3GPP TSG-SA4#74
S4-130706
Dublin, Ireland, July 8 – 12, 2013

Title:

Effects of Token Bucket limitations on media transport
Source:
Telefon AB LM Ericsson, ST-Ericsson SA
Document for:
Discussion and approval
Agenda Item:
10.6.2
1 Introduction
As described in [1], MBR and GBR bandwidths are defined using only the bitrate for Evolved Packet Core (EPC), but there is no definition for the bandwidth variations or whether the bitrate should be a per-packet peak bitrate or an average bitrate that is evaluated over some certain averaging window.
This contribution therefore gives a few examples of how the bitrates may vary for video depending on how the video codec is used, even if the long-term average bitrate is roughly the same. It is also shown that the bitrate variations will vary with different content.
This contribution then continues with describing the impact on real-time, conversational media transport if an MTSI client in terminal were to use a token bucket to conform to the allocated bitrate. Different token bucket settings are used to visualize the effects, both in terms of how much bandwidth variations they allow and what issues that can be foreseen.

The contribution then concludes with a discussion and a set of proposals for how to improve the media handling for MTSI clients.
2 Examples of bandwidth variations for video codecs
Video encoding is inherently variable-rate where different frame types (I-frames, P-frames and sometimes B-frames) are used to encode different video frames. The frame data sizes that are generated for different frame types vary a lot depending on how prediction is used. For example, an I-frame can easily generate a frame data size that is 5-10 times larger than the average P-frame.

The frame data sizes will vary even if the video codec uses the same frame type depending on how the codec is used. The figure below shows two examples of frame data sizes for P-frames. The traces were generated for two different video files where both used QCIF resolution. The video files were encoded using an H.264 codec with approximately the same bitrate (220 kbps and 202 kbps, respectively) but with 15 Hz and 30 Hz frame rate, respectively. The different frame rates means that the frame data sizes will be very different. For video file 1, the lower frame rate means that the video frames sizes become ca. 1600~2300 bytes. But for video file 2, the increased frame rate means that the video frames become ca. 500~1300 bytes.
The different video files also have different content and especially different movements within the video. This also results in varying frame data sizes, as can be seen in the figure.

	[image: image1.png]Size [bytes]

Video trace file: QCIF, 15 fps, 220 kbps
2400 T T T

2300

2200

2100 : , 4

2000 H o

©

=1

S
I

1800 o

1700 B

1600 - : 4

1500 i i i i
0 200 400 600 800 1000 1200

Frame number

a) Video file 1 max-to-average ratio ~= 1.3, min-to-average ratio ~= 0.8, max-to-min ratio ~= 1.5
	[image: image2.png]Size [bytes]

1400

200
0

Video trace file: QCIF, 30 fps, 202 kbps

500

I Il Il
1000 1500 2000
Frame number

I
2500

3000

b) Video file 2 max-to-average ratio ~=1.6, min-to-average ratio ~= 0.3, max-to-min ratio ~= 3.6

Figure 1.
Examples of traces of frame sizes. The plot shows the number of bytes that were used for encoding each frame using one possible H.264 codec.
As described above, I-frames result in much larger frame data sizes. Normally it is beneficial to only send an I-frame in the beginning of the media stream and to avoid such frames during the session. However, it may happen that the sender has to generate I-frames in some cases, for example when resuming the video after HOLD, after call forwarding or any other case when the difference between two frames requires more bits than an individual I-frame, or whenever the receiver asks for a full intra refresh.
3 Token bucket functionality

The token bucket functionality is described below. The token bucket is defined by two parameters, the token bucket rate [bps] and the token bucket size [bytes].

[image: image3]

[image: image4]
The functionality of the token bucket is as follows:

1. The token bucket is initialized with the token bucket size (X bytes)

2. Each time a packet is sent then this consumes the same number of tokens (bytes) from the token bucket as the size of the packet

3. The token bucket is then filled with new tokens at the token bucket rate, which is the same as the negotiated bitrate (b=AS, MBR or GBR)

4. If the size of the packet is larger than the number of tokens left in the bucket then it is not allowed to send the packet at this time (red). The packet must instead be delayed until the bucket has been filled up with enough tokens (green).

a. Alternatively, the packet could also be divided into two or more smaller packets (segments) where some segments are transmitted and others are delayed.

4 Transmitter with pacing function

The figure below shows how a token bucket can be used in an MTSI client by implementing a so called “pacing function”. The pacing function is responsible for sending the packets only when there are enough tokens in the token bucket and to hold (delay) packets when there are too few tokens in the token bucket.

It is here assumed that the pacing function only controls when the different packets are sent. But it cannot divide the packets into smaller segments so it does not change the size of the packets. There is a requirement already today that the sender must ensure that the generated packets do not exceed the Maximum Transfer Unit (MTU), so it is therefore also assumed the pacing function does not need to divide the packets any further to meet this requirement.

[image: image5]

[image: image6]
A benefit with the pacing function is that the internal packet queue and the pacing function can be added to existing implementations relatively easy. A more optimal way is probably to control the video encoder in more detail, but that is also expected to require more work.
5 Impact on media

The impact of the token bucket on the real-time media is described using a few artificial but realistic examples. The simulation setup is described in Table 1 below.
Table 1.
Parameters used in this study
	Video codec
	H.264

	Bit rate
	384 kbps

	Frame rate
	20 Hz

	Average frame data size
	2400 bytes/frame

	Tested frame data sizes, CBR
	1x of average frame data size

	Tested frame data sizes, VBR
	I-frames 10x of average frame data size
P-frames 0,5x or 1x of average frame data size

	Packetization
	2 IP/UDP/RTP packets per video frame

	IPv6/UDP/RTP overhead
	40+8+12 = 60 bytes

	Packet size, CBR
	1260 bytes/packet, 2 packets per frame

	Packet size, VBR
	1260 bytes/packet, N packets per frame

	Token bucket rate
	Same as bearer bitrate

	Token bucket size
	1260, 1400, 3000, 5600, 14000, 28000 bytes

	Bearer bitrate
	403200 bps + margin

	Bearer bitrate margin
	0%, 10%, 20%, 50%, 100%

	Simulated time resolution
	1 ms

5.1 CBR transmission with minimum token bucket size
This example shows what happens with the token bucket when one send one (1) video frame that uses 2 IP packets at 1260 bytes each.
[image: image7.png]Token bucket example

1

® © ¥ &

g 8888 8 8

=
UOJSS|WSUB} 91049 SUOKY

o

40 60 80 100 120 140 160 180
Time [ms]

20

Figure 4.
Basic functionality of the token bucket for the transmission of one video frame using two packets
The video frame data (2400 bytes) arrives at 5 ms and is divided into 2 IP/UDP/RTP packets (1200 + 60 bytes each). The first of the two packets is sent immediately, which empties the token bucket. The second packet is delayed until enough tokens have been accumulated, which takes ~25 ms. The second packet is then sent, which empties the token bucket again. This means that the reception of the complete video frame is delayed by 25 ms and the end-to-end delay is also increased with the same amount.

In reality, video frames will be generated every 50 ms (at 5 ms, 55 ms, 105 ms, 155 ms, etc…), which gives the following figure:
[image: image8.png]Token bucket example

I .

g 8888 8 8

g ® © ¥ W

UOJSS|WSUB} 91049 SUOKY

o

40 60 80 100 120 140 160 180
Time [ms]

20

Figure 5.
Basic functionality of the token bucket for the transmission of several video frames
In this example, the token bucket manages to accumulate just enough tokens when the next video data frame is generated.
5.2 CBR transmission with token bucket size 1400 bytes
This example shows what happens with the token bucket when setting the size to 1400 bytes. The reason for setting the token bucket size to 1400 is that the MBR is defined in 2G/3G with a token bucket where the size is set to the maximum SDU size and in TS 26.114 we have QoS examples that suggest that the maximum SDU size is should be set to 1400 bytes.
[image: image9.png]Token bucket example

1
200

1600

1400 -

ggg8sg8sg-°

8§ § & & 3§ «

UOJSS|WSUB} 91049 SUOKY

40 60 80 100 120 140 160 180
Time [ms]

20

Figure 6.
Basic functionality of the token bucket for the transmission of several video frames when the token bucket size is 1400 bytes
In this case, the delay becomes a little shorter, 23 ms.

5.3 CBR transmission with token bucket size 3000 bytes

Setting the token bucket large enough to send both packets without delay gives the following figure:

[image: image10.png]#tokens before transmission

3500

Token bucket example

3000 -

2500

2000

500

=SS/

20

40

60 80 100 120

Time [ms]

140 160 180

200

Figure 7.
Token bucket with larger bucket size
In this case, the first packet is sent immediately (at 5ms) and is immediately followed by the transmission of the second packet. In this case, there is no delay introduced by the token bucket.
5.4 Sending one 10x I-frame with token bucket size 1400 bytes

Let’s now say that the video encoder generates an I-frame that is 10 times the size of the average video frame size, i.e. 24000 bytes. It is here assume that the data is divided into 20 packets. This gives the following figure:
[image: image11.png]Token bucket example

7
L8

:

L8

:

L8

<

L8

:

L8

:

-8

. 90900040, 000 o

UOJSS|WSUB} 91049 SUOKY

Time [ms]

Figure 8.
Token bucket for a 10x I-frame with small token bucket size
The I-frame is generated at 5 ms, and the first packet is transmitted immediately. But due to the small token bucket size it takes a very long time until the last of the 20 packets is transmitted. The delay introduced by the limited token bucket size is 475 ms. This gives severe consequences for real-time conversational media:
· To play out all video frames at a constant frame rate, the receiver has to delay all other frames with the same amount as the I-frame

· This means that one will get 475 ms extra end-to-end delay purely because of the rate smoothing in the transmitter. To this, one then have to add the delays for: capturing the video frame; encoding the video frame; transmitting the packets; decoding the video frame and rendering the video frame.

However, since MTSI is a conversational service this means that the expectations on the service quality are quite tough, especially for the end-to-end delay. TS 22.105 [2] defines the service requirements that MTSI is supposed to fulfill (also included below).

Table 2.
Copy of Table 1 from Clause 5.5 in 3GPP TS 22.105.
	Medium
	Application
	Degree of symmetry
	Data rate
	Key performance parameters and target values

	
	
	
	
	End-to-end One-way

Delay
	Delay variation within a call
	Information loss

	Audio
	Conversational voice
	Two-way
	4-25 kb/s
	< 150 msec preferred

< 400 msec limit
Note 1
	< 1 msec
	< 3% FER

	Video
	Videophone
	Two-way
	32-384 kb/s
	< 150 msec preferred

< 400 msec limit

Lip-synch : < 100 msec
	
	< 1% FER

	Data
	Telemetry

- two-way control
	Two-way
	<28.8 kb/s
	< 250 msec
	N.A
	Zero

	Data
	realtime games
	Two-way
	< 60 kb/s

Note 2
	< 75 msec preferred
	N.A
	< 3% FER preferred,

< 5% FER limit

Note 2

	Data
	Telnet
	Two-way
(asymmetric)
	< 1 KB
	< 250 msec
	N.A
	Zero

As can be seen, sending an I-frame as large as in this example when using a very small token bucket size means that the rate smoothing will make it impossible to fulfill the service requirements. It should here also be noted that it doesn’t matter if the rate smoothing is done by the sending client or by some policing function in the network. The effect will still be the same.
5.5 Sending one 10x I-frame transmission with token bucket size 14000 bytes

One way to solve the problem outlined in Section 5.4 is to set the token bucket size much larger, say 10 times larger, i.e. to 7000 bytes. This means that large P-frames and some of the I-frames can be handled with no or little delay. However, larger I-frames (in this case 24000 bytes) will still generate some delay, although less than shown above:

[image: image12.png]Token bucket example

7
L8
8
8
g
8
<
8
g
8
g
g
coooo.. | o
b s s s s s o
85588888

UOJSS|WSUB} 91049 SUOKY

Time [ms]

Figure 9.
Token bucket with larger bucket size
In this case, the rate smoothing causes ~225ms delay.
5.6 Sending one 10x I-frame transmission with token bucket size 28000 bytes

The best solution, at least from a delay perspective, would be to set the token bucket size so large that it can handle even large I-frames. Then one would get the following:
[image: image13.png]Token bucket example

| gocjsssepecepecere®

g8 8 8 8 8 8 °
S ¢ & & & 8
8 % 8 3 8

UOJSS|WSUB} 91049 SUOKY

600

500

400

300

200

100

Time [ms]

Figure 10.
Token bucket with bucket size allocated to handle large I-frames
One can however question if the policing function in the network will allow such extreme peak bitrates. Sending a 10x I-frame gives ca 24000 bytes. Sending this in 1 ms (shortest possible time unit in LTE) gives a peak bitrate of 192 Mbps. When the average bitrate is ~400 kbps this gives a 476:1 peak-to-average ratio.
5.7 Token bucket with increased token bucket rate
The following figures shows what happens when sending average sized packets, as done in Section 5.2, but when one allocate a bearer with some extra margin.
[image: image14.png]Token bucket example

gegggesg-°

g ®© ©® ¥ N

UOJSS|WSUB} 91049 SUOKY

40 60 80 100 120 140 160 180 200
Time [ms]

20

Figure 11.
CBR, 2400 bytes/frame, 2 packets/frame, bearer allocated with 10% margin, 21 ms delay
[image: image15.png]Token bucket example

1600

1400 -

g 88888

8§ § ® & ¥ «

UOJSS|WSUB} 91049 SUOKY

o

40 60 80 100 120 140 160 180 200
Time [ms]

20

Figure 12.
CBR, 2400 bytes/frame, 2 packets/frame, bearer allocated with 20% margin, 19 ms delay
[image: image16.png]le
n bucket examp
Toke

1600

8
8
g8 8
geees
58

udou
ISue.} 310434 s
uojsstur

o
s
s

200
180

160

140

120

100

60 8 Time [ms]
40

20

Figure 13.
CBR, 2400 bytes/frame, 2 packets/frame, bearer allocated with 50% margin, 15 ms delay
[image: image17.png]Token bucket example

1600

1400 -

g 88888

8§ § ® & ¥ «

UOJSS|WSUB} 91049 SUOKY

o

40 60 80 100 120 140 160 180 200
Time [ms]

20

Figure 14.
CBR, 2400 bytes/frame, 2 packets/frame, bearer allocated with 100% margin, 12 ms delay
As shown above, using over-allocation of the bearer does reduce the delays but is otherwise not a favorable option due to the capacity impacts.

[image: image18.png]Token bucket example

700

UOJSS|WSUB} 91049 SUOKY

Time [ms]

Figure 15.
10x I-frame, 24000 bytes, 20 packets, bearer allocated with 100% margin, 237 ms delay
Using over-allocation will also reduce the delays also for large I-frames but the delay is still quite long. Using over-allocation is therefore not seen as a viable solution, at least not as the only solution.
5.8 Recover after transmission of large frames

Using a token bucket for rate smoothing where the token bucket size has been selected such that it allows for sending a large frame data size only solves one part of the problem, i.e. the transmission of the large frame. However, as can be seen in the figure below, if the video encoder sends video frames of the average size then the number of tokens in the token bucket will never recover to its initial amount.
[image: image19.png]Token bucket example

e . . ! |
s 9 9 g g9 9 o
g 8 8 8 8 8
53 8 ¥ & & =

UOJSS|WSUB} 91049 SUOKY

700

600

500

400

300

200

100

o

Time [ms]

Figure 16.
Token bucket size set to 5600 bytes to allow for sending a large packet, without recovery
The issue with this is that while it is possible to send one video large frame it becomes impossible to send another large video frame in the future, at least not without causing long delays. To solve this, the client needs to reduce the encoding bitrate for a number of frames after the large frame. The results may then look like the figure below shows.
[image: image20.png]Token bucket example

//

6000
5000
000
00!
00!
00!

< @ I =
UOJSS|WSUB} 91049 SUOKY

600

500

400

300

200

100

Time [ms]

Figure 17.
Token bucket size set to 5600 bytes to allow for sending a large packet, with recovery by reducing the bitrate for the subsequent video frames
The large frame is transmitted at 105 ms and is 3x the size of the average frame data size. The next 4 frames are encoded at 0.5x bitrate. This means that the token bucket can recover and sending large frames in the future becomes possible.
6 Discussion

As can be seen in Section 5, sending large video frames when using a small token bucket will result in very long delays which may even result in failing to meet the service requirements. Since the MTSI service is a conversational service with tough delay requirements it should be obvious that the client must be allowed to momentarily send video with a higher bitrate. The natural follow-up questions are then:

· How large bitrate variations can the sending client use?

· How large bitrate variations does the receiving client allow?

· How large bitrate variations does the network allow?

· What will happen if the sending client generates bitrate variations that are larger than what the receiving client and/or the network allows? Will one get packet losses? Or will one get packet delays? Maybe both?
The source also believes that, if there is no way to negotiate how large bitrate variations that are allowed in the session, then it is reasonable to assume that the larger bitrate variations the client generates, the larger the risk will be that network will perform traffic shaping.

Since MTSI is a telephony-grade service and it is expected to become a mass-market service it is important that the service works well under basically all possible operating conditions. Poorly working sending clients will generate quality problems for other clients, and the networks, and it can be expected that people will then complain if the service quality does not meet the expectations.

If the clients do not know what variability the networks will allow then it may happen that the clients generate too large bitrate variation, which can trigger the policing function. Such issues will then results in poor service quality.

From a network perspective it is also important to know how large bitrate variations the clients will generate in order to do proper bearer allocation and to configure the policing function and rate shaping functions correctly. If this is not possible then it may happen that the network may have to resort to over-allocation to allow for some bandwidth variations.

Another related aspect is what will happen when a session is setup over several networks, e.g. intercontinental calls, where several operators are involved. What will then happen if the operators configure their policing functions differently?
And what will happen in roaming scenarios? The clients need to work properly also in such cases. However, today there are no mechanisms that the clients can use to know what will work in the visited network.

For these reasons, the source believes that it would be beneficial to define how bitrate variations should be handled by the clients so that we get well-behaving clients that works equally well in all networks.
The source also believes that a negotiation mechanism, i.e. in SDP, should be defined so that the clients can learn what capabilities the remote client has. The same negotiation mechanisms can then be used by the network to learn what bandwidth variations the clients may be using. It should also be allowed for networks nodes to modify the parameters that are being negotiated. It is understood that not all network nodes are allowed to change the SDP, but for those nodes that are allowed to change the SDP then it should be allowed.

Another reason for defining client behavior, compared to doing rate shaping in the network, is that the client has better control over the media and can encode the video to the desired rate without causing too large encoding distortions. This is because of the inter-frame prediction that is used in the encoding process. If the network drops a frame then this will very likely generate distortions at the receiver that will also propagate for a number of frames.
For these reasons, it is proposed that the MTSI clients shall use a token bucket to control the bitrate variations and that the token bucket parameters are negotiated between the clients at session setup. If the networks understand the attribute(s) used for this negotiation then they can use this information to configure the policing functions. If allowed, then the network can also change the token bucket parameters, if the suggested parameters are not suitable.
7 Proposal
It is proposed to:
· Define requirements and recommendations on bitrate variations that the MTSI client shall fulfill.

· The requirements and recommendations are defined with a token bucket, using the parameters token bucket bitrate [bps] and token bucket size [bytes].

· The sending client may use a pacing function as shown in Section 4 but other solutions are also allowed.
· A new SDP attribute is defined for the end-to-end negotiation, which is to be used between the clients.
· Network functions can read the new SDP attribute and use the information if it is understood.

· Network functions may also change the information, if they are allowed to change the SDP.

8 References
[1] S4-130705, “Comments to incoming LSs on end-to-end QoS handling”.

[2] 3GPP TS 22.105, “Services and service capabilities”.
Time [s]

#tokens [bytes]

Token bucket size

Packets transmitted

Tokens (bytes) added with the negotiated bitrate

Not allowed to send packet here since too few tokens (bytes) are available, packet must be delayed until enough tokens are available

Additional delay

Figure � SEQ Figure * ARABIC �2�.	High-level description of token bucket functionality

Media

Holds (delays) packets when needed

Media processing (capture, encoding, etc…)

Packetization into IP/UDP/RTP

Pacing function (token bucket, or similar)

To send queue

Internal packet queue

Video frame data

IP/UDP/RTP packets

Figure � SEQ Figure * ARABIC �3�.	Example of how a token bucket can be implemented in a transmitting client

