Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 SWG #127 Meeting	Tdoc S4-240291
29th January – 2nd February 2024
Agenda item: 	9.6
Source: 	Qualcomm Inc.
Title: 	[FS_AI4Media] Federated learning using Spark
Document for	Discussion and Agreement 
1. [bookmark: _Toc504713888]Introduction
In this contribution, we describe a widely used framework for federated/distributed learning.
1. Spark and MLlib
Apache Spark is a distributed computing platform that was designed from the ground up to be fast and general purpose. Spark is able to support a wide range of workloads and even to combine different types of workloads. Spark is based on the MapReduce model, which based on three main operations:
· Map: each worker node in the cluster applies the map operation on the subset of the data that it got assigned by the control node.
· Shuffle: worker nodes redistribute data based on the output information of their map operation.
· Reduce: worker nodes assemble and merge the output data that they receive.
Spark relies on RDD (resilient distributed datasets), which simplify the distribution of data across the worker nodes of a cluster. RDDs represent the core of the data exchange in Spark.
The following diagram depicts the Spark architecture:

[image: Apache Spark Architecture | Distributed System Architecture Explained ...]
Spark comes with several modules. MLlib is its module for distributed machine learning. It offers a scalable machine learning library that provides a variety of tools for building machine learning pipelines, including algorithms for classification, regression, clustering, and collaborative filtering, as well as utilities for model evaluation and data handling. 
Federated Learning is a machine learning approach where a model is trained across multiple decentralized devices or servers holding local data samples, without exchanging them. This technique is especially useful for preserving privacy and reducing data centralization and bandwidth issues.
Spark MLlib is primarily designed for distributed machine learning on centralized data but can easily be adapted for federated learning scenarios:
1. Data Distribution and Local Training: Data resides on local nodes (e.g., UEs). Each node performs local training on its data using deep learning models using libraries like TensorFlow or PyTorch.
2. Model Averaging or Aggregation: After local training, each node computes model updates (gradients and/or updated weights). These updates are then sent to a central server or aggregator.
3. Central Aggregation: The central server aggregates these updates. This could be a simple averaging of weights or a more complex aggregation strategy. This aggregation step can be performed using Reduce operations.
4. Distributed Coordination: Spark's capabilities in handling distributed data and tasks can be leveraged to coordinate the process of aggregating updates from various nodes and distributing the aggregated model back to the nodes.
The Spark manager node dispatches tasks to worker nodes (e.g. UEs) to perform computations on the data. Gradients are then calculated on each worker node based on the subset of data they have. These gradients or model updates are then sent back to the manager node. The manager node aggregates these gradients (typically by averaging) and updates the global model. The updated model is then broadcasted back to the worker nodes for the next iteration of training. This process is repeated iteratively until the model converges or a specified number of iterations is reached.
1. Proposal
We propose to document the usage of Spark MLlib for federated learning and to establish a test scenario to collect traffic characteristics related to federated learning based on the open-source Apache Spark framework. 
Given that frameworks like Spark abstract all the details of the communication and data exchange, we propose that the group does not define an alternative signaling mechanism for this purpose.
- 12/13 -
image1.png

