Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA WG4#127-bis-e	S4-240620
online, Teams, 8 - 12 April 2024	

Agenda item: 	9.5
Source: 	Qualcomm Incorporated
Title: 	[VOPS] Some thoughts around 3GPP Video Codecs Specs: APIs, Conformance, MSE, Interfaces
Document for	Agreement

Introduction
During SA#103 the new work item on “Video Operating Points - Harmonization and Stereo MV-HEVC” was approved in SP-240060. This document provides the corresponding up to date work plan. The objectives of this work are to:
1. Harmonize and include as needed all the SA4 video operating points, such as Video profiles Operation Points, Video Operation Points, video encode and decode capabilities etc., which are currently scattered in various SA4 specifications (e.g. TS 26.116, TS 26.118, TS 26.119, TS 26.143, and TS 26.511), into a new specification that will be home to all such video operating points and upgrade HEVC-based levels based on industry practices.
2. Define the MV-HEVC capability in this new specification.
3. Then add and harmonize stereoscopic MV-HEVC (potentially with auxiliary information, e.g. alpha channels) encode/decode operating points, capabilities, streaming (e.g. CMAF, DASH) and transport aspects for:
a. 5G-media streaming profiles, codecs, and formats (TS 26.511)
b. Media capabilities for AR devices (TS 26.119)
c. Video messaging media profiles (TS 26.143)
4. Perform the above work in coordination with related SDOs and industrial fora such as MPEG, DASH-IF, CTA-WAVE, and IETF, and by referencing the related specifications, e.g. the Common Media Application Format (CMAF) and the ISO base media file format (ISOBMFF), among others.
This document addresses some thoughts on how to more beneficially support video codecs in 3GPP in different environments.
Web Codecs
2.1	Introduction
The WebCodecs API (https://www.w3.org/TR/webcodecs/) is a powerful web API that provides developers with low-level access to the individual frames of a video stream and chunks of audio. It is particularly useful for web applications that require full control over the way media is processed, such as video or audio editors, and video conferencing applciations.
The WebCodecs API provides access to codecs that are already in the browser, eliminating the need for additional software codecs and leveraging the existing hardware acceleration on the device. It gives access to raw video frames, chunks of audio data, image decoders, audio and video encoders, and decoders.
The WebCodecs API uses an asynchronous processing model. Each instance of an encoder or decoder maintains an internal, independent processing queue. Methods named configure(), encode(), decode(), and flush() operate asynchronously by appending control messages to the end of the queue, while methods named reset() and close() synchronously abort all pending work and purge the processing queue.
The WebCodecs API provides several interfaces:
· AudioDecoder: Decodes EncodedAudioChunk objects.
· VideoDecoder: Decodes EncodedVideoChunk objects.
· AudioEncoder: Encodes AudioData objects.
· VideoEncoder: Encodes VideoFrame objects.
· EncodedAudioChunk: Represents codec-specific encoded audio bytes.
· EncodedVideoChunk: Represents codec-specific encoded video bytes.
· AudioData: Represents unencoded audio data.
· VideoFrame: Represents a frame of unencoded video data.
· VideoColorSpace: Represents the color space of a video frame.
· ImageDecoder: Unpacks and decodes image data, giving access to the sequence of frames in an animated image.
· ImageTrackList: Represents the list of tracks available in the image.
· ImageTrack: Represents an individual image track.

The following table provides a simple example code for the usage of WebCodecs to demonstrate the functionality of the WebCodecs API:
	
// Create a new VideoDecoder and configure it
const init = {
 output: handleFrame,
 error: (e) => { console.log(e.message); },
};
const config = {
 codec: "hevc",
 codedWidth: 1280,
 codedHeight: 720
};
let decoder = new VideoDecoder(init);
decoder.configure(config);

// Create a new VideoEncoder and configure it
let encoder = new VideoEncoder({
 output: (chunk) => {
 const buffer = new ArrayBuffer(chunk.byteLength);
 chunk.copyTo(buffer);
 chunks.push(buffer);
 },
 error: (e) => console.error(e.message)
});
encoder.configure({
 codec: 'hevc',
 width: 1280,
 height: 720,
 bitrate: 2000000,
 framerate: 25
});

// Encode every image as a frame
 track.requestFrame().then((frame) => {
 encoder.encode(frame, {keyFrame: true});
 frame.close();
 });

 // Create a video from it
 encoder.flush().then(() => {
 const blob = new Blob(chunks, {type: 'video/webm; codecs=vp8'});
 const url = URL.createObjectURL(blob);
 decoder.decode(new EncodedVideoChunk({
 type: 'key',
 timestamp: 0,
 data: blob
 }));
 });

})
.catch((error) => {
 console.error("Error: ", error);
});

A full example can be found under https://bouazizi.dev/webcodecs/
Video Decoder Interface
The video decoder interface is defined as an API that allows to apply three main methods
· Configure: Enqueues a control message to configure the video decoder for decoding chunks as described by config.
· Decode: Enqueues a control message to decode the given chunk.
· IsConfigSupported: Returns a promise indicating whether the provided config is supported by the User Agent.

[Exposed=(Window,DedicatedWorker), SecureContext]
interface VideoDecoder : EventTarget {
 constructor(VideoDecoderInit init);

 readonly attribute CodecState state;
 readonly attribute unsigned long decodeQueueSize;
 attribute EventHandler ondequeue;

 undefined configure(VideoDecoderConfig config);
 undefined decode(EncodedVideoChunk chunk);
 Promise<undefined> flush();
 undefined reset();
 undefined close();

 static Promise<VideoDecoderSupport> isConfigSupported(VideoDecoderConfig config);
};

dictionary VideoDecoderInit {
 required VideoFrameOutputCallback output;
 required WebCodecsErrorCallback error;
};

callback VideoFrameOutputCallback = undefined(VideoFrame output);

The configuration of the codec is here
dictionary VideoDecoderConfig {
 required DOMString codec;
 AllowSharedBufferSource description;
 [EnforceRange] unsigned long codedWidth;
 [EnforceRange] unsigned long codedHeight;
 [EnforceRange] unsigned long displayAspectWidth;
 [EnforceRange] unsigned long displayAspectHeight;
 VideoColorSpaceInit colorSpace;
 HardwareAcceleration hardwareAcceleration = "no-preference";
 boolean optimizeForLatency;
};

A codec string describes a given codec format to be used for encoding or decoding.
A valid codec string MUST meet the following conditions.
1. Is valid per the relevant codec specification (see examples below).
2. It describes a single codec.
3. It is unambiguous about codec profile, level, and constraint bits for codecs that define these concepts.
NOTE: In other media specifications, codec strings historically accompanied a MIME type as the "codecs=" parameter (isTypeSupported(), canPlayType()) [RFC6381]. In this specification, encoded media is not containerized; hence, only the value of the codecs parameter is accepted.
NOTE: Encoders for codecs that define level and constraint bits have flexibility around these parameters, but won’t produce bitstreams that have a higher level or are less constrained than requested.
The format and semantics for codec strings are defined by codec registrations listed in the [WEBCODECS-CODEC-REGISTRY]. A compliant implementation MAY support any combination of codec registrations or none at all.
Video Encoder Interface
Similar as for the decoder, an API for the encoder is defined
[Exposed=(Window,DedicatedWorker), SecureContext]
interface VideoEncoder : EventTarget {
 constructor(VideoEncoderInit init);

 readonly attribute CodecState state;
 readonly attribute unsigned long encodeQueueSize;
 attribute EventHandler ondequeue;

 undefined configure(VideoEncoderConfig config);
 undefined encode(VideoFrame frame, optional VideoEncoderEncodeOptions options = {});
 Promise<undefined> flush();
 undefined reset();
 undefined close();

 static Promise<VideoEncoderSupport> isConfigSupported(VideoEncoderConfig config);
};

dictionary VideoEncoderInit {
 required EncodedVideoChunkOutputCallback output;
 required WebCodecsErrorCallback error;
};

callback EncodedVideoChunkOutputCallback =
 undefined (EncodedVideoChunk chunk,
 optional EncodedVideoChunkMetadata metadata = {});

The configuration for the encoder is provided here
dictionary VideoEncoderConfig {
 required DOMString codec;
 [EnforceRange] required unsigned long width;
 [EnforceRange] required unsigned long height;
 [EnforceRange] unsigned long displayWidth;
 [EnforceRange] unsigned long displayHeight;
 [EnforceRange] unsigned long long bitrate;
 double framerate;
 HardwareAcceleration hardwareAcceleration = "no-preference";
 AlphaOption alpha = "discard";
 DOMString scalabilityMode;
 VideoEncoderBitrateMode bitrateMode = "variable";
 LatencyMode latencyMode = "quality";
 DOMString contentHint;
};
2.4	Codec Registration Procedure
The codec registration procedure for new codecs is defined by W3C in [2]. The registration request should define the EncodedAudioChunk or EncodedVideoChunk format as well as the configuration data format in AudioDecoderConfig or VideoDecoderConfig. These structures may be extended to carry codec-specific information.
The request must then be sent to the GitHub issue trucker of WebCodecs for evaluation.
For video codec registry, see here: https://www.w3.org/TR/webcodecs-codec-registry/#video-codec-registry
For HEVC codec registrations, please go here: https://www.w3.org/TR/webcodecs-hevc-codec-registration/
2.5	Relation to VOPS work
While the objective of the VOPS work is not primarily to support 3GPP video codecs as part web codecs, there are clearly aspects that are worthwhile to be learned and considered.
Key aspects are the ability to
1) Use the encoder and decoder independently of a specific service
2) Allow to use and configure the encoder and decoder on a per frame basis
3) Allow to configure encoder and decoder for the formats
4) Allow to check for capabilities whether the codec is supported.
These aspects should be taken into account when defining codecs, namely the ability to check for capabilities, and to configure input and out signals.
Media Service Enablers – see TR 26.857
[bookmark: _Toc112946849][bookmark: _Toc119555588]3.1	General Concepts
In TR 26.857, the concept of 5G Media Service Enablers is introduced.
The basic concept of the Media Service Enabler is to support third-party applications to make use of advanced functionalities provided by the 5G System, combined with additional well-defined client and network functionalities for media services: an MSE enables improved media services.
In implementations and deployments, such packaged functions are typically referred to as a Software Development Kit (SDK) and they are usable by applications through well-defined APIs. A few potential properties of a Media Service Enabler are provided:
-	A set of functions that may be used to deploy applications that can make simple use of 5G System functionalities.
-	A set of robust features and functionalities which reduce the complexity of developing applications.
-	Functions to leverage system and radio optimizations as well as features defined in 5G System (5G Core Network and 5G NR).
-	Usability of the set of functions by well-defined and well-documented device APIs.
-	Provision of network interfaces to connect to the 5G System.
-	A testable set of functions. Testing and conformance may be addressed outside 3GPP, for example by a Market Representation Partner (MRP) such as 5G-MAG or by an industry forum.
-	Guidelines and examples to make use of the set of functionalities provided by an MSE.
A general initial idea on how to define Media Service Enablers is documented below:
-	Combine functions defined in 3GPP (for example a codec) and/or reference technologies defined outside 3GPP, for example in MPEG or Khronos, and provide relevant subsets and profiles of these.
-	Include mandatory, recommended and optional functions.
-	Define signaling and capability negotiation for all functions.
-	Specify requirements for client and network functions, as needed.
-	Include relevant functions such as QoE metrics and KPIs.
 Providing a Media Service Enabler in this form has several benefits:
-	The Application Provider has a set of functions that can be easily accessed in the same way that device functions are accessed today, namely through well-defined device APIs. The Application Provider can also use regular IP connectivity to operate its application.
-	For the MSE developer, the focus is on providing a well-defined set of functions that are exposed to the application through MSE-1 and MSE-2 on the network side, and via MSE-6 on the UE device side.
-	The MSE developer may provide the MSE Application Function and Application Server as well as the MSE Client. In this case, the primary interoperability aspects are at reference points MSE-1 and MSE-6.
-	In another case, the network functions for MSE may be provided by a 5G System operator. In this case the MSE Client and MSE AF are expected to also implement the functions and interoperability defined at reference points MSE-4 and MSE-5.
[bookmark: _Toc110933772]3.2	MSE Client specification
In TR 26.857, an MSE client specification is provided
9.1	Overview of the MSE API Calls
9.2	Functional description
-	Uses reference pre-requisites, user plane functionality, control plane, and client API.
-	Defines states of the MSE client in relation to the application. Examples for state are IDLE, REGISTERED, ACTIVE, etc. State changes may occur through or by information received through MSE-6 the network interface.
-	A set of client-internal reference parameters that are changed based on either configuration or API calls through MSE-6 or by information received through the network interface MSE-4 or MSE-5.
-	Metrics, data and KPI collections, for example to be provided to analytics servers.
9.3 MSE Client API methods and parameters
-	Different methods that allow the application to communicate with the MSE client. For each method, the following information is provided:
-	A high-level description of the method.
-	An example call flow.
-	The parameters that are exchanged as part of the API call.
-	The usage of the API by the application.
-	The MSE Client actions, including pre and post conditions.
-	Configuration
-	Capabilities
	This API typically includes functionalities such as configurations, settings, notifications, events, data and status query as well as functional methods. As an example, the API may provide the ability to query metrics and KPIs,
-	Optional capability discovery: discovery of the capabilities supported by an implementation including the additional configuration parameters specific to that MSE implementation
-	Specification using a well-defined language, for example C or IDL,
[bookmark: _Toc112946853][bookmark: _Toc119555592]3.3	Beyond the MSE Specification – guidelines, tests and reference implementations
Beyond the MSE specification, and as indicated in clause 6.3, the following aspects are considered in the annexes for the specification template:
-	Guidelines for application developers.
-	Guidelines for MSE implementers and reference implementations.
-	Device API instantiations.
-	Conformance Test Suite.
Such efforts are not necessarily suitable for 3GPP working processes. Hence, collaboration with other organizations, such 3GPP market representation partners (MRPs) or open-source projects may be considered. The annexes indicated above may initially contain only considerations that can be used by third parties in order to develop their own implementations, guidelines, test frameworks and reference implementations.
As an example, the development of a reference implementation of MSE Client and network functions can support developers and Application Providers to quickly gain access to newly defined functionalities. This is, for example, shown in figure 6.4-1 for which reference implementations of the MSE are used as part of a reference, demonstration or production application. In this case, the reference implementation makes use of existing device functions and 5G System functions. As an example, the 5G-MAG reference tools https://www.5g-mag.com/reference-tools provide an approach to developing such reference implementations.

Figure 6.4-1: MSE Reference Implementation
As another example to support the specification development, a conformance test suite may be developed in order to test the 3GPP-defined APIs and conformance for correct implementation. A framework for this is provided in figure 6.4-2.

Figure 6.4-2: Test/Conformance Framework for MSE Client Implementation
In this case, a test framework is developed in order to test the functionality of the MSE Client implementation. If all tests are passed, the MSE Client may be considered conformant to the specification. Such an approach may be even extended to create an adopter program, i.e. providing a process that allows an MSE implementation to officially claim support of the MSE specification by having verified that the all tests have been passed.
While 3GPP is not in a position to mandate such a conformance regime, it is highly recommended to consider the potential benefits of supporting third parties in developing suitable test and conformance programs.
3.4	Relation to VOPS work
While the objective of the VOPS work is not primarily to create APIs and MSE concepts, 3GPP video codecs can be viewed as media service enablers.
Key aspects are the ability to
1) Use the encoder and decoder independently of a specific service
2) Allow to use and configure the encoder and decoder through APIs
3) Consider the ability to create unit tests

These aspects should be taken into account when defining codecs, decoding and encoding capabilities.
Interface and Conformance View
A first view of interfaces and conformance is provided in the below diagram.

Proposal
It is proposed to consider in context of the VOPS work item
1) Enable the usage of the video encoding and decoding capabilities independent of a service
2) Identify configuration parameters for video encoders and decoders
3) Align the configuration information with the APIs defined in WebCodecs
4) Align the capability information with the APIs defined in RFC 6381
- 4/4 -
image1.emf
5G System

Functions

Deployment Server UE

Device

Functions

Reference/Demo/Production

Application

MSE-7

Media Service

Enabler Client

Reference

Implementation

MSE-6

Reference

MSE Application

Server

Reference

MSE Application

Function

User Plane MSE-4

MSE-5

Control Plane

Reference/Demo/

Production

Application

Provider

Application

Interface

Microsoft_Visio_Drawing.vsdx
5G System Functions
Deployment Server
UE
Device  Functions
Reference/Demo/Production  Application
MSE-7
Media Service  Enabler Client
Reference Implementation
MSE-6
Reference MSE Application Server
Reference  MSE Application Function
User Plane MSE-4
MSE-5
Control Plane
Reference/Demo/Production  Application
Provider
Application  Interface

image2.emf
Test Server UE

Test

Observations

Test Application

MSE-7

Media Service

Enabler Client

Core Functions

MSE-6

Test MSE

Application

Server

Test MSE

Application

Function

User Plane MSE-4

MSE-5 Control Plane

Microsoft_Visio_Drawing1.vsdx
Test Server
UE
Test  Observations
Test Application
MSE-7
Media Service  Enabler Client
Core Functions
MSE-6
Test MSE Application Server
Test MSE Application Function
User Plane MSE-4
MSE-5
Control Plane

image3.emf
Video Encoder Video Decoder

Application Application

VID-ENC-API VID-DEC-API

Bitstream

C

Video Signal

Rendering

Metadata

Microsoft_Visio_Drawing2.vsdx
Video Encoder
Video Decoder
Application
Application
VID-ENC-API
VID-DEC-API
Bitstream

C

Video Signal

Rendering
Metadata

