3GPP TSG SA WG5 Meeting #132-e
S5-204113
August 17 – 28, 2020
revision of S5-2abcde
Source:
Intel
Title:
Discussion for RACH optimization
Document for:
Approval
Agenda Item:
6.4.4
1
Decision/action requested

The group is asked to discuss and approve the proposals.
2
References

[1]
3GPP TS 38.331 “NR; Radio Resource Control (RRC) protocol specification”
[2]
3GPP TS 38.321 “NR; Medium Access Control (MAC) protocol specification”

[3]
3GPP TR 37.816 “Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Study on RAN-centric data collection and utilization for LTE and NR”

[4]
3GPP TS 28.313 “Management and orchestration; Self-Organizing Networks (SON) for 5G networks”

3
Discussion of RACH optimization
The RACH configuration has huge impacts on user experience and overall network performance, as a poorly configured RACH may increase the UE initial access delay, handover delay, and beam failure recovery delay [3]. Therefore, the measurements of probability distribution of UE access delay and the number of preambles sent to access the network are essential for RACH optimization SON function to monitor the RACH performance, and determine actions to optimizae the RACH performance by updating the RACH parameters [4].

The UE information procedure has been defined in TS 38.331 [1] to enable gNB to request UE to send UEInformationResponse message containing the RA-ReportList that can be used to create the RACH distribution measurements.

[image: image1.emf]

UEInformationResponse

UEInformationRequest

UE Network

Figure 1: UE information procedure
RA-ReportList-r16 (TS 38.331 [1]), as shown below, contains RA-Report-r16 to capture the result each time a UE performs the randon-access procedure. The random-access procedure in TS 38.321 indicates that UE may switch to different SSB during the procedure. So, each report contains PerRAInfoList-r16 with a list of PerRASSBInfo-r16 that records the RACH information of each SSB over which the UE has sent the preambles during the procedure.
RA-ReportList-r16 ::= SEQUENCE (SIZE (1..maxRAReport-r16)) OF RA-Report-r16
RA-Report-r16 ::= SEQUENCE {

 cellId-r16 CGI-Info-Logging-r16,

 ra-InformationCommon-r16 RA-InformationCommon-r16,
 raPurpose-r16 ENUMERATED {accessRelated, beamFailureRecovery,

reconfigurationWithSync, ulUnSynchronized,

 schedulingRequestFailure,

noPUCCHResourceAvailable, requestForOtherSI,
 spare9, spare8, spare7, spare6, spare5, spare4,

spare3, spare2, spare1}

}

RA-InformationCommon-r16 ::= SEQUENCE {

 absoluteFrequencyPointA-r16 ARFCN-ValueNR,

 locationAndBandwidth-r16 INTEGER (0..37949),

 subcarrierSpacing-r16 SubcarrierSpacing,

 msg1-FrequencyStart-r16 INTEGER (0..maxNrofPhysicalResourceBlocks-1) OPTIONAL,

 msg1-FrequencyStartCFRA-r16 INTEGER (0..maxNrofPhysicalResourceBlocks-1) OPTIONAL,

 msg1-SubcarrierSpacing-r16 SubcarrierSpacing OPTIONAL,

 msg1-SubcarrierSpacingCFRA-r16 SubcarrierSpacing OPTIONAL,

 msg1-FDM-r16 ENUMERATED {one, two, four, eight} OPTIONAL,

 msg1-FDMCFRA-r16 ENUMERATED {one, two, four, eight} OPTIONAL,

 perRAInfoList-r16 PerRAInfoList-r16

}

PerRAInfoList-r16 ::= SEQUENCE (SIZE (1..200)) OF PerRAInfo-r16

PerRAInfo-r16 ::= CHOICE {

 perRASSBInfoList-r16 PerRASSBInfo-r16,
 perRACSI-RSInfoList-r16 PerRACSI-RSInfo-r16

}

PerRASSBInfo-r16 ::= SEQUENCE {

 ssb-Index-r16 SSB-Index,

 numberOfPreamblesSentOnSSB-r16 INTEGER (1..200),

 perRAAttemptInfoList-r16 PerRAAttemptInfoList-r16
}
PerRAAttemptInfoList-r16 ::= SEQUENCE (SIZE (1..200)) OF PerRAAttemptInfo-r16

PerRAAttemptInfo-r16 ::= SEQUENCE {

 contentionDetected-r16 BOOLEAN OPTIONAL,
 dlRSRPAboveThreshold-r16 BOOLEAN OPTIONAL,

 ...

}

The following, derived from clause 5.7.10.5 in TS 38.331 [1], describes how gNB generated the perRAInfo for ach SSB in perRAInfoList.
1>
set the parameters associated to individual random-access attempt in the chronological order of attempts in the perRAInfoList as follows:

2>
if the random-access resource used is associated to a SS/PBCH block, set the associated random-access parameters for the successive random-access attempts associated to the same SS/PBCH block for one or more random-access attempts as follows:
3>
set the numberOfPreamblesSentOnSSB to indicate the number of successive random-access attempts associated to the SS/PBCH block;
3>
for each random-access attempt performed on the random-access resource, include the following parameters in the chronological order of the random-access attempt:

4>
if the random-access attempt is performed on the contention based random-access resource and if raPurpose is not equal to 'requestForOtherSI', include contentionDetected as follows:

5>
if contention resolution was not successful as specified in TS 38.321 [6] for the transmitted preamble:

6>
set the contentionDetected to true;

5>
else:

6>
set the contentionDetected to false;
Therefore, the random-access procedure is considered successful if it is found that the contentionDetected attribute is false in any RACH attempts
. When the random-access procedure is successful, the following measurements can be created to monitor the distributions of the number of preambles sent and delay for UE to access the network:

· Distribution of RACH preambles sent
· Distribution of RACH access delay
In addition, measuremenrs can be created to monitor the distribution of successful or failed RACH attempts on per SSB basis
. The table below shows an example
for a RA-ReportList with 5 PerRASSBInfo is received in a granularity period
.
	RA-ReportList
	SSB #1
	SSB #2
	SSB #3

	
	PerRASSBInfo
	ContentionDetected
	PerRASSBInfo
	ContentionDetected
	PerRASSBInfo
	ContentionDetected

	PerRASSBInfo #1
	#1
	TRUE
	
	
	
	

	
	#2
	TRUE
	
	
	
	

	
	
	
	#3
	TRUE
	
	

	
	
	
	#4
	TRUE
	
	

	
	
	
	
	
	#5
	FALSE

	PerRASSBInfo #2
	
	
	
	
	#1
	TRUE

	
	#2
	TRUE
	
	
	
	

	
	#3
	FALSE
	
	
	
	

	PerRASSBInfo #3
	
	
	#1
	TRUE
	
	

	
	
	
	#2
	TRUE
	
	

	
	
	
	
	
	#3
	TRUE

	
	
	
	
	
	#4
	FALSE

	PerRASSBInfo #4
	
	
	#1
	TRUE
	
	

	
	
	
	#2
	TRUE
	
	

	
	#3
	FALSE
	
	
	
	

	PerRASSBInfo #5
	
	
	
	
	#1
	TRUE

	
	
	
	
	
	#2
	FALSE

Then, the measurement of “Distribution of successful random-access per SSB” should report the data as shown below:
	SSBs
	SSB #1
	SSB #2
	SSB #3

	values
	2
	0
	3

Then, the measurement of “Distribution of failed random-access per SSB” should report the data as shown below:

	SSBs
	SSB #1
	SSB #2
	SSB #3

	values
	3
	6
	3

The above measurements indicate that SSB #2 has poor RACH performance that may need further investigation.

The random-access procedure can fail if the preamble transmission exceeds preambleTransMax (see clause 5.1.5 in TS 38.321 [2]). So, the measurement of “percentage of unsuccessful random-access” is needed to monitor the percentage of all random-access requests in a granularity that have failed
.
4
proposal

It is proposed that the following measurements as proposed in S5-204114 be agreed:
· Distribution of RACH preambles sent
· Distribution of RACH access delay
· Distribution of successful random-access per SSB
· Distribution of failed random-access per SSB
· Percentage of unsuccessful random-access
	End of modified section

�This is not correct.

The random access procedure is considered successful if the UE manages to set up a connetion to the network.

The contentionDetected attribute is set only if contention is detected, i.e. the random number the UE sends in message 3 (RRC Connection request) is not received by the UE in message 4 (RRC connection setup).

As contentionDetected MUST be set to false in at least the last PerRAAttemptInfo for the connection setup to succeed, your statement does not make sense.

Note that a RACH attemot can be successful without any contention detected at all. For example, a UE with poor link budget but alone in the cell sends RACH preambles at higher and higher power, until a message 2 (Random Access Response) is received. In none of the attempts contention occur.

�Measurements defined this way does not give meaninigful results, as explained in contribution � HYPERLINK "http://www.3gpp.org/ftp/tsg_sa/WG5_TM//TSGS5_132e/Docs/S5-204434.zip" �S5-204434� , On RACH optimization granularity for NR.

�The table is misleading. It suggests that all RACH attempt failues are due to contention, i.e. different random numbers in messages 3 and 4. Failues can occur for other reasons, for example if the UE does not hear the gNB's message 2. In this case contentionDetected is set to FALSE.

In other words, a realistic table should include more FALSEs.

�I shaded the table to make it easier to read.

�Again, as explained in contribution � HYPERLINK "http://www.3gpp.org/ftp/tsg_sa/WG5_TM//TSGS5_132e/Docs/S5-204434.zip" �S5-204434� , On RACH optimization granularity for NR., measurements defined this way are not meaingful.

�If I understand this table correctly, it counts the number of RACH attempts with contentionDetected set to TRUE. AS explained above, this is not correct.

�I believe this is not necessarily true, after just 17 attempts in total. What if a UE was never within this beam?

More realisticly, these counters would have higher numbers due to counting more RACH attempts from more UEs for a longer time. How would you use larger numbers for determining performance? Clarify!

�Absolute numbers would be better. The percentage can be calculated, and the absolute numbers can also be useful for measurements.

_1657536034.doc

Network

UEInformationRequest

UEInformationResponse

UE

