3GPP TSG-SA WG4 Meeting #128 S4-241177 revision of S4-240785
Jeju, Korea, 20 - 24 June 2024
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:			Samsung Electronics Co., Ltd. (Rapporteur)
Title:			[FS_AI4Media] Evaluation Permanent Document v0.56.0
Version:		0.56.0
Agenda Item:		9.6
Document for:		Agreement
1	Introduction
During SA4#124 a Revised Study Item Description on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” in S4-231070 was agreed and afterwards approved in by SA#100 in SP-230538.
The revised study item description adds an objective related to feasibility studies and evaluations for study item, for which related content and technologies are documented in this Evaluation Permanent Document and TR 26.8xx.
The related objective is as follows:
· Establish an evaluation framework and use it for the evaluation of scenarios collected for the study. This includes the collection of scenarios based on the use cases identified, and defining a scenario template for the description of scenarios for the evaluation. The evaluation framework to document common testbed architectures and anchors, metrics (e.g. AI/ML task metrics, feasibility/performance metrics), and specific details (such as test configuration and constraints) for each scenario evaluation.
The evaluation framework is designed to accommodate different scenarios for the different use cases for the usage and deployment of AL/ML over 5G networks. A scenario describes the evaluation for a specific use case. Use cases have been identified as part of the SA1 study and a selected subset is documented in TR 26.927.
Editor’s Note: v0.1 of this document is lifted from clause 7 of Permanent Document v0.8 (S4-231011). Highlighted clause references in clause 10 of this document are cross references which need to be revised.
2	General aspects regarding the AI/ML software framework
For AI/ML evaluations, the following data is needed for the agreed scenarios:
· Test material (E.g. media datasets) including labels/annotations
· AI/ML models
· Md5 files for the test metrical and AI/ML models
· Scripts implementing the evaluation pipelines
· Code of (potential) optimization/compression methods
· Dockerfiles (specific version to be tracked)
· Definitions of the metrics for evaluation

For reproducibility on different systems, Dockerfiles implementing the evaluation pipelines should be provided. Dockerfiles, datasets, scripts, and code should be provided in a way that allows building Docker images from scratch. To avoid Docker images getting too large due to datasets, an image per scenario might be considered.

Test material might be referenced on an external server or might be copied to a common local server. Jsonfiles for annotations might be used for online documentation of the available data.

Potential options to host scripts and data are:
· Private GitHub (Imed 1st option and 5G-MAG eventually) no software possible without licensing aspects clarified
· 3GPP GitHub (maybe for scripts, only small files)
· 5G-MAG
· Akamai large file size
· Imed (1st option, https://github.com/ibouazizi/sa4aiml)

Considering licensing aspects, the evaluation software needs to be BSD-3 approved by some members.

Considering reproducibility, cross checks validating the accuracy of results should be performed and Md5 files should be provided. The tolerance for each metric needs to be defined for validation of crosscheck results.

2.1	Currently available scripts / containers
This section lists the currently available scripts and containers that might be used as basis for further development of the AI/ML evaluation framework.
2.1.1	Docker container with scripts and datasets
A docker image container is available to collect all scripts and datasets that will be used as part of the SA4 evaluation framework for FS_AI4Media study.
The docker container is an Ubuntu image with an initial installation of a python environment that includes the key deep learning frameworks: PyTorch and Tensorflow2.
The docker image is currently hosted on a personal server under the following URL:
	https://bouazizi.dev/aiml/aiml_docker_image_05152023.tar.gz

A more suitable location to host the docker image should be arranged.
The container image is built on an Ubuntu 22.04 base image and can be loaded as follows:
	docker load -i aiml_docker_image_05152023.tar

 The container may leverage underlying GPUs for better inference. If the host machine is equipped with a suitable GPU, then it is recommended to first run the following command:
	apt install -y nvidia-docker2

It is assumed here that the host machine is running an Ubuntu distribution.
To run the container, the following command should be executed:
	docker run -it --gpus all -t aiml aiml_docker_image_05152023

2.1.1.1	Datasets and scripts
The container comes with an image detection dataset, namely the SFU-HW-Objects dataset and its associated annotations.
The video sequences are encoded in HEVC lossless INTRA-only mode and are available under the videos subfolder. The following table shows the list of video sequences:

	Class
	Sequence name
	Width x Height
	Frame count
	# Object Classes

	A
	Traffic
	2560x1600
	150
	2

	A
	PeopleOnStreet
	2560x1600
	150
	4

	B
	BQTerrace
	1920x1080
	600
	9

	B
	BasketballDrive
	1920x1080
	500
	4

	B
	Cactus
	1920x1080
	500
	1

	B
	Kimono
	1920x1080
	240
	2

	B
	ParkScene
	1920x1080
	240
	4

	C
	BQMall
	832x480
	600
	3

	C
	BasketballDrill
	832x480
	500
	4

	C
	PartyScene
	832x480
	500
	6

	C
	RaceHorses
	832x480
	300
	2

	D
	BQSquare
	416x240
	600
	7

	D
	BasketballPass
	416x240
	500
	4

	D
	BlowingBubbles
	416x240
	500
	3

	D
	RaceHorses
	416x240
	300
	2

	E
	KristenAndSara
	1280x720
	600
	3

	E
	Johnny
	1280x720
	600
	3

	E
	FourPeople
	1280x720
	600
	4

The annotations can be found under the ground-truth subfolder. These are one text file per frame of the video, where each file provides the ground truth annotations.
The annotation files have the following format per line:
	<object_label> <box_topleft_x> <box_topleft_y> <box_width> <box_height>

The predictions are expected to have the following format:
	<object_label> <prediction_confidence> <box_topleft_x> <box_topleft_y> <box_width> <box_height>

The labels that are supported by this dataset are the following:

	Class ID
	Object
	Class ID
	Object
	Class ID
	Object

	0
	Person
	17
	Horse
	56
	Chair

	1
	Bicycle
	24
	Backpack
	58
	Potted plant

	2
	Car
	25
	Umbrella
	60
	Dining table

	5
	Bus
	26
	Handbag
	63
	Laptop

	7
	Truck
	27
	Tie
	67
	Cell phone

	8
	Boat
	32
	Sports ball
	74
	Clock

	13
	Bench
	41
	Cup
	77
	Teddy bear

An inference model that uses a different class ids/labels must have its results converted into the above format prior to evaluation.
The prediction results must be stored as a 1 file per image under the predictions folder.
The dataset is courtesy of the multimedia lab of SFU (SFU, Multimedia Lab, http://multimedia.fas.sfu.ca/data/). The video sequences are MPEG-JVET video sequences.
Currently, the images comes with a few scripts, which are still under development:
· visualize.py: visualizes the annotations with the corresponding video sequence
· infer.py: a demo script that loads a torchivision trained ResNet-50 FPN model and produces predictions for a given video sequence
· map_calc.py: a script that calculates the mAP for the predictions
Please report any bugs/errors to the author.
More datasets for other tasks such as tracking will be added as part of building this evaluation framework.
2.1.2		Scripts for the evaluation of compressed AI/ML model transmission
t the Video SWG post 123 online meeting, a first scenario for the evaluation framework for AI/ML was proposed in S4aV230020, which included This clause describes the software python code framework implementing an initial evaluation pipeline for the evaluation of compressed AI/ML model transmission this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). This clause presents a revised version of this software. Key feature of tThe framework comprises python scripts implementing threehe main functionalities:
1. A codec pipeline for encoding, decoding, and evaluation of AI/ML models with different parameters to obtain their performances and sizes before and after encoding (pipeline/run.py). The pipeline can be extended with new scenarios and compression methods in a modular way.
2. An NNC evaluation script to evaluate the compression of the ASR scenario (as defined in clause 10.1) with NNC. The script invokes the codec pipeline multiple times with different QPs and stores results in csv-files (evaluations/evalNncAsr.py).
3. A graph plotter creating pdfs from the csv-files obtained by the NNC evaluation script (evaluations/plotGraphs.py).

Furthermore, the framework includes bash-scripts to a) create a docker image comprising the python scripts and required dependencies and to b) run docker containers from the docker image.
software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement. In future, the scripts will also be included to a Docker image.
2.1.2.1.1	Main evaluation processSoftware repository and installation
The software is available in the following git-repository:
· https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/tree/main/scripts/asr/compression

The scripts can be used with or without a docker. Without docker, the framework can be installed as follows:
1. Install a python 3.10 environment.
2. Install packages listed in requirements.txt
pip install -r requirements.txtrunContainer.sh host_directory [other parameters...]

3. Install NNCodec as follows:
git clone --branch v0.3.1 https://github.com/fraunhoferhhi/nncodec.git
cd nncodec
pip install .runContainer.sh host_directory [other parameters...]

To run the scripts with docker, the framework comprises a Dockerfile to build an image with Ubuntu 22.04, python 3.10, packages in the requirements.txt, Nvidia GPU support, and NNCodec.
The image can be built as follows:
cd docker
./buildContainer.shrunContainer.sh host_directory [other parameters...]

Containers have been tested with CUDA version 12.0 and docker engine version 24.0.5.
2.1.2.2	Codec pipeline
Figure 2.1.2.12-1 shows the process executed by the evaluation processcodec pipeline schematically inas simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).

 scenario = scenario_factory.get(cfg)
 coder = coder_factory.get(cfg, scenario)

 anc_model = scenario.get_model()

 results["anc_size"] = get_size(anc_model)
 results["anc_perf"] = scenario.get_performance(anc_model)

 bit_stream = coder.encode(anc_model)
 rec_model = coder.decode(bit_stream)

 results["rec_size"] = get_size(bit_stream)
 results["rec_perf"] = scenario.get_performance(rec_model)

 write_to_csv(results)

Figure 2.1.2.12-1: The main evaluation process (simplified pseudo-code)

2.1.2.2.1	Configuration
The process codec pipeline can be configured as shown in Table 2.1.2.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name
	Name of the compression method
	C,R

	scenario_name
	Name of the scenario
	S,R

	data_set_name
	Name of the dataset
	S,R

	model_name
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir
	Directory to store the csv-file, the bitstream,s and other output data to
	C

	data_dir
	Directory to model data and datasets
	S

	batch_size
	Evaluation batch size (currently ignored)
	S

	workers
	Number of workers for the data loader
	S

	disable_progress_bar
	Disable progress bar
	C, S

	eval_compression
	Compress and evaluate reconstructed model
	R

	eval_anchor
	Evaluate anchor model
	R

	download_only
	Only download models and datasets
	

Table 2.1.2.2.1-1: Configuration parameters
The available scenarios, model and compression methods that are currently available are shown in Table 2.1.2.2.1-2.

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.

	Coder
	nnc
	NNCodec

Table 2.1.2.2.1-2: Implemented scenarios and compression methods
The pipeline can, for example be started with:
python ./run --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="dummy"`runContainer.sh host_directory [other parameters...]

2.1.2.2.2	Encoder configuration files
Encoder configuration files for NNC are provided in evaluations/cfg and can be specified using the parameter enc_cfg_file_name. They can for example be used as follows:
python ./run --scenario_name="asr" --model_name="wav2vec_asr_base_960h"
 --coder_name="nnc" --enc_cfg_file_name="../evaluations/cfg/QP_-22.json"runContainer.sh host_directory [other parameters...]

A description of the parameters can be found at https://github.com/fraunhoferhhi/nncodec/wiki/Usage. The parameters bitstream_path, model_name, and dataset_path are programmatically set by the codec pipeline. Since the framework currently only supports non-data driven tools, the parameters ioq, lsa, and fine_tune must always be equal to 0.
2.1.2.2.3	Result csv- file
Table 2.1.2.2.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 2.1.2.2.1-1 are added.
	Name
	Description
	Unit

	anc_size
	Size of the anchor model
	byte

	rec_size
	Size of the bitstream
	byte

	compress_ratio
	rec_size / anc_size
	-

	metric_name
	Name of the metric
	-

	anc_perf
	Performance of anchor model
	Unit of metric_name

	rec_perf
	Performance of reconstructed model
	Unit of metric_name

	anc_eval_time
	Evaluation time for anchor model
	seconds

	rec_eval_time
	Evaluation time for reconstructed model
	seconds

	enc_time
	Encoding time
	seconds

	dec_time
	Decoding time
	seconds

Table 2.1.2.2.3-1: Results written to the csv-file

2.1.2.2.4	Running the codec pipeline with docker
The codec pipeline can be run within a docker container by calling docker/runPipeline.sh from within the docker directory, as follows
cd docker
runPipeline.sh host_directory [other_parameters...]runContainer.sh host_directory [other parameters...]

with the following parameters:
· host_directory is a directory on the host system to which models/datasets are downloaded and to which results will be written.
· other_parameters are the other codec pipeline parameters, as specified above.
The script operates as follows:
1. It mounts host_directory to the container.
2. It sets the parameters out_dir and data_dir to host_directory\out and host_directory\data, respectively.
3. It forwards other parameters to the invocation of pipeline/run.py within the container.
Example:
runPipeline.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="dummy" runContainer.sh host_directory [other parameters...]

Configuration files for NNC, which are stored in evaluations/cfg, are also available within the docker image in directory framework/evaluations/cfg. The container can be run with a specific cfg-file, e.g. as follows:
runPipeline.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large"
 --coder_name="nnc" --eval_anchor=0 --unique_tag="test_hubert -22"
 --enc_cfg_file_name="/framework/evaluations/cfg/QP_-22.json"runContainer.sh host_directory [other parameters...]

2.1.2.2.45	Scenario module interfaceExtending the codec pipeline
The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 2.1.2. 42.5-1. The parameters marked with S in Table 2.1.2.2.12.1.2.2-1 are forwarded to the init function of the Scenario class within the opts variable.
class Scenario():
 def __init__(self, opts):
 self.metric_name = "MetricOfScenario"
 # Input:
 # - opts: an object with members defining the scenario configuration
 # Should:
 # - define self.metric_name as string denoting the performance metric of

 # the scenario, which will be forwarded to the result csv-file
 # - init object from opts

 def get_model(self, pre_trained):
 # Input:
 # - pre_trained a boolean indicating whether to provide the pre-trained model
 # Should download model data and datasets, when not already done
 # Output:
 # - If pre_trained is true, model should be a pre-trained model,
 # Otherwise, model should be an un-initialized model
 return model

 def download_data_and_models(self):
 # Should download model data and datasets, when not already done

 def get_perf(self, model, partition, enforce_higher_is_better=False):
 # Inputs:
 # - model: the model to get the performance for
 # - partition: the partition of the dataset used for evaluation:
 # - "test" The test partition for final performance measurement should be used
 # - "valid" The validation partition for data-driven methods should be used
 # - enforce_higher_is_better: if true perf should be increasing with increasing
 # model performance
 # Outputs:
 # - perf: the performance
 # - infer_time: the inference plus measurement time
 return perf, infer_time

Figure 2.1.2.42.5-1: Interface required to be implement for new scenarios

2.1.2.5	Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 2.1.2.2.5-1. The parameters marked with C in Table 2.1.2.2.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
 def __init__(self, opts):
 self.__opts = opts
 # Inputs:
 # - opts: an object with members defining the coder configuration:
 # - opts.file_names["bit"]: the bitstream filename
 # - opts.file_names["dec"]: the decoded model filename
 # - opts.scenario: the scenario object
 # Should init the coder object from the opts object

 def encode(self, model):
 # Inputs:
 # - model: the model to encode
 # Should:
 # - Encode the state_dict() of model to the file given in
 # self.__opts.file_names["bit"]

 def decode(self, rec_model):
 # Inputs:
 # - rec_model: the model to write the reconstructed parameters to
 # Should:
 # - decode the bitstream file given in self.__opts.file_names["bit"]
 # - store the decoded parameters in the state_dict of rec_model

Figure 2.1.2.2.5-12: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use:
· the encode function to write optimized model parameters in a raw-byte format to the bitstream
· the decode function to read them back to rec_model.
2.1.2.6	

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models:

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the

[bookmark: nnc-evaluation-script]2.1.2.3 NNC evaluation script
The NNC evaluation script (evaluations/evalNncAsr.py) calls the codec pipeline multiple times while varying NNC’s quantization parameter (QP).
2.1.2.3.1 Command line options
The command line parameters of the NNC evaluation script are shown in Table 2.1.2.3.1-1.
	Parameter name
	Description

	data_directory
	Directory to store downloaded model data and results

	model_name
	Name of the model to evaluate

	qp_start
	Start of the QP range

	qp_end
	End of the QP range

	qp_step
	Step size of QP increments

Table 2.1.2.3.1-1: Configuration parameters for the NNC evaluation script
The parameter model_name can be hubert_asr_large or wav2vec_asr_base_960h. The data_directory must have enough space, as also reconstructed models are stored
[bookmark: running-with-docker-1]2.1.2.3.2 Running the NNC evaluation script with docker
Docker containers with the NNC evaluation script can be run by calling docker/runEvalNncAsr.sh from within the docker directory, as follows:
cd docker
runEvalNncAsr.sh host_directoryrunContainer.sh host_directory [other parameters...]

The parameter host_directory specifies a directory on the host system to which models and datasets are downloaded and to which results are written.
The parameters passed to the NNC evaluation script in the container are currently hardcoded at the end of docker/runEvalNncAsr.sh. The codec pipeline is started with models wav2vec_asr_base_960h and hubert_asr_large and QPs in the range of −15 to −45, inclusive, for both models.
More specifically, for each of the two models, the docker/runEvalNnrAsr.sh script operates as follows:
1. It mounts host_directory to the container.
2. It calls evaluations/evalNncAsr.py within the container with data_directory=host_directory, model_name equal to the respective model, and qp_start=-45, qp_end=-15, and qp_step=1
When calling the codec pipeline, the pipelines’ parameters out_dir and data_dir are set to host_directory\out and host_directory\data, respectively.
Encoding the two models with all QPs on a single machine requires a significant amount of time. For testing purposes, it is recommended to reduce the QP range.
[bookmark: graph-plotter]2.1.2.4	Graph plotter
The graph plotter (evaluations/plotGraphs.py) creates pdfs from the csv-files generated by the NNC evaluation script.
[bookmark: command-line-options-1]2.1.2.4.1 Command line options
The graph plotter supports the parameters shown in Table 2.1.2.4.1-1.
	Parameter name
	Description

	data_directory
	Directory with csv-files; the PDF containing the plots will be written here

	prefix
	Prefix of the csv-files to be used for plotting

Table 2.1.2.4.1-1: Configuration parameters for the Graph Plotter

The graph plotter considers the csv-files starting with prefix from data_directory. The created pdfs are also stored in data_directory.
[bookmark: running-with-docker-2]2.1.2.4.2 Running the graph plotter with docker
Docker containers with the graph plotter can be run by calling docker/runPlotGraphs.sh from within the docker directory, as follows:
cd docker
runPlotGraphs.sh host_directory

The parameters that are passed to the graph plotter in the container are currently hardcoded at the bottom of docker/runPlotGraphs.sh, so that results from calling docker/runEvalNncAsr.sh are plotted.
In particular, this means that the following is expected:
· csv-files are located in host_directory/out
· csv-file for the hubert_asr_large model start with asr_nnc_hubert_asr_large__
· csv-file for the wav2vec_asr_base_960h model start with asr_nnc_wav2vec_asr_base_960h__
The docker/runPlotGraphs.sh script operates as follows:
1. It mounts the host_directory from the host to /container_directory in the container.
2. It runs evaluations/plotGraphs.py in the container with data_directory=host_directory/out.
This creates two pdfs in host_directory/out. Examples for the outputs are given in evaluations/examples/. Because of floating point arithmetic, the results might not be exactly reproducible on different machines/environments.
Table

2.1.2.7	Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.

2.1.2.8	Docker image for the compression pipeline
The related Dockerfile and bash scripts to build a docker image and run docker containers are available at https://vcgit.hhi.fraunhofer.de/tech/ai4media.
A Dockerfile to build a docker image comprising Ubuntu 22.04, python 3.10, required python packages, as well as Nvidia GPU support, is given in the docker directory of the repository. The image can be built by calling buildContainer.sh from within the docker directory.

Containers can be run based on this image by calling runContainer.sh from within the docker directory, as follows

runContainer.sh host_directory [other parameters...]

with the following parameters:

host_directory is a directory on the host system in which downloaded models/datasets and results will be stored. More specifically, runContainer.sh will mount host_directory to the container and set the parameters out_dir and data_dir, as specified in the software description, to host_directory\out and host_directory\data, respectively.
other parameters are additional parameters, as specified in the software description, that will be forwarded to the evaluation scripts.

Example:

runContainer.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large" \
 --coder_name="dummy"

3	Scenario template
A scenario should provide the following information (aligned with TR 26.955, Annex A):
· Scenario name <give the scenario a catchy name>
· Motivation for the scenario and its use case relevance:
Why is the scenario relevant for AI/ML multimedia services? Under which of the following use cases does the scenario fall?
· Object Recognition in Image and Video
· Video Quality Enhancement in Streaming
· Crowd-Sourcing Media Capture
· NLP on Speech
· Description of the scenario:
This provides a description of the scenario addressing potentially the relation to the three AI/ML evaluation framework objectives, including AI/ML model split points, AI/ML model checkpoints and updates, and AI/ML model data compression. The description should be more specific than the use case description as provided in TR 26.927. Predominantly the description should allow to develop a baseline solution.
· Supporting companies and 3GPP members:
a.	This documents the 3GPP members that support this scenario in terms of providing the information, test material, test requirements and the characterization for the tests. For each of the identified necessities, a tick box is created in the template.
b.	Preferably several 3GPP members are included in the support.
c.	Cross-verification is preferably done by the supporters of the scenario
· Anchor AI/ML DNN model(s) for the scenario:
Give the name and details of the trained AI/ML DNN model(s) that will serve for building anchors for this scenario, as well as the data set used for its training. Such trained AI/ML models are not only limited to readily available base AI/ML models, but can also include models developed using transfer learning. There may be more than one candidate anchor AI/ML model for the scenario. As an example, details may include:
a.	Base model used (including links to such base model)	
b.	Framework language used (e.g. TFLite, Pytorch)
c.	Architecture/model type (e.g. CNN, RNN)
d.	Number of layers
e.	Number of parameters
f.	Model size
g.	Details of data set used for training
· Testbed architecture and anchors
Describe and detail the testbed architecture and anchors to be used for the scenario. The architecture and anchors should be based on the ones as defined in clause 5, with modifications matched to the scenario.
· Test configuration factors, constraints and settings:
Describe the test configuration factors, constraints and settings for the scenario. Depending on the nature of the scenario, examples are shown below.
AI/ML model split configuration factors, constraints and settings:
For scenarios considering the feasibility of AI/ML split points, many factors may contribute to the split point decision for the scenario, including those related to device/network status and conditions, as well those related to the AI/ML model used, such as its architecture and complexity. Possible split point decision factors may include:
	Categories
	Parameters
	Details

	Devices Involved
	CPU/GPU
	Device processor capabilities

	
	Battery
	Device battery status

	
	Heat
	Device heating / user health considerations

	Network
	Cellular
	Network selection, bandwidth, latency

	
	Mobility
	Network handover and mobility

	Intermediate Data
	Size
	Data transmission decision, data weights

	
	Type
	Video, Audio/Speech, Text, Binary etc.

	Model Type
	Architecture
	CNN, RNN, GAN, LSTM, etc.1

	User focus
	APP KPI
	Latency Requirement , Service criticality

	
	Data Privacy
	Data transmission allowed or not

	
	Cost of hosting
	Deployment cost at cloud/server

	Data flow
	Topologies2
	Media data source, intermediate data in uplink or downlink

	
1 Studies and experiments about splitting operations shall focus on CNN. Splitting for GAN/RNN/LSTM is FFS.
2 Topologies comprise the next cases:
1. Local source data – local initial inference
2. Local source data – remote initial inference
3. Remote source data – remote initial inference
The scenario may also describe split point constraints, such as limiting split points to those that do not change the model topology and its parameters, splitting only at the layers of the AI/ML model, etc.
Compression or optimization constraints and settings:
For scenarios considering the compression or optimization of the AI/ML model, and/or the intermediate data (where applicable to split inference scenarios), describe the compression or optimization constraints and settings.
· Feasibility/performance evaluation metrics and requirements:
Depending on the scenario, feasibility and performance metrics may be either related to model performance, or to the test bitstream (the nature of which depends on the use case scenario).
List and describe the relevant feasibility/performance evaluation metrics for the scenario. A list of possible metrics is detailed in clause 6.
· Test dataset(s) and scripts for the scenario:
Describe and provide data sets that will be used for the evaluation of this scenario. This should include a description of the license, access procedure, and the dataset annotation format. Same test datasets may be used for similar scenarios falling under the same use case.
Also provide scripts that will be used for performing the evaluation and calculating the metrics.
Further details are provided in clause 6.
· Detailed test conditions:
Provide the detailed test conditions, in particular the descriptions of the input and outputs of the task.
· Interoperability considerations for the scenario:
Interoperability considerations for the scenario may include those related to the delivery considerations for the AI model and other corresponding data (such as intermediate data), including delivery methods, protocols and packetization methods.
a) AI/ML model delivery formats, methods and pipelines: encapsulation formats for AI model data (if necessary), related to the delivery methods and pipelines which may be considered (e.g. download, streaming). This may be related to model update requirements and constraints.
b) AI/ML model optimization methods: methods of model optimization which are not considered under the evaluation methods described under the AI/ML model data compression evaluation defined.
c) Intermediate data compression, delivery formats, methods and pipelines.
d) Related to a and c above: streaming protocols such as TCP / UDP
e) Related to a and c above: packetization methods such as RTP
· External performance data
References to external performance data that can be added, for example other SDOs, public documents and so on.
· Expected time plan for the scenario completion
· Additional information
4	Prioritizing scenarios
Due to the complexity of this evaluation work, scenarios should be prioritized based on their feasibility within a reasonable time frame. A higher priority should be given to scenarios for which the use case is actual, i.e. already being deployed and used.
Priority should also be given to scenarios that are based on mobile phones and devices, compared to others based on e.g. automotive or UAVs (drones).
Finally, precedence should be given to evaluating the aspects and solutions that are considered in the SA1 study as documented in TR 22.874. These are:
· AI/ML operation splitting between AI/ML endpoints
· AI/ML model/data distribution and sharing over 5G system
· Distributed/Federated Learning over 5G system

5	Testbed architectures and anchors
Unless proven otherwise, a common set of architectures is assumed for the evaluation framework, irrespective of the scenario.
The anchor architectures are as follows:
· Running inference completely on the device
· Receiving a compressed video (e.g. from the device), and running inference completely at the network and potentially sharing the inference results with the device.

These anchor architectures are depicted by the following figure:
 [image:]
Figure 5-1: Anchor architecture
In figure 5-1, the left hand side represents the anchor for running the inference at the device side. The right hand side shows the architecture for the anchor where the inference is run on the network side. The anchor model for running on the device should be derived from the anchor model running on the network.
The derivation process may include:
· Quantization to match the device’s inference engine, e.g. converting the weights and inputs to fixed point or unsigned integers.
· Re-training of the converted model to optimize for the inference platform. This is allowed but should be accompanied by results without re-training.
· Conversion to an exchange format such as ONNX
The supported model libraries are PyTorch and Keras/Tensorflow2.
5.1	Split inference intermediate data testbed architecture
A testbed architecture for the evaluation of split inference intermediate data is represented in figure 5.1-1. The anchor model is split into two, split model part 1 and 2, each existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.

Figure 5.1-1 Split inference intermediate data testbed architecture
The testbed architecture includes the following main functional blocks:
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· AI framework/library: The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.
· Model split configuration: The configuration of split points for the anchor model which are to be evaluated. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 2.
· Local inferencing: Where the anchor model fully runs on the local node.
· Remote inferencing: Where the anchor model fully runs on the remote node.
· Split inferencing: Where an anchor model is split into two parts, each run on a local and a remote node respectively.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation.
· Test split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: Typically emulating an end-device such as a UE.
· Remote inference node: Typically emulating a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test network: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.

5.2	Model data testbed architecture
A testbed architecture for the evaluation of model data compression is represented in figure 5.2-1. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.

Figure 5.2-1 Model data testbed architecture
The testbed architecture includes the following main functional blocks:
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.
6	Metrics
In the process of AI/ML, no matter on the training set or on the new sample, there is always some difference between the output result of the model and the real value. Model evaluation is a process of using different evaluation metrics to understand the performance of artificial intelligence/machine learning models and its advantages and disadvantages. It is an indispensable part of the model development phases which can help to discover the appropriate model to express the data and evaluate the performance of the selected model.
Different AI/ML work tasks have different evaluation metrics, and the same machine learning task will also have different evaluation metrics, each metric has different emphasis, e.g., classification, regression, ranking, clustering, recommendation, etc.
Given that most scenarios that we’re dealing with in the scope of this study involve computer vision tasks, for model performance metrics, the evaluation framework should reuse existing metrics that are well-established in the research community. There exists different metrics depending on the type of task performed by the model.
Classification model evaluation is the process of assessing and measuring the performance of a machine learning model that has been used for classification tasks. its goal is to divide different images into different categories, to achieve the minimum classification error.
Confusion matrix is a table used in classification tasks that summarizes the performance of a machine learning model on a set of data for which the true values are known. It consists of rows and columns where each row represents the true class of the samples and each column represents the predicted class. The confusion matrix displays the number of samples that are classified correctly (true positives and true negatives) and incorrectly (false positives and false negatives) by the model.
	Confusion Matrix
	Predicted Value

	
	Positive
	Negative

	True Value
	Positive
	True Positives (TP)
	False Negatives (FN)

	
	Negative
	False Positives (FP)
	True Negatives (TN)

True Positives (TP): predict an observation belongs to a class and it actually does belong to that class;
True Negatives (TN): predict an observation does not belong to a class and it actually does not belong to that class;
False Positives (FP): predict an observation belongs to a class but it does not belong to that class;
False Negatives (FN): predict an observation does not belong to a class but it does belong to that class.

For object classification tasks, the following metrics are used to evaluate or measure the performance of a classification model:
1. Accuracy: Accuracy is the simplest metric for evaluating classification performance. It measures the percentage of correctly classified objects out of the total number of objects in the dataset. While accuracy is easy to understand and compute, it can be misleading if the dataset is imbalanced, or the cost of misclassifying different categories is not equal. Accuracy measures how often the classifier makes the correct predictions, it is defined as the ratio between the number of correct predictions and the number of total predictions.

2. Precision: Precision measures the proportion of true positives among all the objects that the model classified as positive. It is useful when the cost of false positives is high, and it is essential to avoid misclassifying objects. Since precision measures the proportion of predicted positive results that are actually positive, it is defined as the fraction of examples (true positives) among all of the examples which were predicted to belong in a certain class (positive).

3. Recall: Recall measures the proportion of true positives among all the objects that belong to the positive class in the dataset. It is useful when the cost of false negatives is high, and it is essential to detect all objects in the dataset. Since recall measures how much the classifier can predict in an actual positive sample, it is defined as the fraction of examples which were predicted to belong to a class with respect to all of the examples that truly belong in the class.

4. F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced view of the model's performance. F1-score is a combination of precision and recall, providing a balanced measure of the model's ability to find all true positive cases and its ability to avoid false positives.

For object detection tasks, the metrics are:
1. Intersection over Union (IoU): IoU is one of the most commonly used metrics for evaluating object detection algorithms. It measures the overlap between the ground truth bounding box and the predicted bounding box. IoU is computed as the ratio of the intersection of the two boxes to the union of the two boxes. A higher IoU score indicates better object detection accuracy.
2. Precision and Recall: Precision measures the fraction of true positives (correctly identified objects) out of all predicted positives (objects identified by the algorithm). Recall measures the fraction of true positives out of all ground truth positives (objects that should have been identified). A high precision score indicates that the algorithm is correctly identifying objects, while a high recall score indicates that the algorithm is not missing any objects.
3. Average Precision (AP): AP is a commonly used metric for evaluating object detection algorithms. It measures the precision at different levels of recall and then averages them. AP provides a single number that summarizes the overall performance of the algorithm. A higher AP score indicates better object detection accuracy.
4. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single number that summarizes the overall performance of the algorithm. A higher F1 score indicates better object detection accuracy.
For object tracking tasks, the metrics are:
1. Intersection over Union (IoU): IoU is also commonly used for evaluating object tracking algorithms. In this case, it measures the overlap between the ground truth bounding box and the predicted bounding box for each frame in the sequence. A higher IoU score indicates better object tracking accuracy.
2. Precision and Recall: Precision and recall can also be used to evaluate object tracking algorithms. In this case, precision measures the fraction of frames where the algorithm correctly identified the object, while recall measures the fraction of frames where the algorithm correctly tracked the object.
3. Mean Average Precision (mAP): mAP is a commonly used metric for evaluating object tracking algorithms. It measures the average precision at different levels of overlap between the ground truth and predicted bounding boxes over the entire sequence. A higher mAP score indicates better object tracking accuracy.
4. Tracking Precision (TP) and Tracking Recall (TR): TP measures the fraction of frames where the predicted bounding box overlaps with the ground truth bounding box by a certain threshold, while TR measures the fraction of ground truth bounding boxes that were successfully tracked. A high TP score indicates that the algorithm is accurately tracking the object, while a high TR score indicates that the algorithm is not losing track of the object.
AI regression model evaluation is the process of measuring the accuracy and performance of a regression model developed using artificial intelligence (AI) techniques. Regression analysis is a statistical method used to predict the relationship between dependent and independent variables. Some of the most commonly used evaluation metrics for regression models are listed as following:
1. Mean Squared Error (MSE): measures the average squared error between the predicted and actual values. It's represented as the average of the squared differences between the predicted and actual values.

2. Root Mean Squared Error (RMSE): the square root of the mean squared error, this metric indicates the deviation of the predicted values from the actual values.

3. Mean Absolute Error (MAE): measures the average absolute difference between the predicted and actual values. This metric is robust to outliers.

4. R-squared (R2): determines how well the regression line fits the data by measuring the proportion of the variance explained by the model.
For other non-object related tasks, examples model performance metrics may include:
· Ranking Model Metrics (MRR, DCG, NDCG)
· Statistical Model Metrics (Correlation)
· Computer Vision Model Metrics (PSNR, SSIM, IoU)
· NLP Model Metrics (Perplexity, BLEU score)
For split inference and model compression related scenarios, other feasibility/performance metrics that should also be considered are:
· Video quality: depending on the scenario, the input or output video quality should also be documented. For example, a video super resolution scenario has to evaluate the quality of the resulting video. For the tasks, the impact of the quality of the input video on the accuracy should also be evaluated.
· Complexity: complexity of the entire process, including video compression and decompression, model compression and decompression (where relevant), and inference process.
· Bitrate: the total bitrate needed for performing the task. This may be 0 for the device anchor. For the network anchor, this includes the video bitrate for the uplink and the bitrate for sharing the task results back to the device. For split inference related scenarios, this should include the intermediate data bitrate.
· Split model size: model size and comparison ratio of the test split model to be delivered (compared to anchor model)
· Intermediate data size or bitrate: a comparison ratio of the intermediate data to be delivered (compared to the data size or bitrate of the relevant data from the anchors)
· Compressed model size: the compression ratio of the compressed model compared to the original reference model.
· Compressed intermediate data ratio: compression ratio of the compressed intermediate data bitstream compared to the original intermediate data bitstream
· Latency: the latency requirements for each scenario must also be taken into account to evaluate the feasibility of the proposed solutions, in particular for split inference scenarios, such as:
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency
· Other latency metrics
· Encoding/decoding time.
· intermediate data delivery time
· Resources metrics of UE and/or DN:
· Computing power consumption on node
· CPU time
· GPU time
· Memory usage
· Energy consumption

7	Datasets and scripts
It is recommended to build a docker container that comes with the necessary scripts for downloading the models and datasets, and running the evaluation for each agreed scenario. The Dockerfile should be hosted on a publicly accessible location to all 3GPP members. As example for software management refer to TR 26.955, Annex E.
Potential openly accessible video datasets are:
· YouTubeVIS: Video Instance Segmentation - YouTube-VOS
· SFU-HW-Objects-v1: SFU Multimedia Lab
· TVD: Tencent Video Dataset (TVD) - Tencent Media Lab
For some of the scenarios, companies may be asked to provide a suitable annotated data set to perform the evaluation. This may follow the principle in Annex B of TR 26.955 as well as the test sequence collection in Annex C of TR 26.955.
We offer to collect the data sets, anchors, etc here: https://dash-large-files.akamaized.net/WAVE/3GPP/AIML.
8	AI/ML frameworks and libraries
An AI/ML framework brings a set of services which are interfaces, libraries or tools. They are used to create models, train them and/or to infer input data and deliver a prediction.
Hereafter is a short list:
1. TensorFlow
2. PyTorch
3. Caffe
4. Keras
5. MXNET
6. Darknet

Some frameworks are especially designed for on-device (Mobile Phones) deep Learning, we may present the two main ones:
1. TensorFlow Lite [8]
2. PyTorch Live [9]

Note: Keras is running on top of TensorFlow, and both together provide a high-level APIs to make a more user-friendly framework. For the rest of the document TensorFlow and Keras frameworks are considered as one entity noted TensorFlow/Keras.
AI/ML frameworks can be completed and enriched with libraries, for example to provide optimization and compression tools such as:
· NNC : clause §6.5.7
· AI Model Efficiency ToolKit (AIMET) clause §6.6.

Both libraries support TensorFlow/Keras and PyTorch environments.
8.1	Framework popularity
PyTorch and Tensorflow/Keras are the two major and most popular frameworks for Deep Learning.
PyTorch appears significantly more in academics as shown in the next graph [11]
[image: Chart

Description automatically generated]
On the other hand, Tensorflow is much more popular in industry.
The TensorFlow eco-system comprises some deployment-oriented applications like TensorFlow Serving and TensorFlow Lite for AI/ML application to be deployed on cloud, edge, server, mobile or IoT devices.
PyTorch has filled the gap by proposing TorchServe [12] and PyTorch Live [9].

8.2	Detailed framework characteristics
Framework or library tools available (compression, quantization etc.):
· TensorFlow and Pytorch natively support optimization and quantization tools.
Hardware accelerator support:
List of tools for optimizing the ML models.
· It is very likely that the model performance will be evaluated with various processing conditions, being CPU, GPU, TPU or others like DSP.
· TensorFlow/Keras and PyTorch already integrate such capabilities:
· TensorFlow/Keras GPU or TPU usage in respectively [13] and [14]
· PyTorch GPU or TPU usage in respectively [15] and [16]
Supported models.
Natively both frameworks TensorFlow/Keras and PyTorch integrate many pre-trained models, this is described in document “models for evaluation”. If the model is not available, it can be reconstructed from its known architecture and trained.
A list of pre-trained model support is proposed for keras in [17], and for Pytorch in [18].
Split function
Splitting functionality shall be evaluated to point out the benefits it can bring to the 5G system (latency, energy, privacy), but also to measure and characterize the intermediate data. Therefore, the framework shall offer APIs/functions to split some models. This function is already available in TensorFlow/Keras framework as described in doc Split scenarios for evaluation and TensorFlow based split evaluation platform.
Mobile or on-device versions
Both PyTorch and TensorFlow/Keras have their own mobile solutions TensorFlow Lite [8] and PyTorch Live [9].
Language
Both PyTorch and TensorFlow/Keras are Python based.
TensorFlow supports additionally JavaScript, C++ and Java.
Supported format for AI/ML models
PyTorch and TensorFlow/Keras support Open Neural Network eXchange (ONNX) and Neural Network Exchange Format (NNEF).
· ONNX: Tensorflow models (including Keras and TensorFlow Lite models) can be converted to ONNX [19]. PyTorch models can be exported to the ONNX format [20]. ONNX support tools for porting PyTorch model into TensorFlow or vice-versa.
· NNEF: supported by Khronos and designed to support both PyTorch and TensorFlow. NNEF tools can convert trained models from/to ONNX format [21].

9	AI/ML models
There may be several cases for the availability of AI/ML models:
1. Pre-trained models available from the AI/ML frameworks and libraries
2. Pre-trained models not available from the frameworks but from an external source, for instance GitHub
3. Non-trained models
4. New models

Case 1) can be illustrated by the ResNet50 model which is available from both PyTorch and TensorFlow/Keras frameworks.
Case 2) can be illustrated with the EDSR model, where the model authors proposed a PyTorch implementation of their model which is available from a GitHub repository.
Case 3) is where proponents want to perform experiments from a well-known model and retrain it with a specific dataset corresponding to the use case to be evaluated. For example, YOLO or AlexNet are not available in TensorFlow/Keras.
Case 4) is for proponents who propose new model architecture.
For case 2), the proponent shall share the information on how to get the model, and how to run the experiments.
For cases 3) and 4), the proponents shall share the AI/ML model data (dataset, hyperparameters, etc.…) and describe how they train the AI/ML model.
9.1	Model characteristics
Several characteristics that may define an AI/ML model:
· Model Popularity within scientific community: The model is often cited in scientific papers and as such is recognized as an efficient model by many frameworks, in particular the frameworks listed in doc “Frameworks for evaluation”. ResNet50 or MobileNet are good examples of such models.
· Availability as a pre-trained version: Pre-trained version of the model as proposed by the framework should be preferred. Untrained models are possible under conditions above.
· AIML model Task: It depends on the use cases and scenarios to evaluate. The preferred domain is computer vision, which include object detection, image recognition, segmentation, pose estimation, image classification.
· Format: By default, the model format is the framework model format to be supported, for example ONNX and/or NNEF.
· Splitability: Ability to split/partition the model in two subsets. Some models may be easier to split than others depending on the complexity of the relations between the layers.

9.2	Pre-trained model repositories
ModelZoo [22] is a popular repository providing open-source deep learning code and pre-trained models for a range of different frameworks (e.g., TensorFlow, Pytorch) and for different model tasks categories (e.g. computer vision, NLP).
TensorFlow proposes a collection of pre-trained models in [23], [24] and [25].
Keras Applications [24] are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.
9.3	Spark and MLib
Apache Spark is a distributed computing platform that was designed from the ground up to be fast and general purpose. Spark is able to support a wide range of workloads and even to combine different types of workloads. Spark is based on the MapReduce model, which based on three main operations:
· Map: each worker node in the cluster applies the map operation on the subset of the data that it got assigned by the control node.
· Shuffle: worker nodes redistribute data based on the output information of their map operation.
· Reduce: worker nodes assemble and merge the output data that they receive.
Spark relies on RDD (resilient distributed datasets), which simplify the distribution of data across the worker nodes of a cluster. RDDs represent the core of the data exchange in Spark.
The following diagram depicts the Spark architecture:

[image: Apache Spark Architecture | Distributed System Architecture Explained ...]
Spark comes with several modules. MLlib is its module for distributed machine learning. It offers a scalable machine learning library that provides a variety of tools for building machine learning pipelines, including algorithms for classification, regression, clustering, and collaborative filtering, as well as utilities for model evaluation and data handling.
Federated Learning is a machine learning approach where a model is trained across multiple decentralized devices or servers holding local data samples, without exchanging them. This technique is especially useful for preserving privacy and reducing data centralization and bandwidth issues.
Spark MLlib is primarily designed for distributed machine learning on centralized data but can easily be adapted for federated learning scenarios:
1. Data Distribution and Local Training: Data resides on local nodes (e.g., UEs). Each node performs local training on its data using deep learning models using libraries like TensorFlow or PyTorch.
2. Model Averaging or Aggregation: After local training, each node computes model updates (gradients and/or updated weights). These updates are then sent to a central server or aggregator.
3. Central Aggregation: The central server aggregates these updates. This could be a simple averaging of weights or a more complex aggregation strategy. This aggregation step can be performed using Reduce operations.
4. Distributed Coordination: Spark's capabilities in handling distributed data and tasks can be leveraged to coordinate the process of aggregating updates from various nodes and distributing the aggregated model back to the nodes.
The Spark manager node dispatches tasks to worker nodes (e.g. UEs) to perform computations on the data. Gradients are then calculated on each worker node based on the subset of data they have. These gradients or model updates are then sent back to the manager node. The manager node aggregates these gradients (typically by averaging) and updates the global model. The updated model is then broadcasted back to the worker nodes for the next iteration of training. This process is repeated iteratively until the model converges or a specified number of iterations is reached.
9.4	Model quantization
The Faster R-CNN (Region-based Convolutional Neural Networks) is a well-known model for object detection tasks, which improves upon previous versions like R-CNN and Fast R-CNN. It was introduced by Ren and al. in their 2015 paper titled "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". Faster R-CNN addresses the efficiency issues of its predecessors by introducing a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals.
The Faster R-CNN architecture can be broadly divided into two main components:
1. Region Proposal Network (RPN):
· The RPN is a fully convolutional network that predicts object bounds and detection scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are called anchors. These anchors are designed to be at multiple scales and aspect ratios to cover various object sizes and shapes.
· The RPN takes an image (of any size) as input and outputs a set of rectangular object proposals, each associated with a score.
2. Detection Network:
· The detection network takes the feature map generated by the shared convolutional layers and the region proposals from the RPN. Each proposal is then pooled into a fixed-size feature map and passed through a series of fully connected layers.
· A SoftMax layer then classifies these regions into object categories or a background category, and bounding box regression is applied to predict the precise object location.
The entire system is a single, unified network for object detection that is trained end-to-end with a multi-task loss function that combines the losses of classification and bounding box regression.
The input to a Faster R-CNN model is an image or a batch of images. The images can be of different sizes, but they are often resized or padded to a fixed size to match the network's input dimensions for batch processing efficiency.
The outputs of a Faster R-CNN model for each input image include:
1. Object Class Labels: For each detected object, the model predicts a class label from a predefined list of categories (e.g., car, dog, person).
2. Bounding Boxes: For each detected object, the model outputs a bounding box that delineates the object's location within the image. These bounding boxes are defined by their coordinates (e.g., the top-left and bottom-right corners).
3. Confidence Scores: The model assigns a confidence score to each detected object, indicating the probability that the object belongs to a particular class.
Faster R-CNN significantly improved the speed and accuracy of object detection models, making it a foundational work in the field of computer vision. Its architecture has inspired many subsequent innovations and variations in object detection technology.
In its native form, the Faster R-CNN model is a floating-point model that has a size of about 173MB for nearly 50 million parameters when using the ResNet-50 backbone.
To distribute this mode efficiently over networks, a sender-only quantization and pruning step may prove very helpful. In our experiment, we used the Neural Network Intelligence [1] (NNI) framework open-source software to perform quantization and pruning to reduce the model size to about 40MB, with a quantization to int8. A fine-tuning step calibrated the quantized model weight using the Coco dataset to improve its prediction accuracy and precision. The original and the compressed model are uploaded to the GitHub repository.
It is worth noting that several attempts to compress other models, e.g. RetinaNet, have failed because most of these models were not traceable. That is, they contained custom code and python functions, which cannot be traced properly. The compression efficiency is adversely impacted when models are hard to trace.
The results are summarized in the following table:
	
	person
	car
	truck
	bus
	bicycle
	boat

	
	Original
	Quantized
	Original
	Quantized
	Original
	Quantized
	Original
	Quantized
	Original
	Quantized
	Original
	Quantized

	Johnny
	14.21
	15.07
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BasketballDrill
	12.74
	13.16
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BasketballDrive
	9.75
	9.17
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BasketballPass
	12.88
	12.34
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BlowingBubbles
	50.85
	31.39
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BQMall
	8.04
	7.82
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	BQSquare
	0.18
	0.22
	2.17
	6.52
	0
	0
	0
	0
	0
	0
	11.6
	4.97

	BQTerrace
	2.99
	3.26
	24.07
	28.56
	32.35
	27.28
	38.88
	27.78
	0
	0
	0
	0

	Cactus
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	FourPeople
	2.41
	2.18
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Kimono
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	KristenAndSara
	8.11
	6.71
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	ParkScene
	30
	28.25
	0
	0
	0
	0
	0
	0
	7.78
	7.68
	0
	0

	PartyScene
	22.88
	19.5
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	PeopleOnStreet
	0.08
	0.09
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	RaceHorses
	2.59
	2.68
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Traffic
	0
	0
	5.07
	5.19
	0
	0
	62.5
	64.61
	0
	0
	0
	0

The table shows the mAP values for the different object classes. The mAP values are relatively low as the model was trained on a different dataset with different labels than what is used by SFU-HW-Objects.
It can be observed that the results for the quantized model are very comparable and, in most cases, superior to the original model.
Note: a scenario on model quantization may be considered considering the contents in this sub clause.
9.5	AI/ML model splitting
9.5.1	Multi-branch split on ONNX models
9.5.1.1	Introduction
ONNX provides a function extract_model() enabling the extraction of a sub-model from an ONNX model https://onnx.ai/onnx/api/utils.html as shown below
[image: A screenshot of a computer

Description automatically generated]
This function is already used by scripts in 5G-MAG repository such as onnx.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection/ssd300/split_onnx.py) and split_retinanet.py (https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/main/scripts/objectdetection/split_retinanet.py)
Single branch or multi-branches split script making use of extract-model function are described in clause 9.5.1.2. Specific issues regarding input tensors and output results applied to multi-branch split are presented in §2.3, when Part II needs model input tensor and, in §2.4, when Part I generates partial output result of the full outputs results.
9.5.1.2	Bottleneck/single branch split
For some models, or some parts of a model, a node is connected with only one input node and one output node. For example, it is the case for all nodes of the VGG16 model. BAn overview of the beginning of VGG16 opened with Netron is provided below.
[image: A screenshot of a computer

Description automatically generated]
[image: A diagram of a computer

Description automatically generated with medium confidence]
In order to cut just before the node 5, “vgg0_conv2_fwd”:
[image: A diagram of a computer code

Description automatically generated with medium confidence]
The intermediate data communicated between the two submodels will be the tensor “vgg0_pool0_fwd”.
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provided
· input: [“data”] (model input)
· output: [“vgg0_pool0_fwd”] (split tensor name)

For the second part, the following needs to be provided
· input: [“vgg0_pool0_fwd”] (split tensor name)
· output: ['vgg0_dense2_fwd'] (model output)

For illustration purpose, below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model vgg16:
	$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/vgg16-12/vgg16-12.onnx -r 5
Load Onnx file ...
Onnx verification...
Model will be split at rank 5, node name vgg0_conv2_fwd (before)
k= 5 Model Part I: [0-4] input:data (['1', '3', '224', '224']) output:['vgg0_pool0_fwd']
 Model Part II: [5-40] input:['vgg0_pool0_fwd'] output:['vgg0_dense2_fwd']
Model Part I: Extraction at level 0 to 5 (excluded): input=['data'] output=['vgg0_pool0_fwd']
Model Part II: Extraction at level 5 (included) to 40 : input=['vgg0_pool0_fwd'] output=['vgg0_dense2_fwd']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_I_node_5.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/vgg16-12/vgg16-12_part_II_node_5.onnx
Intermediate data to transfer: ['vgg0_pool0_fwd']

Note: API of split_onnx_multi.py is described in another contribution. Script itself will be provided for the next meeting.

9.5.1.3	Multi branches split
For some models, or some parts of a model, a node is connected to several nodes for its input, and/or several nodes for its output. Below is an example for the resnet model split at node 6 with an overview of part I and Part II opened with Netron.

Part II
Part I

The intermediate data communicated between the two submodels will be the tensors :[“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”].
To get the two submodels, you need to give the tensor name of the input and the tensor name of the output of each part to the extract_model function.
For the first part, the following needs to be provide
· input: [“input”] (model input)
· output: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]

For the second part, the following needs to be provided:
· input: [“/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0”, “/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0”]
· output: [“output1”,” output2”] (model output)

For illustration purpose , below is the experimentation result with the script split_onnx_multi.py (that is using extract_model() function), for the model ssd_resnet:
	$ python ../split_onnx_multi.py -a /c/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet.onnx -r 6
Load Onnx file ...
Onnx verification...
Model will be split at rank 6, node name /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu (before)
k= 6 Model Part I: [0-5] input:input (['1', '3', '300', '300']) output:
['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
 Model Part II: [6-154] input:['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
output: ['output1', 'output2']
Model Part I: Extraction at level 0 to 6 (excluded): input=['input'] output=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']
Model Part II: Extraction at level 6 (included) to 154 : input=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] output=['output1', 'output2']
Split done.
Onnx verification of splitted onnx files:
Onnx verification of part I: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_I_node_6.onnx
Onnx verification of part II: C:/AI4Media/onnx_zoo/ssd_resnet/ssd_resnet_part_II_node_6.onnx
Intermediate data to transfer: ['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv2/Conv_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

9.5.1.4	Particular issue: Part II needs model input tensor
Here are the properties of the full model “retinanet.onnx”.
[image: A screenshot of a computer

Description automatically generated]
This model has 2248 nodes.
This model has for input [“input_images”] and for outputs [“2734”, “2712”,”2713”].
The model input is used by the 66th node (index 65 if we start at 0).
· node.index 66th
· node.name “/Split”
· node.input ['input_images']
· node.output ['/Split_output_0']
It means that if the split is made before this node, the model input will be required by the second part of the model.
For example, at node 5, here is part I sub model:
[image: A diagram of a company

Description automatically generated]
Here are the properties of the part I and part II sub model:
	Part I - properties
	Part II - properties

	[image: A screenshot of a computer

Description automatically generated]
	[image: A screenshot of a computer

Description automatically generated]

9.5.1.5	Particular issue: Part I is generating a part of the full model outputs
Full retinanet model has for outputs: [“2734”, “2712”,”2713”]
· Tensor “2734” contains the Boxes [left,bottom, right, top]
· Tensor “2712” contains the scores
· Tensor “2713” contains the labels identifier
The output "2712” (scores) is generated by the node 2230.
The output "2713” (label identifier) is generated by the node 2231.
The output “2734” (boxes) is generated by the last node 2248.
If the split is made before between nodes 2230 and 2248, the partial results provided from the first part and from the second part are required for providing the final results. The partial result from an endpoint may need to be transfer to the other endpoint.
Here are the properties of the part I and part II sub model (split at node 2232):
	Part I - properties
	Part II - properties

	[image:]
	[image:]

	Part I is generating Tensor “2712” (scores) and Tensor “2713” (labels identifier)
	Part II is generating Tensor “2734” (boxes)

9.5.2	Multi-branch split APIs and scripts
· split_onnx_multi.py
This script splits an ONNX file at any node. Split point may be referenced by the node index/rank or by the node name.
	split_onnx_multi is a script that split a ONNX model at a rank or at a node name

	optional arguments:
	

	-h, --help
	show this help message and exit

	-a ANCHOR, --anchor ANCHOR
	Path to model anchor

	-r RANK, --rank RANK
	Rank of the node where to split the model;
e.g., with '-r 7' Model I will contain nodes [0-6] and model II will contain nodes [7-48]

	-n NAME, --name NAME
	Name of the node where to split the model

	-f FLAG, --flag FLAG
	Split flag indicating if the split occurs 'before' or 'after' the given node (default is 'before')

Script outputs are the two model subsets part I and part II, suffixed with “_part_I_node_#rank” (resp. _part_II_node_#rank), located in the same directory as the anchor.

Example: python split_onnx_multi.py -a ./models/ssd_resnet.onnx -r 7

Output:
Model will be split at rank 7, node name /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/conv3/Conv (before)

Model Part I: Extraction at level 0 to 7 (excluded):
input=['input'] output=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

Model Part II: Extraction at level 7 (included) to 154 : input=['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0'] output=['output1', 'output2']

Split done.
part I: ./models/ssd_resnet_part_I_node_7.onnx
part II: ./models /ssd_resnet_part_II_node_7.onnx
Intermediate data to transfer: ['/feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_1/Relu_output_0', '/feature_extractor/feature_extractor/feature_extractor.3/MaxPool_output_0']

· infer_onnx_multi.py
This script infers the first ONNX model subset (part I) from a first ONNX runtime, encodes the output of the inference, decodes the encoded output, and passes the decoded output as an input for inference of the second ONNX subset (part II) with a second ONNX runtime. It emulates the two split inferences from a first and a second endpoint. It supports models “ssd_resnet” and “retinanet” or any other models having same pre-processing and same post-processing as these models.
	infer_onnx is a script that run the inference of either a ssd resnet model or retinanet model, full model or split

	optional arguments:
	

	-h, --help
	show this help message and exit

	-s INPUT_SOURCE, --input_source INPUT_SOURCE

	Path to input source (Image, video, directory of images)

	-loop LOOP

	loop inference (for image)

	-partI PARTI

	Path to model part I

	-partII PARTII
	Path to model part II

	-anchor ANCHOR
	Path to model anchor

	-f FAMILY, --family FAMILY

	Model family i.e., 'ssd_resnet' or 'retinanet'

	-results_filename RESULTS_FILENAME

	Path to .csv results file (time measurement)

	-results_dir RESULTS_DIR

	Path to results directory hosting predictions

	-no_CPU_anchor

	no inference with CPU on model anchor

	-no_GPU_anchor
	no inference with GPU on model anchor

	-ref_split REF_SPLIT
	reference split label

	-no_split
	no split (just anchor for instance)

	-no_check_model
	do not check the model partI and partII

	-save_intermediate_data

	to save intermediate data

	-nb_frames NB_FRAMES
	Limit the inference to the nb_frames first frames for a video

	-encode_algo ENCODE_ALGO

	algo for intermediate_data encoding 0=no encoding; 1= convert to float16; 8xx for nnc with xx = abs(qp) (e.g., 838 for qp=-38)

	-PU_partI PU_PARTI
	Processing Unit for part I (CPU or GPU)

	-PU_partII PU_PARTII
	Processing Unit for part II (CPU or GPU)

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

According to the parameters the script is doing:
· Verification of the ONNX model by using checker.check_model() function. This verification can be skipped especially for the splitted models that may sometimes raise an unfounded error (i.e., an error which does not prevent a correct inference with the ONNX runtime)
· inference of the anchor using GPU (except if flag -no_GPU_anchor is activated)
· inference of part I and part II using processing units indicating by flags (-PU_partI and -PU_partII)(except if flag -no_split is activated). Intermediate data are encoded and decoded using the algorithm indicated by the identifier -encode_algo.
· inference of the anchor using CPU (except if flag -no_CPU_anchor is activated)

Script outputs are:
· A .csv file containing information on time measurement, intermediate data size, predictions (described below)
· A folder containing the image (or frame) with the predictions on overlay (bounding boxes with label and prediction score)
· A folder containing the .txt predictions file compatible with format expected by calc_map scripts

Results .csv file have following columns:
	Column name
	Type
	Unit
	Description

	Source
	String
	-
	path to the input data source

	Nodes

	String
	-
	node reference (e.g., split_node_0010)

	Inference_loop

	Int
	-
	number of inference run on the source

	UE_inference_time_CPU (avg; std)
	Float
	ms
	 inference time of the part I (average and standard deviation on all measures) when the processing unit of part I is CPU

	UE_inference_time_CPU_steady_state (avg;std)

	Float
	ms
	inference time of the part I (average and standard deviation on all measures except the first one) when the processing unit of part I is CPU

	UE_inference_time_GPU (avg;std)

	Float
	ms
	inference time of the part I (average and standard deviation on all measures) when the processing unit of part I is GPU

	UE_inference_time_GPU_steady_state (avg; std):

	Float
	ms
	inference time of the part I (average and standard deviation on all measures except the first one) when the processing unit of part I is GPU

	Server_inference_time_CPU(avg; std):

	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part II is CPU

	Server_inference_time_CPU_steady_state(avg; std):
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part I is CPU

	Server_inference_time_GPU(avg; std);
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part II is GPU

	Server_inference_time_GPU_steady_state (avg; std);
	Float
	ms
	inference time of the part II (average and standard deviation on all measures except the first one) when the processing unit of part I is GPU

	Total_inference_time_steady_state (avg; std);
	Float
	ms
	Sum of “UE inference time steady state” + “Server inference time steady state “ (average and standard deviation)

	Encoding_time (min,avg,max);
	Float
	ms
	Encoding time of the intermediate data

	Decoding_time (min,avg,max);

	Float
	ms
	Decoding time of the intermediate data

	nb_inference;

	Int
	-
	number of inference run on a video source (nb frames)

	intermediate_data_size (min,avg,max);

	Int
	bytes
	Intermediate data size (uncompressed)

	encoded_intermediate_data_size (min,avg,max);

	Int
	bytes
	Intermediate data size (encoded/compressed)

	encoding_algo;

	Int
	-
	Encoding Algorithm identifier

	predictions_size (min,avg,max);

	Int
	Bytes
	Size of the post-processed predictions

	predictions

	String
	-
	Post-processed predictions
(label, boxes coordinates (top_x, top_y, bottom_x, bottom_y), confidence score)
(e.g., bear 13 28 573 620 0.49)

· calc_map_image.py
This script calculates the mAP score for an image. This script is based on the existing calc_map.py script, and is a simple adaptation to be able to compute the mAP score on a single image. It uses the same calculate_map() function as calc_map.py. It can compute the mAP score for several splits.
	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-i IMAGE_PATH,
--image_path IMAGE_PATH
	Path to the image

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the prediction file or directory containing prediction files (for several splits)

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the ground-truth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

	
--no_plot

	do not display the plot.

· calc_map_video.py
This script calculates the mAP score for a video. This script is based on the existing calc_map.py script and is a simple adaptation to be able to compute the mAP score on a single video. It uses the same calculate_map() function as calc_map.py. It can compute the mAP score for several splits.

	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-v VIDEO_PATH, --video_path VIDEO_PATH
	Path to the video

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the directory containing prediction files (one split) or Path to the directory containing directories of each split (several splits)

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the directory containing groundtruth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--labels_imagenet LABELS_IMAGENET

	Path to labels file imagenet_coco.csv

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

	-o IMAGE_PATH, --image_path IMAGE_PATH

	Path to the output file containg the mAP outplot plot

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

· calc_map_image_dataset.py
This script calculates the mAP score for a set of images. This script is based on the existing calc_map.py script and is a simple adaptation to be able to compute the mAP score on a set of images. It uses the same calculate_map() function than calc_map.py. It can compute the mAP score for several splits.
	Calculate the mAP for the object detection prediction

	optional arguments:
	

	-h, --help
	show this help message and exit

	-d IMAGE_DATASET_PATH, --image_dataset_path IMAGE_DATASET_PATH

	Path to the directory containing the images

	-p PREDICTION_PATH,
--prediction_path PREDICTION_PATH
	Path to the directory containing prediction files (one split) or Path to the directory containing directories of each split (several splits)

	--multisplit
	indicates if prediction path contains several directories for multi split

	-g GROUNDTRUTH_PATH,
--groundtruth_path GROUNDTRUTH_PATH
	Path to the directory containing groundtruth annotation file

	-r RESULTS_FILENAME,
--results_filename RESULTS_FILENAME
	Path to .csv results file

	--labels_imagenet LABELS_IMAGENET

	Path to labels file imagenet_coco.csv

	--labels_coco LABELS_COCO

	Path to labels file coco_labels.csv

	--threshold THRESHOLD

	The threshold for the prediction confidence to consider the prediction.

9.5.3	Results of multi-branch split experiments on ONNX models
9.5.3.1	Model source
· ssd_resnet.onnx is generated by https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection/ssd300/convert_ssd300_to_onnx.py (develop branch)
· retinanet.onnx is available at https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/tree/main/models

9.5.3.2	Results analysis
ssd_resnet
· Intermediate data contains between 1 and 13 tensors (number of branches)
· Input anchor and input of part I is [“input”]
· Output anchor is [“output1” ,“output2”]
· From nodes 1 to 153
· Input of Part II is exactly the output of Part I
· Part II is generating anchor outputs [“output1” ,“output2”]
· Node 154
· Part I is generating one of the anchor outputs: “output1”.
· Part I output is ['/Reshape_1_output_0', '/Reshape_3_output_0', '/Reshape_5_output_0', '/Reshape_7_output_0', '/Reshape_9_output_0', '/Reshape_11_output_0', 'output1']
· Input of Part II is the output of Part I except ‘output1”
['/Reshape_1_output_0', '/Reshape_3_output_0', '/Reshape_5_output_0', '/Reshape_7_output_0', '/Reshape_9_output_0', '/Reshape_11_output_0']
· Part II is generating anchor outputs [“output2”]
· A consolidation is needed to rebuild the output anchor [“output1” ,“output2”]
retinanet
· Intermediate data contains between 1 and 85 tensors (number of branches)
· Input anchor and input of part I is [“input_images”]
· Output anchor is [“2734”, “2712”,”2713”]
· From nodes 1 to 65:
· Part I is generating intermediate data, between 1 and 65 tensors
· Part II needs to have the input “input_images” in addition to output of part I.
· Part II is generating is [“2734”, “2712”,”2713”]
· From nodes 66 to 2230:
· Part I is generating only intermediate data, between 7 and 85 tensors
· Input of Part II is exactly the output of Part I
· Node 2230
· Part I is generating 8 tensors including anchor outputs “2712”:
['/Concat_27_output_0', '/Slice_50_output_0', '/Gather_output_0', '/Cast_4_output_0', '/Gather_1_output_0', '/Cast_3_output_0', '/Gather_68_output_0', '2712']
· Part II input is the part I output except the anchor output ‘2712’
['/Concat_27_output_0', '/Slice_50_output_0', '/Gather_output_0', '/Cast_4_output_0', '/Gather_1_output_0', '/Cast_3_output_0', '/Gather_68_output_0']
· Part II is generating anchor outputs [“2734”, “2713”].
· A consolidation is needed to rebuild the output anchor [“2734”, “2712”,”2713”]
· Nodes 2231 to 2248
· Part I is generating between 6 and 8 tensors including anchor outputs [“2712”,”2713”]
· Part II input is the part I output except the anchor outputs [“2712”,”2713”]
· Part II is generating anchor outputs [“2734”]
· A consolidation is needed to rebuild the output anchor [“2734”, “2712”,”2713”]

9.5.4	AI/ML model splitability assessment
9.5.4.1	Model splitability status
The next table gives a status of the current assessed models regarding the split operations with ONNX. Process inference was run on both models ssd-resnet and retinanet.
ONNX multi-branch split function APIs and scripts were used on different model as follows:
	Model name
	task
	Splitted
	Verified with Inference
	Multi-branch

	ssd-resnet
	Object detection
	yes
	yes
	Yes (up to 13)

	retinanet
	Object detection
	yes
	yes
	Yes (up to 85)

	yolo-v2
	Object detection
	yes
	no
	Yes (up to 3)

	yolo-v4
	Object detection
	yes
	no
	Yes (up to 7)

	tinyyolov2
	Object detection
	yes
	no
	no

	mobilenetv3
	Image classification
	yes
	no
	Yes (up to 3)

	Resnet152
	Image classification
	yes
	no
	Yes (up to 2)

	Resnet18
	Image classification
	yes
	no
	Yes (up to 2)

	ResNext50FF
	Image classification
	yes
	no
	Yes (up to 2)

	squeezenet
	Image classification
	yes
	no
	Yes (up to 2)

	efficientnet
	Image classification
	yes
	no
	Yes (up to 4)

	caffenet
	Image classification
	yes
	no
	no

	inception
	Image classification
	yes
	no
	Yes (up to 5)

	vgg16
	Image classification
	yes
	no
	no

	nerf
	3D model rendering
	yes
	no
	Yes (up to 36)

The table above demonstrates that a large set of ONNX files was successfully split.

9.5.4.1	Splitability on EfficientNet family
EfficientNet is a family of models used for classification tasks. The split operations have been performed on different models of this family. It consisted in listing all the available nodes and then applying a split method for each node. The splitting process has been successfully applied for all the listed nodes. The next table gathers the assessed EfficientNet models, the number of nodes where the split was applied and the maximum number of split branches.
For all the split operations, ONNX framework is used.
All the models of EfficientNet family come from the ONNX model zoo (https://onnx.ai/models/)
	Model name
	Size (KB)
	Number of Parameters
	Number of available nodes for split
	Single branch or multi branch
	Max number of branches

	efficientnet_b0_Opset16
	20633
	5288548
	238
	multi branch
	4

	efficientnet_b1_Opset16
	30406
	7794184
	340
	multi branch
	4

	efficientnet_b2a_Opset16
	35536
	35536
	340
	multi branch
	4

	efficientnet_b2_Opset16
	35536
	9109994
	340
	multi branch
	4

	efficientnet_b4_Opset16
	75423
	19341616
	475
	multi branch
	4

	efficientnet_b5_Opset16
	118512
	30389784
	577
	multi branch
	4

	efficientnet_el_Opset16
	41220
	10589712
	139
	multi branch
	2

	efficientnet_em_Opset16
	26849
	6899496
	123
	multi branch
	2

	efficientnet_es_pruned_Opset16
	21166
	5438392
	94
	multi branch
	2

	efficientnet_lite0_Opset16
	18125
	4652008
	159
	multi branch
	4

	efficientnetv2_rw_m_Opset16
	207542
	53236442
	773
	multi branch
	4

	efficientnetv2_rw_t_Opset16
	53202
	13649388
	486
	multi branch
	4

Example: efficientnet_lite0_Opset16 split at node 10
The next drawing shows a representation of the efficientnet_lite0_Opset16 model which was split at node 10. The two sub-models, Part I and Part II have been opened with Netron tool (https://netron.app/).

Example: efficientnet_lite0_Opset16 model split at node 100
The next drawing shows a representation of the efficientnet_lite0_Opset16 model which was split at node 100. We can observe that at node 100, two branches are cut. The two sub-models, Part I and Part II have been opened with Netron tool (https://netron.app/).

9.5.5	Intermediate data compression
9.5.5.1	Experiments
· Models
· ssd_resnet: ssd_resnet.onnx generated by https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/development/scripts/objectdetection/ssd300/convert_ssd300_to_onnx.py (develop branch)
· retinanet : retinanet.onnx available at https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/tree/main/models
· Split points:
· ssd_resnet: This model has 154 nodes.
We split this model at index nodes [10, 30,50,70,90,110,130].
· retinanet: This model has 2248 nodes.
We split this model at index nodes [100,400,700,1000,1300,1600,1900]
· Compression
· Compressed data:
· Intermediate data generated by the first part of the model are compressed using one of the following algorithms.
· Compressed Intermediate data is then decompressed and provided for inference of the second part of the model.
· Compressions algorithm:
· Numpy quantization from float32 bits to float 16 bits
numpy.float16 : Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
· Neural Network Encoder Decoder by Fraunhofer HHI (NNCodec: https://github.com/fraunhoferhhi/nncodec)
This library includes a key parameter in the encoder function that controls the rate-performance trade-off, called Quantization Parameter (QP) that controls the quantization stepsize and thus the rate-performance trade-off for all weight parameters. A lower qp is related to a lower quantization stepsize, which yields a higher bitrate but also a lower model performance degradation. Conversely, increasing the qp value results in a lower bitrate but also in a higher model performance degradation. https://github.com/fraunhoferhhi/nncodec/wiki/Usage
· Metrics
· The accuracy of the results is measured by computing the mAP metrics using the function calculate_map() of the script https://github.com/5G-MAG/rt-ai-ml-evaluation-framework/blob/main/scripts/objectdetection/calc_map.py
Note: For practical reasons, we create a version calc_map_image_dataset.py calling the function calculate_map() on the whole dataset of images
· Summary of the experiments process:
· We decide to evaluate the effects of the quantization only (32 bits to 16 bits) and the effects of quantization and entropy coding (using various qp of Fraunhofer’s nncodec)
· First step: test with one input image
We first evaluated on one image to design and set up the testbed pipeline. We implemented a first prototype integrating the compression library to quickly present results and get quick feedback on results. These first results were encouraging regarding the reasonable impact of the compression on the final task accuracy.
Outcome:
· We found that the studied models were resilient to loss of accuracy with intermediate data degradations.
· More images should be used for greater statistical robustness on results

· Second Step: tests have been extended to a full video.
We then evaluated on a full video to average the result on all the frames. We used the video FourPeople_1280x720_60.mp4 and ground-truth available at https://dash-large-files.akamaized.net/WAVE/3GPP/AIML/ReferenceDataSets/sfuhwobjects.tar.gz. This video contains 600 frames.
Outcome:
· We found that the processing takes a lot of time (several weeks) with very few differences to the results with one image regarding accuracy and compressed intermediate data size.
· There was not enough disparity between the frames on the selected video (FourPeople).

· Third Step: test with a selection of various images.

We decided to evaluate on a large dataset of images based on existing evaluation datasets. We used the coco dataset 2017 validation images with the 2017 Train/Val annotations.
The dataset contains 5000 images with a large diversity on the objects.
We checked the performance of ssd_resnet on the first 200 images of the dataset.
Outcome:
· We noticed that for some of them, ssd_resnet yields poor results. As the objective was to measure the impact of lossy compression, it was important to ensure good initial accuracy (e.g.If the model does not detect the objects on the images we start at a mAP of 0 and the impact of compression will not be measured.)
· Fourth step: test with a selection of various images on which ssd_resnet and retinanet have good accuracy
We decided to select the first 50 images of coco dataset where ssd_resnet performs perfectly. As a result, the mAP score of ssd_resnet on this dataset is 100.
We kept this same dataset for the evaluation with retinanet.
The score of retinanet on this dataset was very high, 94.21, and considered high enough for our experiments

· Experiments with a dataset of 50 selected images
· Test set conditions:
· 50 selected images from coco dataset 2017 where ssd_resnet score is perfect
[image: A screenshot of a computer

Description automatically generated]
· Compression Algorithms
· No encoding
· Numpy quantization float32 bits to float 16 bits
· Lossy compression with nnc, with QP=-38
· Lossy compression with nnc, with QP=-26
· Lossy compression with nnc, with QP=-18
· Lossy compression with nnc, with QP=-14
· Lossy compression with nnc, with QP=-10
· Lossy compression with nnc, with QP=-6
· Lossy compression with nnc, with QP=-4
· Lossy compression with nnc, with QP=0

· Results
· mAP score in function of split points and compression algorithm:

· [image: A screenshot of a graph

Description automatically generated]
Figure 1 SSD RESNET on DATASET of 50 selected images

[image: A screenshot of a computer

Description automatically generated]
Figure 2 RETINANET on DATASET of 50 selected images
Outcome:
· We notice that mAP score is affected by the choice of the algorithm and the choice of the selected split point
· We notice that according to the split point it is interesting to not always select the same algorithm to reach a given mAP score

· Representation of mAP score according to the size of intermediate data:
The curve is built by plotting for each compression algorithm the mAP score as a function of the compressed intermediate size.
· [image: A screenshot of a computer

Description automatically generated]
Figure 33SSD RESNET on DATASET of 50 selected images - split at node 10

[image: A graph with numbers and lines

Description automatically generated]
Figure 4 RETINANET on DATASET of 50 selected images - with one split at node 1000

· Representation of mAP score according to the size of intermediate data and split point:
A curve per split point.
For each split point, the curve is built by plotting for each compression algorithm the point (compressed intermediate size, mAP score).

[image: A screen shot of a computer

Description automatically generated]
Figure 5SSD RESNET on DATASET of 50 selected images – 7 splits
[image: A screen shot of a graph

Description automatically generated]
Figure 6 •	SSD RESNET on DATASET of 50 selected images – Zoom on x-axis

[image: A screen shot of a graph

Description automatically generated]
Figure 7 RETINANET on DATASET of 50 selected images

[image: A screen shot of a graph

Description automatically generated]
Figure 8RETINANET on DATASET of 50 selected images – ZOOM on x-axis

· Compression performance
Representation of mAP score according to ratio compressed intermediate size / uncompressed intermediate size
For each split point, and each compression algorithm we compute the ratio :

We then plot each point (compressed ratio percentage, mAP score).

[image: A screen shot of a computer

Description automatically generated]
Figure 9 Compression performance with ssd_resnet

[image: A screenshot of a computer screen

Description automatically generated]
Figure 10 Compression performance with retinanet
Outcome:
· Quantization 32 bits to 16 bits offers a compression ratio at 50% with no impact on the accuracy
· Thanks to nnc it is possible to reach higher compression ratio up to 80% and same accuracy
· Above 80% of compression ratio, compression may impact differently the accuracy according to the model

· Analysis
· We notice that the mAP score is affected by both the choice of the algorithm and the choice of the selected split point
· We notice that the selection of the compression algorithm needs to be made according to the selected split point to maintain a given mAP score
· We consider that these results using on-the-shelf compression tools offer interesting compression rates with limited impact on the accuracy
· A dedicated group at MPEG (MPEG-FCM: Feature Coding for Machines) is currently studying and designing a codec for intermediate data in the context of split computer vision models. This activity is expected to result in a compression standard in the next couple of years with high compression/accuracy performance and friendly integration settings for integration at the system level.

10	Scenarios
Test scenario status as of SA4 #126, November 2023.
	Scenario
(clause)
	Scenario type
	Complete template
	Scripts
	Results
	Crosschecked
	Comments

	10.1
	Model compression
	X
	X
	X
	
	

	10.2
	Split
	X
	X
	X
	
	

	10.3
	Split
	X
	
	
	
	

	10.4
	Split
	X
	
	
	
	Scenario merged with 10.3 at SA4#126

	10.5
	Split
	
	
	
	
	

	10.6
	Transmission
	X
	X
	X
	
	

10.1	Transmission of compressed AI/ML model data for automatic speech recognition
10.1.1	Motivation and use case relevance
AI/ML model data distribution and sharing over 5G system has been identified in TR 22.874 [1] as one of the three key operations for AI/ML related services. Reason for this is that UEs might need a great variety of AI/ML models to respond to different tasks and environments, while not being able to store all needed AI/ML models due to memory storage constraints, so that a frequent context adaptive down-loading of AI/ML model data is necessary.
To tackle this problem, methods for model compression have been proposed (see clause 6 of other PD), which provide the benefits that they 1) lower bandwidth requirements or latencies for model data distribution, and 2) reduce the memory footprint of the AI/ML models on the UEs. However, besides the reduction of the model size, compression can also lead to a decrease of the AI/ML model performance. Which performance-compression trade-offs can be reached by different AI/ML model compression methods is thus an important question when defining AI/ML related services and is thus investigated in this scenario.
From the media-based AI/ML use cases defined in clause 4, the following require the transmission of AI/ML model data and thus could benefit from model compression:
1. Full or partial transfer of models for object recognition in image and video (clause 4.1)
2. Transfer of models for post-filtering for video coding (clause 4.2.1.2)
3. Transfer of models for crowd-sourcing media capture (clause 4.3.1)
4. Transfer of models for NLP on speech (clause 4.4)

This scenario evaluates the transmission of the wav2vec 2.0 [3] and the HuBERT [4] AI/ML models for automatic speech recognition (ASR), which derive a transcript of a given speech sequence. The transmission of compressed AI/ML models for ASR is relevant in the following use cases defined in clause 4:
· Crowd-Sourcing Media Capture (clause 4.3.1): To adapt to background noise or for lyrics recognition, specialized AI/ML models for ASR need to be transferred to a huge number of UEs for device inference.
· NLP on Speech (clause 4.4.): An initial ASR model needs to be down-loaded to the UE; then updated model data needs to be shared frequently with other UEs for distributed/federated learning.
10.1.2	Description of scenario
In this scenario, a pre-trained AI/ML model for ASR, wav2vec 2.0 [3] or HuBERT [4], is transmitted to an UE as shown in figure 10.1.2-1. To reduce bandwidth requirements or latencies the model is compressed before transmission. The compression method might be implemented as sender-only compression/optimization technique or might comprise an encoder at the sender-side and a decoder at the receiver-side.

[image: framework2]

[bookmark: _Ref134222221]Figure 10.1.2-1: Transmission of the ASR model
How the ASR model can be employed by an UE to derive a transcript of a speech sequence is shown in figure 10.1.2-2, which comprises the following entities:
· A speech sequence stored as uncompressed audio file sampled with 16kHz.
· The ASR model inferring a classification for the speech sequence.
· A vector sequence representing the classification. Each vector comprises 29 elements specifying the probability (represented as logits) of the 29 labels: '-', ' ', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', ''', 'X', 'J', 'Q', and 'Z'.
· A label selector selecting the most probable labels from the vector sequence.
· The predicted transcript, i.e. the sequence of selected labels.

[image: audio]

[bookmark: _Ref132127302]Figure 10.1.2-2: Prediction of a transcript with the reconstructed ASR model
10.1.3	Supporting companies and 3GPP members
· Fraunhofer HHI
· Nokia Corporation
10.1.4	Anchor AI/ML DNN model(s) for the scenario
Several pre-trained AI/ML models for ASR are provided by the TorchAudio library [5] under MIT License. For evaluation, the models listed in table 10.1.4-1 should be used.
	TorchAudio name
	numParam [M]
	sizeAnc [Mbit]
	werAnc[%]

	WAV2VEC2_ASR_BASE_960H
	94.4
	3021
	3.4

	HUBERT_ASR_LARGE
	315.5
	10095
	2.1

[bookmark: _Ref134157465]Table 10.1.4-1: Number of parameters (numParam), size (sizeAnc) and word error rates (werAnc) of the anchor models
The WAV2VEC2_ASR_BASE_960H [6] model consist of several convolutional layers for feature extraction and a transformer. It is pre-trained 960 hours of audio data from the Librispeech data set [8][9] and has been fine-tuned on 960 hours of audio data from the same set.
The HUBERT_ASR_LARGE [7] is a modified version of the wav2vec 2.0 model. It is pre-trained on 60.000 hours of unlabeled audio data from the Libri-Light [10] dataset and has been fine-tuned on 960 hours of audio data from the Librispeech data set [8][9]. It achieves a lower word error rate, but has more parameters.
10.1.5	Testbed architecture and anchors
The testbed architecture corresponds to the example testbed architecture defined in clause 5.2 and shown in figure 5.2-1. The following applies for the shown functional blocks:
· The test encoder can also be a sender-only optimization/compression technique.
· The test decoder might be absent for sender-only optimization techniques.
· The reference data set is the test-clean dataset as shown in table 10.1.8-1.
· The anchor model is one of the models shown in table 10.1.4-1.
· The inference output processor corresponds to the pipeline shown in figure 5.2-1.
· Metrics computation derives the word error rate (wer) and the model size (size) as defined in clause 6.
10.1.6	Test configuration factors, constraints and settings
For encoding, data-dependent optimization techniques might be used. The Librispeech dev-clean dataset, as shown in table 10.1.8-1, might be used for optimization.

10.1.7	Feasibility/performance evaluation metrics and requirements
The anchor model and test bitstream are provided as files containing the model parameters. The file size (size) combined with the word error rate (wer) achieved by the reconstructed ASR model after inference are employed to determine the efficiency of a compression method.
File Size
The anchor model and test bitstream can be stored as follows:
a) The anchor model is provided as data file containing numParam uncompressed model parameters individually represented as N-byte floating-point values.
b) For encoder-only compression methods, the test bitstream is provided as data file containing numParam quantized and/or reduced model parameters individually represented as N-byte values.
c) For methods requiring a decoder, the test bitstream is a coded representation encoding the parameters jointly.

For all cases, size can be determined by measuring the file size. For cases a) and b), the size in bit can also be determined as numParam * 8 * N.
Word Error Rate
To quantify the performance of the anchor and the reconstructed model, the word error rate (wer) is used, which has also been applied in the original publication of the wav2vec 2.0 model [3]. The word error rate is determined on a set of data pairs. Each pair comprises
· a speech sequence stored as uncompressed audio file, and
· a reference transcript of the audio sequence stored as text file.
Using the dataset, the wer value is determined in two steps:
1) A word error rate is derived for each pair of the dataset as follows:
· The AI/ML model is applied as shown in Figure 2.3-2 using the speech sequence as input and obtaining a predicted transcript as output.
· The predicted and reference transcripts are split into a predicted and a reference list of words, respectively.
· The word error rate of the predicted word list with respect to the reference word list is derived as follows

with , , and denoting the number of word substitutions, word deletions, and word insertions in the predicted word list and denoting the number of words in the reference list.
2) The total word error rate wer is derived as follows:

10.1.8	Test dataset(s) and scripts for the scenario
Evaluations use the Librispeech [8][9] datasets, which are available under Creative Commons Attribution 4.0 International License and shown in table 10.1.8-1. To quantify the performance of the anchor and the test model, the word error rate (wer) is determined based on the test-clean dataset. For data-dependent encoder optimizations, the dev-clean dataset might be used. The datasets can be automatically down-loaded, e.g. by using the exemplary python-script shown in figure 10.1.8-1.

	Name
	Number of sequences
	Hours of audio

	test-clean
	2620
	5.4

	dev-clean
	2864
	5.4

[bookmark: _Ref134157550]Table 10.1.8-1: Datasets considered in the scenario
The exemplary script derives word error rate and file size of the anchor models. Further scripts to create and evaluate the reconstructed models can be obtained from TBD [Ed.: A link to a “framework repository” might be added here, currently the scripts are attached to the document]. They can be generically extended by different compression methods.

import torch # Version 2.0.0 required
import torchaudio # Version 2.0.1 required
import torchaudio.datasets as datasets
from torchaudio.functional import resample
from torcheval.metrics import WordErrorRate

test_dir = "D:\\data" # This directory should exist, datasets will be stored here.
device = "cpu" # or "cuda"

def eval_test_case(test_case, bundle):
 print('Evaluating test case {test_case}'.format(test_case=test_case))

 ####### Get Model ##############################
 model = bundle.get_model()
 sample_rate = bundle.sample_rate
 labels = bundle.get_labels()

 ####### Get Data Loader Model ##################
 val_loader = torch.utils.data.DataLoader(
 datasets.LIBRISPEECH(test_dir, "test-clean", "LibriSpeech", True),
 batch_size=1, shuffle=False, num_workers=1, pin_memory=True)

 ####### Evaluate Model #########################
 model.eval()
 model.to(device)
 metric = WordErrorRate()
 blank = 0

 with torch.inference_mode():
 for speech_sequence, cur_sample_rate, reference_transcript, *dump in val_loader:

 # Resample speech sequence if necessary
 if cur_sample_rate != sample_rate:
 speech_sequence = resample(speech_sequence, cur_sample_rate, sample_rate)

 speech_sequence = speech_sequence.reshape((1,-1))
 speech_sequence = speech_sequence.to(device)

 # Apply the ASR model
 vetor_sequence, _ = model(speech_sequence)

 # Select labels
 idcs = torch.argmax(vetor_sequence[0], dim=-1)
 idcs = torch.unique_consecutive(idcs, dim=-1)
 idcs = [i for i in idcs if i != blank]
 predicted_transcript = "".join([labels[i] for i in idcs])
 predicted_transcript = predicted_transcript.replace("|"," ")

 # Update error
 metric.update(predicted_transcript, reference_transcript[0])

 wer_Anc = metric.compute()
 print(' wer_Anc: {wer_Anc:.3f} %'.format(wer_Anc=wer_Anc*100))

 ####### Get Model Size #########################
 num_parameters = 0
 for param in model.parameters():
 num_parameters += param.numel()

 # Each parameter is stored as 32 bit float, so multiply by four
 size_Anc = num_parameters * 4 * 8
 print(' size_Anc: {size_Anc:.3f} Mbit'.format(size_Anc=size_Anc/1000/1000))

if __name__ == '__main__':
 eval_test_case(1, torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H)
 eval_test_case(2, torchaudio.pipelines.HUBERT_ASR_LARGE)

[bookmark: _Ref134157799]Figure 10.1.8-1: Exemplary python script for determining sizeAnc and werAnc.

10.1.9	Detailed test conditions
A compression method under test is evaluated using the test cases shown in table 10.1.9-1.
	Test case
	Model
	wer range

	1
	WAV2VEC2_ASR_BASE_960H
	3.4% to 8.4%

	2
	HUBERT_ASR_LARGE
	2.1% to 7.1%

[bookmark: _Ref134157837]Table 10.1.9-1: Test cases and respective wer ranges. werAnc and sizeAnc are given in table 10.1.4-1.

To characterize a compression method under test in a given test case, it is evaluated using different test configurations T, which might be produced by varying encoder parameters, e.g. quantization parameters or sparsification ratios. More specifically, for each test configuration T from a set of test configurations, a data pair (cSize, wer) is derived with
· cSize denoting the size of the test bitstream size divided by the size of anchor model sizeAnc and
· wer denoting the word error rate of the test model.

If possible, the set of test configurations should contain at least 5 test configurations T that produce word error rates in the range of werAnc to werAnc+0.05 as shown in Table 2.10-1.
For comparison, (cSize, wer) pairs, as well as werAnc, might be reported graphically, as shown in figure 10.1.9-1.
[image: RDPlot]
[bookmark: _Ref132128795]Figure 10.1.9-1: Example for the characterization of a compression method for different test configurations T
10.1.10	Interoperability considerations for the scenario
Download (possibly via TCP) of the model data is expected.
10.1.11	External performance data
None.
10.1.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.1.13	Additional information
The wav2vec 2.0 model has been successfully employed for ASR on mobile devices: An Android-based implementation can be downloaded from [11]. An evaluation of the wav2vec 2.0 model on a device with limited computational performance can be found in [12].
10.1.14	References for the scenario
[1] [bookmark: _Ref134444835][bookmark: _Ref132134545][bookmark: _Ref126845156]3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2] [bookmark: _Ref134156937]S4-230648 [FS_AI4Media] Permanent Document v0.7, April 2023.
[3] [bookmark: _Ref134157052][bookmark: _Ref134156970][bookmark: _Ref132125699][bookmark: _Ref126845184]A. Baevski, H. Zhou, A. Mohamed and M. Auli, “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations”, arXiv, 2006.11477, 2020
[4] [bookmark: _Ref134157081]W.-N. Hsu, B. Bolte, Y.-H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed. “Hubert: self-supervised speech representation learning by masked prediction of hidden units”, arXiv, 2106.07447, 2021
[5] [bookmark: _Ref132125728]TorchAudio: An audio library for Pytorch [Computer software], https://github.com/pytorch/audio, V2.0.1
[6] [bookmark: _Ref132128434]TorchAudio: WAV2VEC2_ASR_BASE_960H, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
[7] [bookmark: _Ref134157270][bookmark: _Ref132125708][bookmark: _Ref123731535]TorchAudio: HUBERT_ASR_LARGE, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.HUBERT_ASR_LARGE.html
[8] [bookmark: _Ref134157238]V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Australia, 2015
[9] [bookmark: _Ref134157240]OpenSLR, LibriSpeech ASR corpus [Online], https://www.openslr.org/12
[10] [bookmark: _Ref134157305][bookmark: _Ref132125712]J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux. “Libri-light: a benchmark for ASR with limited or no supervision”. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 7669–7673. 2020. https://github.com/facebookresearch/libri-light.
[11] [bookmark: _Ref134157361]Pytorch: Speech Recognition on Android with Wav2Vec2 Low complexity implementation [Computer Software], https://github.com/pytorch/android-demo-app/tree/master/SpeechRecognition
[12] [bookmark: _Ref134157369]S. Gondi, "Wav2vec2.0 on the edge: Performance evaluation", arXiv, 2202.05993, 2022

[bookmark: _GoBack]10.1.15	Coding results for NNC without data-dependent tools
To quantify possible data rate reductions with NNC [1], the weight tensors of the WAV2VEC2_ASR_BASE_960H model and the HUBERT_ASR_LARGE model (as described in clause 10.1.4) have been encoded with the software framework described in clause 2.1.2. This means, NNCodec [2], which is an open implementation of the NNC standard, has been used.

The models have been encoded without enabling enhanced or data-dependent encoding tools and also without employing encoder-only pre-processing techniques to the model. Consequently, results are representative for a straightforward use-case, which does not require test or training data for additional encoder-side re-training or additional inference steps for encoder-decisions. Table 10.1.15-1 provides details on the enabled NNCodec tools.

	NNCodec parameter
	Value
	Description

	use_dq
	True
	Dependent scalar quantization

	codebook_mode
	False
	Integer codebook for transmission

	param_opt
	True
	Parameter optimization for DeepCabac

	cabac_unary_length_minus1
	10
	Length of unary binarization part

	opt_qp
	True
	QP optimization based on tensor statistics

	ioq
	False
	Inference-optimized quantization

	bnf
	False
	Batch-norm folding

	lsa
	False
	Training-based local scaling adaptation

	fine_tune
	False
	Training-based tuning of non-weight tensors

Table 10.1.15-1: Enabled NNC tools as described in [2], other parameters are set to NNCodec’s default values.

To achieve different trade-offs between compressed model size and model performance, the models have been encoded with different quantization step sizes. More specifically, NNCodec’s quantization parameter (QPs) has been varied in the range from −15 and −45.

Figure 10.1.15-1 shows the results: The performance of the compressed model is reported as word error rate (wer). The size of the compressed model (cSize) is reported in percent of the original uncompressed model size (sizeAnc). In summary, the results show that NNC reduces the model size to about 10% to 15% with negligible model performance losses in a setup without any data-driven tools, or optimization techniques that modify the models before encoding. Higher reductions can might be possible when enabling more sophisticated encoding tools, as e.g. also data-dependent tools or additional encoder-only model optimization techniques.

[image:]

Figure 10.1.15-1: Compressed model size and model performance achieved for different QPs.
For reference, the anchor performance werAnc is shown as red line.

10.2	Split inferencing for human pose estimation
10.2.1	Motivation and use case relevance
Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.
Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.
Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1.
10.2.2	Description of the scenario
In this scenario, a pre-trained AI/ML model for human pose estimation, PoseNet (MobileNetV1 backbone, FP32) [1], is split into two different parts (split models) for split inferencing. The first part is inferenced on a low-capability device (e.g. Samsung A series, TBC), and the second part is inferenced on a high-capability device (e.g. Samsung Galaxy S23, TBC) which simulates a network resource entity. The scenario corresponds to the topology shown in figure 5.1.1.1-1, the split AI/ML model inference topology where the UE is the media data source with first inference endpoint on the UE. Prior to the service, the (split) pre-trained model (anchor model) is assumed to be available on the high-capability device, and the inference input data (test dataset) is assumed to be available on the low-capability device.
The scenario considers the splitting of PoseNet at different layers in order to measure the overall performance and data characteristics of split inferencing between two nodes of differing computational capabilities.
As part of the scenario, the delivery of AI/ML data from between the two devices are taken in account, more specifically:
- Delivery of the split model from the high-capability device (network) to the low-capability device
- Delivery of the intermediate data (output of first split inference) from the low-capability device to the high-capability device
The inference output of PoseNet for the scenario will be to detect, in an instance-agnostic fashion, all visible keypoints belonging to any person in a corresponding input image.
10.2.3	Supporting companies and 3GPP members
· Samsung Electronics Co., Ltd.
10.2.4	Anchor AI/ML DNN model(s) for the scenario
For the evaluation of this scenario, the PoseNet (MobileNetV1 backbone, FP32) model is used. PoseNet as a reference implementation of a TensorFlow Lite pose estimation model is available from TensorFlow [1] and is licensed under the Creative Commons Attribution 4.0 License.
	Model
	Size (MB)
	mAP
	No. of layers
	No. of parameters

	PoseNet (MobileNetV1 backbone, FP32)
	13.3MB
	45.6
	31
	1,180,147

Table 10.2.4-1: Anchor model(s) for the scenario
10.2.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 5.1.

Figure 10.2.5-1 Testbed architecture for the scenario
The split configurations for the scenario are compared to two anchors:
1. Where the anchor model is inferenced completely on the low capability device
2. Where the anchor model is inferenced completely on the high capability device (simulating a network entity), with the test dataset and inference output delivered via the test network
The anchor model used is that shown in table 10.2.4-1.
Multiple model split configurations are considered as described in clause 10.2.6.
10.2.6	Test configuration factors, constraints and settings
PoseNet is composed of 31 different layers, resulting in 32 different possible split point configurations between the two inference nodes, including the two anchors as mentioned in clause 10.2.5 (layers inference on first node : layers inferenced on second node):
· 0:31
· 1:30
· 2:29
· …
· 31:0
The scenario aims to evaluate each of the 32 split point configurations, with each split configuration tested at a range of different network bandwidth configurations (specific bandwidths TBC).
Latencies due to any pre-processing (e.g. downscaling/upscaling) required on the test dataset for the input into PoseNet will not be taken into consideration as part of the scenario metrics.
Processing capability related configurations are dependent on the devices used for the scenario as described in clause 10.2.2.
10.2.7	Feasibility/performance evaluation metrics and requirements
For each split point configuration, the following metrics are computed:
· Test split model file sizes
· Intermediate data size or bitrate
· Inference latency at each device
· Optionally, additional performance measurements (complexity) at each device
Performance measurements may use the native benchmark binary or Android benchmark app as provided by TensorFlow (or scripted developed independently) in order to measure: certain KPIs which may include, but are not limited: initialization time, inference time of warmup state, inference time of steady state, memory usage during initialization time and overall memory usage.
10.2.8	Test dataset(s) and scripts for the scenario
The test dataset used for the lossless model split inference verification is comprised of a subset of images from COCO (Common Objects in Context) [2].
The annotations in the COCO dataset belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License, whilst the images are also under a Creative Commons license, the use of which must abide by the Flickr Terms of Use.
These images can be found at https://github.com/SamsungLabs/SA4-AIML.
The TFLite benchmark tool was used for the calculation of intermediate data sizes and split inferencing times.
Scripts for the scenario have been uploaded to the following repository: https://github.com/SamsungLabs/SA4-AIML. We are working on uploading also to the 5G-MAG repo for the future.
Lossless model split inference verification (“posenet_split_test.py”)
The script “posenet_split_test.py” does the following:
Converts the frozen (.pb) model to one TFLite model (full model)
Converts the frozen (.pb) model into two split models
Runs inference on the full model
Runs inference on the split models
Compares the results (keypoint coordinates, confidence scores) from both. If the results are the same (i.e. absolute difference in results is less than 0.001), then it considers the results to be matching, otherwise, the test fails.
Guidelines are given below:
	Usage: posenet_split_test.py [-h] --model_path MODEL_PATH --image_dir IMAGE_DIR [--split_layer {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}]
 [--output_dir OUTPUT_DIR]

required arguments:
 --model_path MODEL_PATH
 path to the Frozen model (.pb)
 --image_dir IMAGE_DIR
 path to the test images directory

optional arguments:
 --split_layer {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}
 layer at which the model should be split. Accepted range of values = [0, 26]
 --output_dir OUTPUT_DIR
 path to the output directory

Split model intermediate data sizes & split processing times (“get_tensor_sizes.py”, “collect_benchmark.py”)
These two scripts are used to get the split model intermediate data sizes and to calculate the split processing times on two separate devices.
Guidelines are given below:
	STEP 1 :
Run the TFLite benchmark tool in both Client (Android) and Server (Linux) devices.
Refer to https://www.tensorflow.org/lite/performance/measurement#native_benchmark_binary for more details.

Steps to benchmark on Android :
adb push bazel-bin/tensorflow/lite/tools/benchmark/benchmark_model /data/local/tmp
adb shell chmod +x /data/local/tmp/benchmark_model
adb push <model file> /data/local/tmp
adb shell /data/local/tmp/benchmark_model --graph=/data/local/tmp/<model file> --enable_op_profiling=true --profiling_output_csv_file=/data/local/tmp/benchmark.csv

Steps to benchmark on Linux :
chmod +x benchmark_model
./benchmark_model --graph=<model file> --enable_op_profiling=true --profiling_output_csv_file=benchmark.csv

STEP 2 :
Collect relevant data from the benchmark CSV files.
Copy the data (columns- node type, first, avg_ms, %, cdf%, mem KB, times called, name) under the heading "Operator-wise Profiling Info for Regular Benchmark Runs: -> Run Order" to new CSV files.

STEP 3 :
Use the script "get_tensor_sizes.py" to get the intermediate output sizes.

Usage Example :
get_tensor_sizes.py [-h] --model_path MODEL_PATH [--output_path OUTPUT_PATH]

Description of arguments :
--model_path MODEL_PATH : path to the TFLite model
--output_path OUTPUT_PATH : path to the output

STEP 4:
Use the script "collect_benchmark.py" to get the processing times on the client and server, intermediate output sizes, and intermediate model sizes for all possible splits.
Note: Intermediate model sizes are given as an output only if the model size is provided in the arguments.

Usage Example :
collect_benchmark.py [-h] --client_benchmark_file CLIENT_BENCHMARK_FILE --server_benchmark_file SERVER_BENCHMARK_FILE --tensor_sizes_file TENSOR_SIZES_FILE [--output_path OUTPUT_PATH] [--model_size MODEL_SIZE]

Description of arguments :
--client_benchmark_file CLIENT_BENCHMARK_FILE : path to the model benchmark csv file for client
--server_benchmark_file SERVER_BENCHMARK_FILE : path to the model benchmark csv file for server
--tensor_sizes_file TENSOR_SIZES_FILE : path to the model tensor sizes csv file
--output_path OUTPUT_PATH : path to the output csv file
--model_size MODEL_SIZE : size of the TFLite model in kilobytes

10.2.9	Detailed test conditions
For reference purposes, the scenario includes split inferencing between two devices, namely one low capability device and one high capability device. The specific devices used and detailed below are for reference only, since cross referencing on the same device hardware components is unpractical between different proponents.
Low capability device: Samsung A01 (hardware specifications: https://www.gsmarena.com/samsung_galaxy_a01-9999.php)
High capability device: Linux PC
	PRETTY_NAME="Ubuntu 22.04.2 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.2 LTS (Jammy Jellyfish)"
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 46 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 40
 On-line CPU(s) list: 0-39
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
 CPU family: 6
 Model: 85
 Thread(s) per core: 2
 Core(s) per socket: 10
 Socket(s): 2
 Stepping: 7
 CPU max MHz: 3200.0000
 CPU min MHz: 1000.0000
 BogoMIPS: 4400.00

The test environments used for each device include TensorFlow / TFLite for Android and Linux respectively.
10.2.10	Interoperability considerations for the scenario
None.
10.2.11	External performance data
None.
10.2.12	Expected time plan for the scenario completion
Provide test dataset and scripts – SA4 #125, August, 2023
Completion – SA4 # 126, November, 2023
10.2.13	Results
Note: these results have not yet been cross-checked.
An example result of executing the script “posenet_split_test.py” is shown below:
	$ python posenet_split_test.py --model_path=posenet/model-mobilenet_v1_100.pb --image_dir=posenet_split_test/images/. --output_dir=posenet_split_test/.
2023-09-21 12:29:49.740294: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-09-21 12:29:49.796260: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-09-21 12:29:50.831343: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-09-21 12:29:51.966277: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:51.966513: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.113530: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.113666: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.204172: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:52.204222: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
Completed TFLite full model generation

2023-09-21 12:29:52.668011: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.668146: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.764901: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.765037: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.856058: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:52.856108: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
2023-09-21 12:29:52.964945: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.965082: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:53.061569: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:53.061715: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:53.149491: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:53.149542: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
Completed model splitting

Starting full model inference test
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Completed full model inference test. Avg. time taken per input: 99.90212500000001ms

Starting split model inference test
Completed split model inference test. Avg. time taken per input: 99.93037499999998ms

PASSED: Inference results match for input: posenet_split_test/images/two_on_bench.jpg
PASSED: Inference results match for input: posenet_split_test/images/riding_elephant.jpg
PASSED: Inference results match for input: posenet_split_test/images/skate_park_venice.jpg
PASSED: Inference results match for input: posenet_split_test/images/frisbee_2.jpg
PASSED: Inference results match for input: posenet_split_test/images/person_bench.jpg
PASSED: Inference results match for input: posenet_split_test/images/frisbee.jpg
PASSED: Inference results match for input: posenet_split_test/images/kyte.jpg
PASSED: Inference results match for input: posenet_split_test/images/looking_at_computer.jpg
PASSED: Inference results match for input: posenet_split_test/images/backpackman.jpg
PASSED: Inference results match for input: posenet_split_test/images/skiing.jpg
PASSED: Inference results match for input: posenet_split_test/images/with_computer.jpg
PASSED: Inference results match for input: posenet_split_test/images/soccer.png
PASSED: Inference results match for input: posenet_split_test/images/baseball.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis_standing.jpg
PASSED: Inference results match for input: posenet_split_test/images/tie_with_beer.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis_in_crowd.jpg
PASSED: Inference results match for input: posenet_split_test/images/snowboard.jpg
PASSED: Inference results match for input: posenet_split_test/images/fire_hydrant.jpg
PASSED: Inference results match for input: posenet_split_test/images/skate_park.jpg
PASSED: Inference results match for input: posenet_split_test/images/boy_doughnut.jpg
PASSED: Inference results match for input: posenet_split_test/images/on_bus.jpg
PASSED: Inference results match for input: posenet_split_test/images/multi_skiing.jpg
PASSED: Inference results match for input: posenet_split_test/images/truck.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis.jpg

For split model intermediate data sizes and inference processing times, see the excel file attached to S4-231771.
10.2.14	References for the scenario
[1] https://www.tensorflow.org/lite/examples/pose_estimation/overview
[2] https://cocodataset.org/#home

10.3	Split inferencing for object detection and labeling
10.3.1	Motivation and use case relevance
Object detection and tracking finds prevalent applications in today’s world. These applications range from surveillance, image-based gallery and web search, media annotation, autonomous driving and more.
TR 22.874 section 5.2 describes these scenarios where deep learning-based object detection and tracking is performed.
10.3.2	Description of the scenario
In this scenario, a pre-trained model is used to detect objects in a video sequence. The output of the inference may consist of the following:
· Detected object labels per image
· Bounding boxes for the detected objects
· Masks describing pixel-accurate location of the object

In this scenario, it is assumed that the end device is resource constrained and may not have sufficient memory/processing capabilities, or battery power to perform the object detection task.
It is proposed that by splitting the model into 2 parts, where one part is inferred in the device and the other part is inferred in the network, the device will be able to perform the inference within its capabilities.
Two configurations are possible, based on the exact use cases:
· The image/video is captured on the device and inference is run on the image/video to produce feature maps that are then sent to the network for further inference. This step may be performed to protect user privacy. The device will then receive the results once, the inference is performed by the network. An example of such a use case is image/video-based web search, where the user captures an image/video and receives web search results. Another such use case is where the user captures an image/video and attempts to remove a specific object from the image/video.
· The image/video is provided by a content provider and processed by the network to enable the user to perform different tasks. The video is processed by a deep network to produce distilled features, which are then used by the device to perform task-specific inference. Different users viewing the same image/video may run different tasks. An example of such a use case is a sports game streaming service, where different users may have different interests in the game. One user may configure their application to track and annotate the players of their favorite team. Another user may be interested in extracting statistics about the ball. The core of the network produces a set of features that can be used to perform both tasks, where each user will run the model head specific to their selected task.
10.3.3	Supporting companies and 3GPP members
· Qualcomm, Interdigital.
10.3.4	Anchor AI/ML DNN model(s) for the scenario
The evaluation using the PyTorch framework includes several DNN models belonging to the table below:
· Retinanet
· The SSD300 model from Nvidia [1].
	Model
	Size (MB)
	No. of parameters

	Retinanet
	TBC
	TBC

	SSD300 (ResNet-50)
	89 MB
	23 million

10.3.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.

Figure 10.3.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network.
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.X.1.
The anchor model used is shown in Table 10.3.4-1.
Test network latencies are not considered to ensure scenario reproducibility.
Multiple model split configurations are considered as described in clause 10.2.6.
10.3.6	Test configuration factors, constraints, and settings
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions.

.
Figure 10.3.6-1 Testbed configuration

10.3.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network.
10.3.8	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario.
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt- ai-ml-evaluation-framework (github.com).
Two models are evaluated with different scripts adapted for each following model.
10.3.8.1	FPN/RPN Retinanet scripts
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location

· split_retinanet.py: this script is used to split the RetinaNet represented in the ONNX format. It takes the model at models/retinanet.onnx and splits at the four feature pyramid network (FPN) feature maps, as shown by the 4 nodes with red arrows pointed to in Figure 2.3-1, together with four other auxiliary operations (two of which are pointed to by the blue arrows in Figure 2.3-1 and there are two similar ones on the right side of the graph but not shown) that provide the input image shape information for later stages of the network. Note that the split needs 8 split points, rather than a single split point, due to branching and joining present in the structure of RetinaNet.
The splitting results in two partial models, called retinanet_part1.onnx and retinanet_part2.onnx, also in ONNX format. The input to part 1 is the input image. The feature maps in the output of part 1 is part of the input to part 2. The correct operation of part 2 needs additional input which is the shape of the input image. However, it makes no sense to feed the input image (together with the feature maps) as input to part 2. To resolve this problem, a dummy image of the same shape as the input image is used to generate the shape needed by part2. As a result, there is an overlap between part 1 and part 2. The overlap is chosen in such a way that only the portion of the graph directly contributing to generating the shape of the dummy image is included to minimize the additional processing. This is corroborated by the sizes of the models:
· retinanet.onnx: 149.433MB
· retinanet_part1.onnx: 120.731MB
· retinanet_part2.onnx: 28.840MB
from which we see that the sum of the two partial models is only 0.14MB bigger than the size of the whole model, indicating that the overlap is negligible and so is the additional processing for generating the shape of the dummy image.
The two parts are fed into infer_split.py for split inference.
· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results. A flag SAVE_FEATURES_IN_FILEs controls whether to write the FPN feature maps to the NPZ files, and it can be set to 0 to save storage, and in that case the feature maps out of the execution of part 1 are directly fed to part 2. This script also compares the performance between split inference and non-split inference in terms of normalized MSE.
·
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
 dataset_name Dataset name
model_location Path to the unsplit ONNX Model
 model_part1_location Path to 1st part of the ONNX Model
 model_part2_location Path to 2nd part of the ONNX Model
optional arguments:
 -h, --help show this help message and exit
 --mask Indicates if output of model is a Mask and needs to be converted

· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
 video_name The name of the video sequence, e.g. Kimono.
optional arguments:
 -h, --help show this help message and exit
 --ds DATASET_NAME Name of the dataset. Defaults to SFU-HW-Objects.
 --threshold THRESHOLD
 The threshold for the prediction confidence to consider the prediction.

· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
 video_fn Path to the video file
 annotation_path Path to the folder with annotations/predictions
optional arguments:
 -h, --help show this help message and exit
 --sleep_time SLEEP_TIME
 Specifies the inteval between the display of 2 consecutive frames

Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
[image: A diagram of a computer

Description automatically generated]
Figure 10.3.8.1-1: 6 of the 8 split points of the RetinaNet shown in Netron. The 4 red arrows point to the 4 FPN layers corresponding to “FPN 6”, “FPN 2”, “FPN 1”, “FPN 0” in Table 2.3-1, respectively.

[image: A screenshot of a computer

Description automatically generated]
Figure 10.3.8.1-2: Zoom in of the node “/backbone/fpn/extra_blocks/p6/Conv” of the graph in Figure 10.3.3-1.

10.3.8.2	 SSD300 scripts
The scripts are
· convert_ssd300_to_onnx.py
This script converts the pytorch ssd_300 model to ONNX.
Usage: python convert_ssd300model.py <output_path_to_directory>
Output: <output_path_to_directory>/ssd_resnet.onnx
Example: From rt-ml-ai-evaluation-framework directory :
python scripts/objectdetection/ssd300/convert_ssd300model.py ./models

· split_onnx.py
This script splits an ONNX file at identified bottlenecks points.
Usage: python split_onnx.py <path_to_onnx file> <split_point_name> <split_flag>
split_flag :’before’ to split before the split_point_name , ‘after’ to split after the split_point_name

Example: python split_onnx.py ./models/ssd_resnet.onnx /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_2/Relu before

Output : First and second part of the split in “./models”
Special character “/” in split_point_name is replaced with a “_”.

Output example: /models/ssd_resnet_Part_I__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx
./models/ssd_resnet_Part_II__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx

· infer_onnx.py
This script is used to run the inference of ssd300 model on an image or on a video.
It infers the first part and the second part of the model sequentially in GPU or in CPU.
The predictions are saved with the format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score], compatible with the scripts visualize.py and calc_map.py
Intermediate data are saved in numpy binary format .npz. s
The visual prediction results, the image with the boxes, are saved with the .png format. For video, only the first visual prediction is saved.

Usage: python infer_onnx.py [-h] [-c PATH_TO_CONFIG] [-s INPUT_SOURCE] [-loop LOOP] [-partI PARTI] [-partII PARTII] [-anchor ANCHOR] [-results_filename RESULTS_FILENAME] -results_dir RESULTS_DIR [-no_CPU_anchor] [-no_GPU_anchor] [-ref_split REF_SPLIT] [-no_split]
	
Help:
infer_onnx is a script that run the inference of a ssd resnet model, full model or split.
	Options:
 -h, --help show this help message and exit
 -c PATH_TO_CONFIG, --path_to_config PATH_TO_CONFIG Path to config file
 -s INPUT_SOURCE, --input_source INPUT_SOURCE Path to input source
 -loop LOOP loop inference
 -partI PARTI Path to model part I
 -partII PARTII Path to model part II
 -anchor ANCHOR Path to model anchor
-results_filename RESULTS_FILENAME Path to results file -results_dir RESULTS_DIR	Path to results directory hosting predictions
 -no_CPU_anchor no inference with CPU on model anchor
 -no_GPU_anchor no inference with GPU on model anchor
 -ref_split REF_SPLIT reference split label
 -no_split no split (just anchor for instance)

10.3.9	Results
10.3.9.1	FPN/RPN Retinanet results
The following screenshots show examples of the object detection predictions and results.
	[image: Several people walking in a mall

Description automatically generated]
	[image: A child in a room with presents and a tree

Description automatically generated]

	[image: A group of people walking around a patio

Description automatically generated]
	[image: A crowd of people crossing a street

Description automatically generated]

Figure 10.3.3-3: Examples of the object detection predictions and results.
For the SFU-HW-Objects data set, the difference between split inference and non-split inference in bounding box coordinates and in scores in terms of normalized MSE is less than 10-5 for 99.25% of all video frames. This shows that the performance is essentially the same, whether split inference is used or not.
Below are some exemplary feature maps (one shown for each FPN layer in the RetinaNet) for the first frame (frame 0) of the Traffic video sequence.
	FPN 0
	FPN 1
	FPN 2
	FPN 6

	[image: A close-up of a field

Description automatically generated]
	[image: A blurry image of a cat

Description automatically generated]
	[image:]
	[image:]

Figure 10.3.3-4: Example feature maps.
The sizes of the intermediate data are:
Table 10.3.3-1: the size of the feature maps
	FPN Layer
	Size (assuming batch size of 1)

	0
	256 × 100 × 160

	1
	256 × 50 × 80

	2
	256 × 25 × 40

	6
	256 × 13 × 20

Note that the intermediate data is about 22MB of size per image. In contrast, the original image size is about 3MB. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
10.3.9.2	SSD300 Results

	Nodes

	Inference Time (ms)
	intermediate data size (Mbytes)

	
	Nodes name
	UE (CPU)
	Server (GPU)
	Total
	

	Anchor GPU
	
	0
	62.817
	62.817
	1.08

	split_node_1
	/feature_extractor/feature_extractor/
feature_extractor.2/Relu
	1.803
	62.709
	64.512
	5.76

	split_node_3
	/feature_extractor/feature_extractor/
feature_extractor.4/feature_extractor.4.0/conv1/Conv
	1.44
	62.623
	64.063
	1.44

	split_node_10
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.0/relu_2/Relu
	3.261
	61.647
	64.908
	5.76

	split_node_17
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.1/relu_2/Relu
	4.811
	60.911
	65.722
	5.76

	split_node_24
	/feature_extractor/feature_extractor
/feature_extractor.4/feature_extractor.4.2/relu_2/Relu
	6.195
	59.812
	66.008
	5.76

	split_node_25
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.0/conv1/Conv
	8.936
	59.527
	68.463
	5.76

	split_node_39
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.1/relu_2/Relu
	9.304
	55.596
	64.901
	2.96

	split_node_46
	/feature_extractor/feature_extractor
/feature_extractor.5/feature_extractor.5.2/relu_2/Relu
	11.208
	53.902
	65.11
	2.96

	split_node_54
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.0/conv1/Conv
	12.315
	52.667
	64.983
	2.96

	split_node_62
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.1/conv1/Conv
	25.952
	47.153
	73.105
	5.91

	split_node_68
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.1/relu_2/Relu
	28.759
	42.74
	71.5
	5.91

	split_node_69
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.2/conv1/Conv
	32.515
	42.44
	74.955
	5.91

	split_node_75
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.2/relu_2/Relu
	34.516
	37.91
	72.425
	5.91

	split_node_76
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.3/conv1/Conv
	42.894
	37.355
	80.248
	5.91

	split_node_82
	/feature_extractor/feature_extractor
/feature_extractor.6/feature_extractor.6.3/relu_2/Relu
	61.896
	33
	94.896
	5.91

	Anchor CPU
	
	77.645
	0
	77.645
	0

Note : Predictions are the same for all inferences of the table:
	Ground Truth
	Split Predictions

	

[image: A group of people sitting at a table

Description automatically generated]

	[image: A group of people sitting at tables with laptops

Description automatically generated]

	person 427 226 704 720
person 717 200 988 485
person 933 163 1281 517
person 89 151 130 196
person 131 154 159 191
person 104 201 135 238
person 144 192 169 227
person 196 123 277 261
person 328 216 363 244
person 384 244 422 337
person 518 123 590 236
person 429 166 460 195
person 451 200 465 224
person 476 192 493 214
person 466 158 479 187
person 602 220 618 242
person 600 242 623 265
person 636 242 659 265
person 634 217 653 238
person 678 242 710 319
person 658 253 684 308
potted_plant 1 216 175 566
cup 537 449 589 503
cup 682 443 730 501
cup 1051 446 1098 509
person 189 223 441 721
chair 921 310 1012 480
chair 658 325 733 481
cup 343 401 399 455
	bottle 502 438 36 62 0.51
dining table 32 481 674 214 0.52
dining table 7 464 1237 213 0.55
person 1052 169 219 345 0.67
person 180 202 255 313 0.80
person 741 195 245 288 0.82
person 434 162 275

Experimentation was carried out on a laptop. Inference is made with CPU to emulate a low end UE device, and with GPU to emulate a server side. The specific device used and detailed below are for reference only.
Laptop reference: DELL LATITUDE 5501:
OS:
PRETTY_NAME="Ubuntu 22.04.3 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.3 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy

Hardware:
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 39 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 12
 On-line CPU(s) list: 0-11
Vendor ID: GenuineIntel
 Model name: Intel(R) Core(TM) i7-9850H CPU @ 2.60GHz
 CPU family: 6
 Model: 158
 Thread(s) per core: 2
 Core(s) per socket: 6
 Socket(s): 1
 Stepping: 13
 CPU max MHz: 4600.0000
 CPU min MHz: 800.0000
 BogoMIPS: 5199.98
 Display
 description: 3D controller
 product: GP107M [GeForce MX150] GPU
 vendor: NVIDIA Corporation

 description: VGA compatible controller
 product: CoffeeLake-H GT2 [UHD Graphics 630]
 vendor: Intel Corporation

The test environment used include PyTorch and ONNX frameworks.

10.4	Split inferencing for hand gesture recognition
Scenario merged with 10.3 at SA4#126.

10.5	Video super resolution in video call
10.5.1	Motivation and use case relevance
With the popularization of 5G networks, video-based call experience is rapidly developing, such as video ring back tone service, data channel related service, and XR service, etc. Currently, the resolution of video calls typically is 480p. In the future, more immersive XR call experiences are required, the video resolution needs to be improved to 720p or even 1080p or higher.
Due to a large number of existing mobile phone do not support 720p or 1080p or even higher video resolution, AI-based video super-resolution solution is a short cut which can bring better communication experience. The AI-based video super-resolution model can be deployed on IMS network to reduce the requirement and impact on the UE.

Figure 10.5.1-1 :Workflow for Network based Video Super Resolution in Video call

The UE-A sends low-resolution video bitstream to IMS network when UE-A and UE-B are in a video call. IMS network detects that UE-B has provisioned video super resolution service, then IMS decodes the video, and performs AI processing using NN model to generate high-resolution video, finally encodes to high-resolution video bitstream and sends to the UE-B, UE-B can see the high-resolution video of the UE-A.
10.6	Bit-incremental transmission and deployment of AI/ML models
10.6.1	Motivation and use case relevance
Even after compression, AI//ML models can have large sizes, which may lead to high transmission times and thus a significant startup delay for inference. For example, consider the “object recognition in image and video” use case considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO with EfficietNet backbone, may have 50-100M parameters. Another example is the transformer models, which are very successful models adopted primarily in speech and vision applications. Their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models may take a significant amount of time to download; therefore, high startup latency is expected in the UE. However, in many time-critical use cases, it may be preferable to start performing inference rapidly, even if that occurs at the expense of the task accuracy.
In addition to compression, model sizes can be reduced further by training models with lower precision, e.g., FP16 instead of FP32, or quantizing the trained models to obtain a lower precision version. In this way, a low-precision model can be sent to the client to reduce the startup time. However, there is typically a trade-off between the model accuracy and precision of the model weights. Therefore, a model update mechanism may be necessary to update a low-precision model to a higher precision to improve the model accuracy, if needed. This scenario describes such a bit-incremental transmission scenario for AI/ML model delivery.
It should be noted that the described technique is not specific to any of the scenario categories listed in the current PD. For evaluation purposes, the technique is applied to a binary image classification use case.
10.6.2	Description of the scenario
The scenario consists of two UEs and a server. The server has different versions of a model with different bit width in its local storage, e.g., two versions of the model described in Section 2.4: (i) a low-precision version of type 16-bit integer, and (ii) a full-precision version of type 32-bit integer. The UEs send request to the server to access the CNN model introduced in Section 2.4. UE1 requests a bit-incremental transmission of the full-precision model, while UE2 requests direct transmission of the full-precision model, which is considered as the anchor. In the anchor, the server sends the full-precision model directly to the UE2, while for UE1, the server sends the low-precision version of the model first, and then a model update is sent to the UE comprising the difference between the full-precision and low-precision versions.
Transmission of the models is done in the compressed form to further save bandwidth. Compression here refers to any technique used to reduce the size of the model such as sparsification, pruning, quantization, entropy coding, etc. The compressed full/low precision models and the compressed model update all are passed through an entropy coder for further (lossless) compression. In the presented scenario, ISO/IEC 15938-17, namely the Neural Network Compression (NNC) standard is used to carry out compression. However, the proposed scenario is not tied any particular compression tool and can be realized with model compression algorithms available in other ML frameworks such as Pytorch.
10.6.3	Supporting companies and 3GPP members
· Nokia Corporation
· Fraunhofer HHI
10.6.4	Anchor AI/ML DNN model(s) for the scenario
For demonstration purposes, three different DNN models are evaluated in this scenario. The models are all pretrained on ImageNet data. The models are: VGG16, ResNet18, and MobileNet_v2. The VGG16 is evaluated with Chest X-ray 2017 dataset for a binary classification task, and ResNet18 and MobileNet_v2 are evaluated with PASCAL VOC dataset for a classification task with 20 different classes. Details of the datasets are provided in Section 10.6.8. All three models are loaded from Pytorch Model Zoo [1].
The VGG16 model is modified to match the task, i.e., binary classification, by adding two fully connected layers. The feature extraction part of the model consists of five layers as shown in Figure 1.
NOTE: Other models may be used by proponents of the evaluation of this scenario.
[image: A diagram of a diagram of a diagram

Description automatically generated with medium confidence]
Figure 1: Feature extractor part (VGG16) of the model used in this scenario. The light green part of each cube demonstrates the convolution layer, and the dark green part of the cube shows the ReLu layer. The brown cube determines the MaxPool layer.
Dimensions of each layer of the feature extractor is shown in Table 1. It should be noted that the original VGG16 model loaded from Pytorch model zoo consists of three fully connected layers after the five convolution layers. The model contains in total more than 138M parameters and its file size is 527.8 MB.
Table 1: Dimensions of each convolutional layer (in_channel, out_channel, kernel_height,kernel_width) of the feature extractor part of the model.
	Layer 1
	Conv1
	

	
	Conv2
	

	Layer 2
	Conv1
	

	
	Conv2
	

	Layer 3
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 4
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 5
	Conv1
	

	
	Conv2
	

	
	Conv3
	

For the other two evaluated models (ResNet18 and MobileNet_v2), the only modification is the change of the output size of their fully connected layers to match the number of objects in the dataset.
It is expected that the proposed technique provides benefit for all model architectures. As described in clause 10.6.8, larger and more recent models (e.g. models with ResNet backbone) can be used by cross-checkers for evaluation. Larger models can show the benefit better as the savings in terms of inference start-up latency and bandwidth will be greater.
10.6.5	Testbed architecture and anchors
The architecture considered for the scenario is shown in the Figure 2. For UE1 (left), the server first sends the low-precision version of the model () to the UE at time . The UE starts deploying the model in the task at hand upon receiving the model at time . Later the server sends a model update comprising the difference between the full-precision model () and the low-precision model. For UE2 (right), the server directly sends the full-precision model at time . The UE starts deploying it after it received the model completely at time .
[image: A comparison of a cell phone

Description automatically generated]
Figure 2: Architecture of the scenario.
It should be noted that, in one variant of this scenario, the server may have both the lower-bit precision, e.g., 16-bit integer and the higher bit-precision, e.g., 32-bit integer versions of the requested model at hand. In another variant of the scenario, as in our implementation, the server may quantize the original (floating point) model into 16-bit and 32-bit integer models and then start sending them to the UEs. We followed this approach and quantized the 32-bit float model into a 16-bit and a 32-bit integer model, respectively, since we don’t have access to ready-to-use integer models with different bit widths,
10.6.6	Test configuration factors, constraints and settings
See section 10.6.9.
10.6.7	Feasibility/performance evaluation metrics and requirements
In the scenario, two alternatives for model transfer from the server and deployment in the client are considered:
1. Transmitting the original full-precision model. This setting is considered as the anchor.
2. Transmitting first a low-precision model and then transmitting a model update, which is added to the low-precision model to reconstruct the full-precision model in the client.
Considering these two alternatives, the following metrics are considered when comparing the two approaches:
· Model accuracy: Accuracy of the decoded and reconstructed model
· In case of model update, this is the accuracy of the model obtained after the decoded model update is added to the decoded low-precision model.
NOTE: If the model is not encoded (entropy coded) in the server, accuracies of the compressed (quantized) high/low precision models at the server and client will be the same.
· Start-up latency: The time in seconds it takes for the client to start performing inference using the model transmitted from the server. This is the sum of the encoding time, decoding time and reconstruction time.
· Model size: Size of the model transmitted from the server to the client. In case the model is encoded in the sender, this will be the size of the compressed bitstream.
10.6.8	Test dataset(s) and scripts for the scenario
Two datasets were used in this scenario: (i) The Chest X-ray 2017 images dataset, (ii) PASCAL VOC 2012 dataset. Both datasets are publicly available.
The Chest X-ray 2017 dataset can be fetched from [2]. The dataset is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). The dataset is often used for detection of pneumonia based on neural networks and contains two classes: Normal and Pneumonia. There are in total 5,856 JPEG images in the dataset and total size of the dataset is 1.15 GB. The dataset is divided into the following splits:
· Train: 5,216
· Validation: 320
· Test: 320
We adopt half of the train data set (2,620 samples) as training data for retraining the model introduced in Section 2.4. Both UEs and the server have access to the same test data with 320 samples and evaluate the original and decoded models using this dataset.
PASCAL VOC 2012 dataset is publicly available in [3] and contains 20 object categories including vehicle, household, animals, etc. Each image in this dataset has pixel-level segmentation annotations, bounding box annotations, and object class annotations. This dataset has been widely used as a benchmark for object detection, semantic segmentation, and classification tasks. The dataset contains 6924 training image and a test set containing 2307 images. We adopt the whole train dataset for retraining the ImageNet pretrained models and the whole test set for test purposes.
The scenario consists of six major steps as follows:
1. Loading model and data
2. Quantizing the model to two different integer bitwidths; one low-bit precision, e.g. 8 bit, and one high-bit precision, e.g. 16-bit.
3. Encode the quantized model
a. compute the time it takes to encode each quantized model,
b. compute the size of the bitstream generated for each quantized model,
4. Decode the bitstream
a. compute the time it takes to decode each bitstream
5. Reconstruct the decoded bitstream, i.e., convert the decoded quantized model to float32
a. compute the time it takes to reconstruct the decoded bitstream.
6. Calculate the evaluation metrics as defined in the previous clause.
General configuration
The script is run using a shell script ‘run_bitInc.sh’ where the input parameters are given by the user. In the current evaluation, VGG16 was tested using the dataset Chest X-Ray 2017 and ResNet18 and MobileNet-v2 were tested using PASCAL VOC. Scripts to run each of these combinations are provided in ‘run_bitInc.sh’. The cross-checkers only need to comment out a desired combination and provide the desired inputs values. The figure below shows an example configuration to run the scenario with ResNet18 as the model and PASCAL VOC as the dataset. The precision of the low-precision and high-precision integer models are set to 4 and 16, respectively.
[image: A screen shot of a computer code

Description automatically generated]
It is important to note here that any model architecture in the Pytorch model zoo could be used in this implementation. These models are:
['alexnet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', ‘resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'inception_v3', 'googlenet', 'shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'mobilenet_v2', 'mnasnet0_5', 'mnasnet1_0']

However, each model might require a structural modification to match the dataset since all models were pre-trained using ImageNet dataset which has 100 classes. To use a model with another dataset with different number of outputs (e.g., Chest X-ray with 2 classes), one needs to modify the last fully connected layer such that the number of outputs generated by the model matches the number of targets in the dataset. To achive this, one only needs to define a new transformation in the ‘transforms.py’ script under ‘framework/mpeg_applications/utils/’. Currently, two transformations are defined: the first one modifies the structure of the VGG16 pretrained on ImageNet to match Chest X-ray. Particularly, a new classification layer is defined for VGG16 which consists of two fully connected layers, where the last fully connected layer has only two outputs, as seen below.
[image: A computer screen shot of a program code

Description automatically generated]
The second transformation is defined for the ResNet and MobileNet architectures to use them with the PASCAL VOC dataset, where the number of outputs of the last fully connected layer is modified to match the number of targets in PASCAL VOC dataset, i.e., 20.
[image:]
The evaluation framework could be used with any other dataset. For that, one needs to define a new python script in ‘framework/mpeg_applications/datasets/’ with all required functions to define data loaders, train/test/validation splits, train/test/validation loaders, etc. Currently, this folder contains scripts for PASCAL VOC, Chest X-Ray, Cifar100, DCase and ImageNet datasets. However, only PASCAL VOC and Chest X-Ray were tested and validated.
Evaluation workflow
In first step, the model is imported the data is loaded. This is done using the function call shown below. The function returns a single model mdl of type float32 and a dictionary containing its parameters mdl_params.
[image: A screen shot of a computer code

Description automatically generated]
The loaded model is then re-trained using the training data to check its performance for the task at hand.
[image:]
Then, a copy of the retrained model is quantized into the two different precisions set by the user: low_bit_precision, and high_bit_precision using the function approx(). The output of the quantization step is a dictionary approx_data_quant, which contains the quantized parameters together with some approximation variables to be used during the encoding step. This process is shown in the following figure.
[image:]
In the next step, the quantized model is encoded by calling the encode() function. The output bitstream is saved on the hard drive and later fetched by the decoder. The time it takes to encode each quantized model and the size of the generated bitstream are saved.
[image: A screen shot of a computer program

Description automatically generated]
After the encoding is done, the bitstream is received by the UE and decoding is done by calling the decode() function as shown in the following figure. The decoding time is also computed as part of the process.
[image: A computer screen with text

Description automatically generated]
The decoded bitstream contains the quantized model. The final step is to reconstruct this quantized model to convert it to a float32 model and then calculate its performance. Reconstruction is done using the rec() function. If the reconstructed bitstream is associated to the model update, it is added to the reconstructed low-bit precision model. Finally, the performance of the resulting model is calculated using the function test_model(). The process is shown in the following figure.
[image: A computer screen shot of text

Description automatically generated]
10.6.9	Detailed test conditions
The inputs to the model are the DNN architecture, the path to the dataset, the quantization method used for quantizing the float models (in case the input model is not integer), and the optimization parameters used for retraining of the models, e.g., batch size, learning rate, number of processors to be used for running the experiments. The outputs are the bitstreams of the compressed model and the measured metrics introduced in Sec. 10.6.7.
It is important to note that the metrics introduced in Sec. 2.7 are not tied to any compression tools. However, we adopted NNC since it provides the tools (e.g. encoding, bitstream generation) required to compute these metrics.
Each float model is first converted into integer models using uniform quantization. Then, the quantized model is encoded using DeepCABAC [4], and the generated bitstream is saved into the memory and sent to the UEs. In each UE, the received bitstream is first decoded and reconstructed using the NNC decoder and then adopted for the task at hand.
10.6.10	Interoperability considerations for the scenario
It is expected that the model data is downloaded, possibly using HTTP.
10.6.11	External performance data
None.
10.6.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.6.13	Additional information
None.
10.6.14	Results
Note: These results have not yet been cross checked.
Example results with three different combinations of dataset and model are given below:
	
	Dataset
	Model
	Precision
	Seed
	Model Accuracy (%)
	Start-up Latency (s)
	Bitstream Size (MB)

	High-Precision Model
	Chest X-ray
	VGG16
	16
	451
	73.07
	22.32
	31.70

	Low-Precision Model
	
	
	8
	
	71.79
	12.78
	14.66

	Model Update*
	
	
	16
	
	73.07
	1.59
	0.48

	High-Precision Model
	PASCAL VOC
	ResNet18
	16
	721
	46.03
	15.32
	20.47

	Low-Precision Model
	
	
	8
	
	45.77
	8.38
	9.11

	Model Update*
	
	
	16
	
	46.16
	1.71
	0.67

	High-Precision Model
	PASCAL VOC
	MobileNet_v2
	16
	9472
	44.91
	4.19
	4.43

	Low-Precision Model
	
	
	8
	
	36.98
	2.78
	2.10

	Model Update*
	
	
	16
	
	44.43
	1.09
	0.44

* This is the accuracy obtained after the reconstructed model update is added to the low-precision model

10.6.15	References for the scenario
[1]https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16
[2] Chest X-ray 2017 images dataset, https://data.mendeley.com/datasets/rscbjbr9sj/2
[3] PASCAL VOC Dataset, http://host.robots.ox.ac.uk/pascal/VOC/
[4] Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinč, T., Neumann, D., Nguyen, T., Schwarz, H., Wiegand, T., Marpe, D., Samek, W. (2020). DeepCABAC: A universal compression algorithm for deep neural networks. IEEE Journal of Selected Topics in Signal Processing, 14(4), 700-714.

11	References
[1]	3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2]	Open Neural Network Exchange (ONNX), https://onnx.ai
[3]	The Khronos NNEF Working Group, “Neural Network Exchange Format”,	https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.5.html
[4]	“Text of ISO/IEC FDIS 15938-17 Compression of Neural Networks for Multimedia Content Description and Analysis”, MPEG document N00080, ISO/IEC JTC 1/SC 29/WG 04, April 2021.
[5]	Y.3179: Architectural framework for machine learning model serving in future networks including IMT-2020
[6]	Agiollo A., et al., “Load Classification: A Case Study for Applying Neural Networks in Hyper-Constrained Embedded Devices” Journal of Applied Sciences, December 2021
[7]	AI Model Efficiency Toolkit (AIMET), https://github.com/quic/aimet
[8]	https://www.tensorflow.org/lite
[9]	https://playtorch.dev/
[10]	https://github.com/quic/aimet
[11]	https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
[12]	https://pytorch.org/serve/?ref=assemblyai.com
[13]	https://www.tensorflow.org/guide/gpu
[14]	https://www.tensorflow.org/guide/tpu
[15]	https://pytorch.org/docs/stable/notes/cuda.html /GPU
[16]	 https://pytorch.org/xla/release/2.0/index.html XLA/TPU
[17]	 https://modelzoo.co/framework/keras 	
[18]	 https://modelzoo.co/framework/pytorch 	
[19]	 https://onnxruntime.ai/docs/tutorials/tf-get-started.html 	
[20]	 https://pytorch.org/docs/stable/onnx.html 	
[21]	 https://www.khronos.org/api/nnef
[22]	 https://modelzoo.co/frameworks
[23]	 https://github.com/tensorflow/models/tree/master/official
[24]	 https://keras.io/api/applications/
[25]	 https://tfhub.dev/
[bookmark: _Toc120865032][bookmark: _Toc149913033]Annex B (informative):
Change history
	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2023/11/07
	SA4#126
	S4-231770
	
	
	
	Changes reflecting agreements post SA4#125:
- S4aV230072
	0.2.1

	2023/11/17
	SA4#126
	S4-231932
	
	
	
	Agreed version at SA4#126:
- S4-231771, S4-231808, S4-231810
	0.3.0

	2024/01/18
	SA4 #127
	S4-240208
	
	
	
	Updates from agreements at Video Adhoc 2024/01/16:
- S4aV230125
	0.3.1

	2024/01/31
	SA4 #127
	S4-240387
	
	
	
	Agreed version at SA4#127:
- S4-240252, S4-240291
	0.4.0

	2024/04/12
	SA4#127-bis-e
	S4-240785
	
	
	
	Agreed version at SA4#127-bis-e:
- S4-240781
	0.5.0

	2024/05/23
	SA4#128
	S4-241177
	
	
	
	Agreed version at SA4#128:
- S4-240883, S4-241103, S4-241104, S4-241105, S4-241111, S4-241114
	0.6.0

Microsoft_Visio_Drawing.vsdx
Tail Node
Head Node
Anchor
Model
(UE Device)
Model Split configuration
Split Model Part 1
Split Model Part 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Encoder
Test Decoder
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(Network)
Test Network
Inference Output Processor

image3.emf
Anchor

Model

Test Encoder

Test Bitstream

(Compressed

Model)

Test Decoder Test Model

Test

Configuration

Metrics Logs & Computation

Test Metrics

Test Dataset Pre-processor

Inference Output

Processor

Inference Output

Processor

Test Dataset

Test Network

AI Framework / Library

Microsoft_Visio_Drawing1.vsdx
Anchor
Model
Test Encoder
Test Bitstream (Compressed Model)
Test Decoder
Test Model
Test Configuration
Metrics Logs & Computation
Test Metrics
Test Dataset Pre-processor
Inference Output Processor
Inference Output Processor
Test Dataset
Test Network
AI Framework / Library

image4.png
Percentage

Fraction of Papers Using PyTorch vs. TensorFlow

100%

75%

50%

25%

TensorFlow

0%
2017 2018

2019

Year

2020

2021

image5.png
Worker Node

Master Node

Cache

Driver Program

Cluster
Manager

Spark
Context

Worker Node

Cache

image6.png
Extractor Back totop

class onnx.utils.Extractor(model: ModelProto) [source]

extract_ model

onnx.utils.extract_model(input_path: str | PathLike, output_path: str | PathLike,

input_names: list[str], output_names: list[str], check_model: bool = True) - None [source]

Extracts sub-model from an ONNX model.
The sub-model is defined by the names of the input and output tensors exactly.

Note: For control-flow operators, e.g. If and Loop, the _boundary of sub-model_, which is defined
by the input and output tensors, should not _cut through_ the subgraph that is connected to the
main graph as attributes of these operators.

PARAMETERS: ¢ input_path (str | os.PathLike) — The path to original ONNX model.
* output_path (st | os.PathLike) — The path to save the extracted ONNX model.

* input_names (list of string) — The names of the input tensors that to be
extracted.

* output_names (list of string) — The names of the output tensors that to be
extracted.

e check_model (bool) — Whether to run model checker on the extracted model.

image7.png
MODEL PROPERTIES

format
version
imports
graph
INPUTS
data
ouTPUTS

vgg0_dense2 fwd

ONNX V7
0
aionnxvi2

mxnet_converted_model

name: data

tensor: float32[1,3,224,224]

name: vgg0_dense2_fwd

tensor: float32[1,1000]

image8.png
data

W (sex3343)
B (s2)

W (84x6x323)
B ()

@t

aistons = 1.1
kermalshape.
pacs

gg0_relu0_fwd

vag0_relut_fwa

pacs
swdes =22

v990_po0i0_fwd

W (1288003.3)
8 (23

siston:

W (12812853:3)
B8 G23)

vag0_conv2_fwd

vgg0_relu2 fwe

sitstons =

pads =111
swides = 1.1

Va0 conv3_

image9.png
vggo_conv2_fwd

vgg0_pool0_fwd W (128x64x3x3)
B (128)
dilations = 1,1
kemel_shape = 3,3
pads =1,1,1,1
strides = 1,1

kernel_shape = 2,2
pads =0,0,0,0
stiides = 2,2

vgg0_pool0_fwd

image10.emf

Microsoft_Visio_Drawing2.vsdx

image11.png
MODEL PROPERTIES

Format.
producer
imports.

araph

INPUTS

input_images.

outPuTs

o34

a2

a3

ONNX 6
pytorch2.0.1
alonnxv1t

torch i

name: input_images
tensor: Float32[bs, 3, h,u]

name: 2734

tensor: floataz[Concat2734_din.

name: 2712
tensor: floata2[6ather2712_din_0]
name:2713

tensor intea[Gather2712_din 0]

image12.png
input (256x1x1) input (256x1x1)

input (256x1x1)

input (25611

onnx:Add 3016

onne:Mul 3015

onnx:Add 3014

onne:Mul_3013

[onmc:Addjms] [onmc:Mu\jDiS] [onnx Addj(lm] [onmc:MquD!S]

image13.png
MODEL PROPERTIES

format
producer
version
imports

graph

INPUTS

input_images

ouTPUTS

onnx:Mul 3013

onnxzAdd_3014

onnx:Mul 3015

onnxzAdd_3016

ONNX V6.
onnxutils.extract_model
0

aionnxvi1

Extracted from {torch_jit}

name: input_images

tensor: float32[bs,3,h,u]

name: onmx:Mul 3013
tensor: float32[256,1,1]
name: onnx:Add_3014
tensor: float32[256,1,1]
name: onmx:Mul 3015
tensor: float32[256,1,1]
name: onnx:Add_3016

tensor: float32[256,1,1]

image14.png
MODEL PROPERTIES

format ONNXv6.

producer onnx.utils.extract_model
version 0
imports ai.onnxvi1

graph Extracted from ftorch jit}

INPUTS

input images name: input_images

tensor: Float32[bs,3,h,u]

onme:Mul 3013 name: onnx:Mul_3013

tensor: Float32[256,1,1]

onmAdd 3014 name: onnx:Add_3014

tensor: Float32[256,1,1]

onme:Mul 3015 name: onnx::Mul_3015

tensor: Float32[256,1,1]

onnxiAdd 3016 name: onnx::Add_3016

tensor: Float32[256,1,1]

oUTPUTS

2734 name: 2734

tensor: float32[Concat2734_dim_0,4]
2712 name: 2712

tensor: float32[Gather2712_din_6]
2713 name: 2713

tensor: int64[Gather2712_dim_0]

image15.png
MODEL PROPERTIES

format
producer
version
imports
graph
INPUTS

input images

©OUTPUTS

/Cast 9_output 0

/Cast 4_output 0

/Gather_1_output..

/Cast 3 _output 0

/Gather_68_outp..

2712

2713

ONNX v6
onnx.utils.extract_model
[

aionnxvi1

Extracted from {torch_jit}

tensor: Float32[bs,3,h,w]

name: /Cast 9_output 0

tensor: float32

name: /Cast 4 output 0

tensor: float32

name: /Gather_1_output 0

tensor: int64.

name: /Cast 3_output 0

tensor: float32

name: /Gather 68 output 0
tensor: float32

name: 2712

tensor: float32[Gather2712_din_6]
name: 2713

tensor: int6a[Gather2712_dim_0]

image16.png
MODEL PROPERTIES

format

producer

version

imports.

graph

INPUTS

/Cast 9_output 0

/Cast 4_output 0

/Gather_1_output..

/Cast 3_output 0

/Gather 68_outp..

oUTPUTS

2734

ONNX V6.
onnxutils.extract_model
0

aionnxvi1

Extracted from {torch_jit}

name: /Cast 9_output 0

tensor: float32

name: /Cast

output 0
tensor: float32

name: /Gather_1_output 0

tensor: int64.

name: /Cast 3_output 0

tensor: float32

name: /Gather 68 output 0

tensor: float32

name: 2734

tensor: float32[Concat2734_din_0,4]

image17.emf
Part I

start of Part II

(excerpt)

Intermediate data

Microsoft_Visio_Drawing3.vsdx
Part I
start of Part II (excerpt)
Intermediate data

image18.emf
End of Part I

(excerpt)

start of Part II

(excerpt)

Intermediate data

Microsoft_Visio_Drawing14.vsdx
End of Part I (excerpt)
start of Part II (excerpt)
Intermediate data

image19.png
000000000285j ~ 000000000802j 000000001490 ~ 000000004395j ~ 000000004495 ~ 000000004765; ~ 000000007784j ~ 000000007888j ~ 000000009448j 000000010764,
pg pg pg pg pg pg pg pg

gy

000000018519j 000000018737 000000020059,
pg Pg

Ll e

000000032285] 000000032570

pg
[V e !!!!II

000000033005j ~ 000000038070j ~ 000000038825j 000000039480 ~ 000000039670 ~ 000000042889, 000000044652j ~ 000000046804j 000000049259 000000049269,
pg pg pg pg pg pg pg pg pg pg

K H

000000050844j ~ 000000051314j ~ 000000051326j ~ 000000051712j ~ 000000051961 ~ 000000052462 ~ 000000052507j ~ 000000052565j ~ 000000054164j 000000055072;
pg pg pg pg pg pg pg pg pg pg

000000015746j ~ 000000016598j 000000017031,
pg Pg

IIIII!I!

000000020107 ~ 000000022396j ~ 000000022623j 000000029187 ~ 000000030675j ~ 000000031050 ~ 000000031749,
pg pg pg pg pg pg pg

000000010995] 000000011122
pg Pg

=

-

i

image20.png
Figure 1

mAP

100

80

60

40

20

mAP following encoding and split node - ssd resnet

0 - no encoding

1 - encoding 16 bits
nnc qp=-38

nnc qp=-10

nnc q

nnc q

nnc g

1

split points

0

image21.png
mAP following encoding and split node - retinanet

mAP

80
60
| |“

20 0 - no encoding

1 - encoding 16 bits
nnc gp=-38

nnc gp=-10

nnc ap=-6

nnc ap=-4

nnc gp=0

10
)
mo
000
50
1500
e

split points

Aed pQ=

image22.png
ssd_resnet

mAPs following encoded intermediate data and split node

o0 encoditlg

46 i

2
W,
2
g
E
2
& W_ W_
A s
3 A s S
g 8 g) B % 3 B
g
s

599A0) €6LS

599A0) 6LES

521403 5961

529K TSSH

599K LETH

S2IKQN bTLE

593403 0TEE

521403 9682

IO EZ:124

521403 8902

52140 SS9T

5234 TvZT

s2Ihq) L28

52IAq €Tt

s 0

Encoded intermediate data size

b

(o
+
+*
L 4
]

image23.png
%, Figure 1

retinanet
mAPs following encoded intermediate data and split node

o encodhy

it_node_1000

—— spli

46 Dt

EY
80
70
60
50
40
30

sdvw

sa1han 06
saukaw 08
saMhan €8
saMhan 08
sovkaw 22
sovham vL
savham 1L
saukaw 89
savhan 59
savham z9
savhan 85
sevham ss
sevhaw 25
saMhan 6v
sauhan ov
sevhaw ev
sevkaw oy
sovhaw L€
sevham ve
savhan 1€
sovkaw £z
sovhaw vz
savhan 12
seukqm 8T
saMham ST
saMham z1
sa1kan 6

sa1kqn o

sovhan €

sahan 0

Encoded intermediate data size

b

(o
+
+*
L 4
€

image24.png
AEd pQ=E

mAPs.

100

%0

80

70

60

20

mAPs following encoded intermediate data and split node

ssd_resnet

EERRRE

split_node_0010
split_node_0030
split_node_0050
split_node_0070
split_node_0090
split_node_0110
split_node_0130

0 Kbytes

413 Kbytes

827 Kbytes

Encoded intermediate data size

1241 Kbytes

1655 Kbytes

x=y=60.1

image25.png
Figure 1

ssd_resnet

mAPs following encoded intermediate data and split node

100

%0

80

70

mAPs.

60

50

40

30

IEERRER

split_node_0010
split_node_0030
split_node_0050
split_node_0070
split_node_0090
split_node_0110
split_node_0130

20

0 Kbytes

AEd pQE

413 Kbytes

827 Kbytes
1241 Kbytes

Encoded intermediate data size

1655 Kbytes

x=y=T64

image26.png
retinanet
mAPs following encoded intermediate data and split node

it_node_0100
it_node_0400
it_node_0700
it_node_1000
it_node_1300

it_node_1600

it_node_1900

—— sl
—— sl
—— sl
—— sl

—— sl

—— sl

— sl

sa1han 06

saMhan 98

saMhan €8

saMhan 08

savkam £L

saMham vL

savham 1L

saMhan 89

savhan 59

savham z9

savhan 85

saMham s

savham zg

saMhan 6v

sauhan ov

saMham v

Encoded intermediate data size

saMham oy

savham L

saMham ve

savhan 1€

savkam Lz

saMham vz

savhan 12

s3aMhan 8T

saMham ST

saMham z1

sahan 6

sahan o

EOGITES

s21qn 0

100

%0

80
70
60
50
40
30

sdvw

20

b

(o
+
+*
L 4
]

image27.png
Figure 1

mAPs.

retinanet

mAPs following encoded intermediate data and split node

100
S I ~—
90
80 l
70
60
50
0 —— split_node_0100
—— split_node_0400
—— split_node_0700
» —— split_node_1000
—— split_node_1300
—— split_node_1600
~—=— split_node_1900
20
8 8 8 8 8 8 8 8 8
H H H H H H H H H
2 2 2 2 2 2 2 2 z
= = = = H = = = =
H H H H H H H = H
o 9 2] H

Encoded intermediate data size

image28.png
AEd» dQ=

Figure 1 - o
‘ Compression performance - ssd_resnet
‘ 100{ * + [
‘ mw%
%
+
80 +
+
7 +
4 +
T 60 *
50
*
40
30
+
20
0 20 40 60 80 100

Compression ratio in %

image29.png
Figure 1

100

Compression performance - retinanet

%0

80

70

60

mAPs.

50

40

30

20

+ o AP
)

Aed dQ:

20

40 60 80 100
Compression ratio in %

image30.png
—

Decoder
ASR Model Encoder Bitstream j‘} (optional)

.~ 7

Reconstructed
ASR Model

image31.png
Speech Reconstructed Vector Label j‘> Predicted
Sequence ASR Model Sequence Selector Transcript

image32.png
wer [%)]

WAV2VEC2_ASR_BASE_960H;

test-clean; sizeRef = 3020Mbit
T T T

I

cSize [%)] ;
werRe;

image33.png
15

— 10

wer

wer |7

WAV2VEC2_ASR_BASE_960H

Compressed size (cSize) [%]

| | | J
5 10 15 20 25
Compressed size (cSize) (%]
HUBERT_ASR_LARGE
| | | J
5 10 15 20 25

image34.emf
High-capability device

Low-capability device

Anchor

Model

(Low Capa

Device)

Model Split

configuration

Test Split

Model 1

Test Split

Model 2

Metrics Logs/Computation

Test Metrics

Test Bitstream

(Intermediate

Data)

Test Dataset Pre-processor

AI Framework

/

Library

Test Dataset

Test Network

Inference

Output

Processor

Inference Output

Processor

Network

configuration

Anchor

Model

(High Capa

Device)

Test Network

Inference Output

Processor

Microsoft_Visio_Drawing25.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor

Microsoft_Visio_Drawing36.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor

image35.emf
Head

Inference

Delivery

estimation

Tail

Inference

Optimization/

Compression

Serialization Deserialization Decompression

Microsoft_Visio_Drawing4.vsdx
Head Inference
Delivery estimation
Tail Inference
Optimization/Compression
Serialization
Deserialization
Decompression

image36.png
Inputlmage

Ibackbadnel/fpn/layer_blocks.0/layer_blocks.0.0/Conv

Ibackbonelfpnllayﬂr_zlocks.1IIayer_bIocks.1 .0/Conv

Ibackbone/fpn/layer_blocks.2/layer_blocks.2.0/Conv

To node /Shape_1 Ibackbonel/fpn/extra_blocks/p6/Conv N J

To node /Cast_4

image37.png
Ibackbonel/fpn/extra_blocks/p6/Conv

NODE PROPERTIES

type

name

ATTRIBUTES

dilations
group

kemel shape
pads

strides

INPUTS

ouTPUTS

Conv

/backbone/fpn/extra_blocks/p6/Conv

11

33
1,111

2.2

name: /backbone/body/layer4/layera.2/relu_2/Relu_output 0
name: backbone.fpn.extra_blocks.p6.weight

name: backbone.fpn.extra_blocks.p6.bias

name: /backbone/fpn/extra_blocks/p6/Conv_output 0

image38.png

image39.png

image40.png

image41.png

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.png

image47.png
1000 1200

image48.emf
UE-A UE-B

Decode low-

res video

IMS Network

AI super

resolution

Encode high-

res video

high-res video bitstream

Low-res video bitstream

Decoded low-

res video

High-res

video

image1.png
Test Transmit

Anchor
Anchor Dataset compressed Model
Model video Network
device
Inference

Inference

1§

Evaluation

¥

Microsoft_Visio_Drawing5.vsdx
UE-A
UE-B
Decode low-res video

IMS Network
AI super resolution
Encode high-res video

high-res video bitstream

Low-res video bitstream
Decoded low-res video
High-res video

image49.png
Layer 4

Layer 3

Layer 2

Layer 1

image50.png
W

§

3

W

Time

t+tey

Time

t+ty

t+ty,

UE1

image51.png
PASCAL_DATASET_PATH="/data/datasets/PASCAL/"
CHEST_DATASET_PATH="/data/datasets/chest_xray/chest_xray_v3/"

CUDA_VISIBLE_DEVICES=1 python3 ./BitIncTransmission.py
--dataset_id="pascal_voc"
--dataset_path=$PASCAL_DATASET_PATH
--model_arch=resnet18

--low_bit_precision=4

--high_precision=16

--seed=451

P

image52.png
def model_transform_vgglé(original_model):

original_model.avgpool = nn.Sequential(
nn.BatchNorm2d(512, momentum=0.01, eps=le-3)

original_model.classifier = nn.Sequential(
nn.Linear(512 * 4 * 4, 256),
nn.ReLU(True),
nn.Linear(256, 2)

return original_model

image53.png
def model_transform_pascal(original model):

if original_model._class_._name_ == 'Reshet’:
classifier_in = original_model.fc.weight.shape[1]
original_model.fc = nn.Linear(classifier_in, 26)

elif original model._class_._name_ == ‘MobileNetva':
classifier_in = original_model.classifier[1].weight.shape[1]
original_model.classifier[1] = nn.Linear(classifier_in, 26)

return original_model

image54.png
Import ImageNet pre-trained float32 model and load the data to be used for retrain/test of the model
mdl, mdl_params = BIT.create_model_instances(model_arch=model_arch,

dataset_id=dataset_id,

dataset_path=dataset_path,

1r=lr,

batch_size=batch_size,

seed=seed,

num_workers=num_workers

)

image55.png
Retrain the imported pre-trained float32 model using the training data
retrained_model, _ = mdl.train_model(orig_param_data['parameters'], acc_return=True)

image56.png
for i, id in enumerate(Models["id"]):

Quantization step: float32 model --> (i) low_bit_precision, (i) high_bit_precision
model update --> high_bit_precision
approx_data_quant = approx(

Models["approx_info_list"][i].approx_info,

Models['models_info'][i],

Models["approx_data_list"][i]

image57.png
start_time = time.time()

encode the quantized models and model update
bitstream = coder.encode(enc_info, Models['models_info'][i], approx_data_quant, dec_approx_param_list[i], None)

calculate the time it takes to encode the quantized models and model update
enc_time = time.time() - start_time

calculate the size of the encoded models and model update
bs_size = len(bitstream)

image2.emf
Tail Node

Head Node

Anchor

Model

(UE Device)

Model Split

configuration

Split

Model

Part 1

Split

Model

Part 2

Metrics Logs/Computation

Test Metrics

Test Bitstream

(Intermediate

Data)

Test Dataset Pre-processor

AI Framework

/

Library

Test Dataset

Test Encoder Test Decoder

Test Network

Inference

Output

Processor

Inference Output

Processor

Network

configuration

Anchor

Model

(Network)

Test Network

Inference Output

Processor

image58.png
start_time = time.time()

hls_bytes = {}

with open(bs_filename, "rb") as _file:
bitstream = bytearray(_file.read())

decode the bitstream
dec_approx_data = coder.decode(bitstream, dec_model_info, None, None, hls_bytes, dec_approx_param_list[i], update_base_param=True)

calculate the time it takes to decode the bitstream
dec_time = time.time() - start_time

image59.png
start_time = time.time()

reconstruct the decoded model to convert it to float32
approximator.rec(dec_approx_data, dec_model_info)

calculate the time it takes to reconstruct the decoded bitstream
rec_time = time.time() - start_time

for param in list(Models['models_info'][i]['parameter_dimensions']):
if param not in list(dec_approx_data['parameters']):

dec_approx_data['parameters'][param] = np.zeros(Models['models_info'][i]['parameter_dimensions'][param], dtype=np.float32)

Models["recon_params"].append(dec_approx_data['parameters'])

if id == "model_update":
add the decoded quantized
state_dict_sum = OrderedDict()
for module_name in Models['recon_params'][@]:
if module_name in dec_approx_data['parameters']:
state_dict_sum[module_name] = torch.tensor(dec_approx_data['parameters'][module_name]) + Models['recon_params'][@][module_name]
else:
state_dict_sum[module_name] = Models["models_params"][@][module_name]
rec_acc = mdl_list[1].test_model(state_dict_sum)
else:
rec_acc = mdl_list[i].test_model(Models['recon_params'][i])

