XPath predicates allow to specify also ranges. The following example selects objects on scope level "2" that have an attribute with name "attrB" whose value is equal to or greater than 552 and less than 562.

	GET /SubNetwork=SN1?\

 scopeType=BASE_NTH_LEVEL&scopeLevel=2\

 filter=/*/*/*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

The response includes one "XyzFunction" object only:

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json

{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF2",

 "attributes": {

 "attrA": "abc",

 "attrB": 552

 }

 }

]

 }

]

}

An identical response is returned when using the following requests:

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_SUBTREE&scopeLevel=2\

 filter=//*[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

or

	GET /SubNetwork=SN1?\

 scopeType=BASE_ALL\

 filter=//XyzFunction[attributes[attrB>=552 and attrB<562]] HTTP/1.1

Host: example.org

Accept: application/json

This example returns the containment tree only.
	GET /SubNetwork=SN1?scopeType=BASE_ALL&attributes= HTTP/1.1
Host: example.org

Accept: application/json

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

}

When the MnS Consumer does not know the root object of the containment tree and wants to retrieve the complete tree starting with the root, the target URI needs to identify the resource above the root object. According to clause 4.4.2 this resource is identified by the path segment "/{MnSName}/{MnSVersion}", for example "/ProvMnS/1700". In this example, the empty "attributes" parameter is defined to return only the name-containment hierarchy but no attributes.

	GET /ProvMnS/1700?scopeType=BASE_ALL&attributes= HTTP/1.1

Host: example.org

Accept: application/json

The response is illustrated below. Properties of the MnS may be returned as siblings of "SubNetwork", as indicated in the example below by the placeholder "…".

	HTTP/1.1 200 OK

Date: Tue, 06 Aug 2019 16:50:26 GMT

Content-Type: application/json
{

 ...,

 "SubNetwork": [
 {

 "id": "SN1",

 "ManagedElement": [

 {

 "id": "ME1",

 "XyzFunction": [

 {

 "id": "XYZF1"

 },

 {

 "id": "XYZF2"

 }

]

 },

 {

 "id": "ME2"

 }

],

 "PerfMetricJob": [

 {

 "id": "PMJ1"

 }

],

 "ThresholdMonitor": [

 {

 "id": "TM1"

 }

]

 }

]

}

	Next modification

A.3.4
Creation of multiple resources with 3GPP JSON Patch

One or more resources can be created with a single 3GPP JSON Patch request. The following example shows the creation of a complete subtree for a new network entity represented by a "ManagedElement" resource and two "XyzFunction" resources. The target URI has been chosen to identify the first common ancestor of the resources to be created. The "path" specifies the offset from the target resource to the resource to be created. The "path" has no fragment component. Parent resources are created before child resources following the order of the operations in the patch document. The class name of the object to be created is specified in each patch operation.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {

 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF1",

 "value": {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3/XyzFunction=XYZF2",

 "value": {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772
 }

 }

 }
]

Note that each resource to be created shall be specified with a dedicated "add" operation. The following patch document is hence invalid as it attempts to create three resources with a single "add" operation.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",

 "path": "/ManagedElement=ME3",

 "value": {

 "id": "ME3",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 },

 "XyzFunction": [

 {

 "id": "XYZF1",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "xyz",

 "attrB": 771

 }

 },

 {

 "id": "XYZF2",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "abc",

 "attrB": 772

 }

 }

]

 }

 }

]

It is not an error if the target location of an "add" operation as specified by the "path" property does exist. In this case the content of the target location is replaced with the content of the "value" property. For example, in the following example, the first "ManagedElement" resource already exists. The patch document is applied successfully though. The representation of the first "ManagedElement" resource is replaced and the second "ManagedElement" resource is created.

Note that the attributes "vendorName" and "location" are removed from the representation of the first "ManagedElement" resource. The "userLabel" attribute is updated.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "add",

 "path": "/ManagedElement=ME2",

 "value": {

 "id": "ME2",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 4"

 }

 }

 },

 {

 "op": "add",

 "path": "/ManagedElement=ME3",

 "value": {

 "id": "ME3",

 "objectClass": "ManagedElement",

 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 }

]

	Next modification

A.6.1
Partial update of a resource with JSON Merge Patch
The first example shows how the attribute "attrA" of the "XyzFunction with the "id" equal to "YXZF1" is changed from "xyz" to "def" using JSON Merge Patch.

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json
{

 "id": "XYZF1",

 "attributes": {

 "attrA": "def"

 }

}

In the second example the "mcc" attribute field of the "plmnId" attribute is updated to "654". The employed patch method is again JSON Merge Patch.

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json

{

 "id": "SN1",

 "attributes": {

 "plmnId": {

 "mcc": 654

 }

 }

}

In the third example the item "Metric3" is added to the array "perfMetrics". The value of "perfMetrics" contains the two old items and the new item.

	PATCH /SubNetwork=SN1/PerfMetricJob=PMJ1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json

{

 "id": "PMJ1",

 "attributes": {

 "perfMetrics": ["Metric1", "Metric2, Metric3"]
 }

 }

}

Also in case the items of an array have an identifier, the complete updated array value needs to be present in the patch request. In the following fourth example in this clause the old first threshold level is deleted, for the old second threshold level the "thresholdValue" is updated from "20" to "22", the old third threshold level is left unchanged, and a new threshold level is appended as last item.
	PATCH /SubNetwork=SN1/ThresholdMonitor=TM1 HTTP/1.1

Host: example.org

Content-Type: application/merge-patch+json

{

 "id": "TM1",

 "attributes": {

 "thresholdLevels": [

 {

 "level": "2",

 "thresholdValue": 22
 },

 {

 "level": "3",

 "thresholdValue": 30

 },

 {

 "level": "4",

 "thresholdValue": 40

 }

]

 }

}

	Next modification

A.6.4
Partial update of a resource with 3GPP JSON Patch

When 3GPP JSON Patch is used to request the changes described in the first two examples in clause A.6.1 the MnS consumer may send the following

	PATCH /SubNetwork=SN1/ManagedElement=ME1/XyzFunction=XYZF1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json
[

 {

 "op": "replace",
 "path": "#/attributes/attrA",
 "value": "def"
 }
]

and

	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654
 }
]

and

	PATCH /SubNetwork=SN1/ThresholdMonitor=TM1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[
 {

 "op": "remove",

 "path": "#/attributes/thresholdLevels/0"

 },
 {

 "op": "replace",

 "path": "#/attributes/thresholdLevels/0/thresholdValue",

 "value": 22

 },
 {

 "op": "add",

 "path": "#/attributes/thresholdLevels/-",

 "value":
 {

 "level": "4",

 "thresholdValue": 40
 }
 }

]

When using 3GPP JSON Patch to update a single resource, the only difference compared to JSON Patch is the presence of "#" in the "path".

	Next modification

A.7.2
Manipulating multiple resources with 3GPP JSON PATCH

The same resource modifications as in the previous clause expressed using 3GPP JSON Patch are given by
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "replace",
 "path": "#/attributes/userLabel",
 "value": "Berlin NW-1"

 },

 {

 "op": "replace",
 "path": "#/attributes/plmnId/mcc",
 "value": 654

 },

 {

 "op": "replace",
 "path": "ManagedElement=ME1/XyzFunction=XYZF1#/attributes/attrB",
 "value": 1234

 },

 {

 "op": "add",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF3",
 "value": {

 "id": "XYZF3",

 "objectClass": "XyzFunction",

 "attributes": {

 "attrA": "ghi",

 "attrB": 553
 }

 }
 },

 {

 "op": "remove",
 "path": "/ManagedElement=ME1/XyzFunction=XYZF2"

 },

 {

 "op": "add",
 "path": "/ManagedElement=ME3",
 "value": {

 "id": "ME3",
 "objectClass": "ManagedElement",
 "attributes": {

 "userLabel": " Berlin NW 3",

 "vendorName": "Company XY",

 "location": "Spandau"

 }

 }

 }
]

The modifications of the "userLabel" attribute and the "mcc" attribute field can be expressed also by a single "merge" operation instead of two separate "replace" operations.
	PATCH /SubNetwork=SN1 HTTP/1.1

Host: example.org

Content-Type: application/3gpp-json-patch+json

[

 {

 "op": "merge",
 "path": "#/attributes",
 "value": {

 "userLabel": "Berlin NW-1",

 "plmnId": {

 "mcc": 654

 }

 }

 }
]

	End of modifications

