3GPP TR 26.927 V0.5.0 (2023-11)
14
Release 18

	[bookmark: page1][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 26.927 V0.5.0 (2023-11)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on Artificial Intelligence and Machine Learning in 5G media services;
[bookmark: specRelease](Release 18)

	

		

	[image:]
	[image:]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Report is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	8
4	Introduction to AI/ML for media	8
4.1	General	8
4.2	Media-based AI/ML use cases and scenarios	8
4.2.1	Introduction	8
4.2.2	Object recognition in image and video	9
4.2.3	Video quality enhancement in streaming	10
4.2.3.1	Sender-receiver approaches	10
4.2.3.1.1	End-to-End neural network-based video coding	10
4.2.3.1.2	Neural network based post-processing for video coding	10
4.2.4	Crowd-sourcing media capture	11
4.2.4.1	Introduction	11
4.2.4.2	Device inference	11
4.2.4.3	Network inference	12
4.2.5	Natural Language Processing (NLP) on speech	12
4.3	Related work	12
5	Media service architecture for AI/ML	12
5.1	AI/ML Split configurations	12
5.1.1	AI/ML model composition	12
5.1.2	Topologies of split AI/ML inference	13
5.1.2.1	Introduction	13
5.1.2.2	UE as the media source	13
5.1.2.3	Network as the media source	14
5.2	Architectures and service flows	15
5.2.1	Introduction	15
5.2.2	Complete/basic AI/ML model distribution	16
5.2.2.1	Basic architectures	16
5.2.2.2	Basic workflows	17
5.2.2	Split AI/ML operation	18
5.2.3.1	Basic architectures	18
5.2.3.2	Basic workflows	20
5.2.4	Distributed/federated learning	22
5.2.4.1	Basic architecture	22
5.2.4.2	Basic workflows	23
5.3	Architecture for AI data delivery	24
5.3.1	AI data components	24
5.3.2	Media-related AI data logical functions	24
5.3.3	Architecture for AI data delivery over 5G	25
5.3.4	Procedure for Split AI/ML operation	26
6	Data components for AI/ML-based media services	28
6.1	General	28
6.2	Model data	29
6.3	Intermediate data	29
6.4	Media data	29
6.5	Metadata	29
7	Traffic characteristics	29
7.1	General	29
7.2	Complete/Basic AI/ML model distribution	29
7.3	Split AI/ML operation	29
7.4	Distributed/federated learning	29
8	KPIs	29
8.1	General	29
8.2	List of KPIs	29
9	Potential Normative Work	29
10	Conclusion	29
Annex <A>: <Informative annex title for a Technical Report>	30
Annex <X>: Change history	31

[bookmark: foreword][bookmark: _Toc138769575]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In drafting the TS/TR, pay particular attention to the use of modal auxiliary verbs! TRs shall not contain any normative provisions.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc138769576]Introduction
This clause is optional. If it exists, it shall be the second unnumbered clause.
[bookmark: scope][bookmark: _Toc138769577]
1	Scope
The present document …
[bookmark: references][bookmark: _Toc138769578]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[aa]	3GPP TR 22.874: "Study on traffic characteristics and performance requirements for AI/ML model transfer".
[bb]	Cunningham, P., Cord, M., Delany, S.J. (2008). Supervised Learning. In: Cord, M., Cunningham, P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2

…
[x]	<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".
[bookmark: definitions][bookmark: _Toc138769579]3	Definitions of terms, symbols and abbreviations
This clause and its three subclauses are mandatory. The contents shall be shown as "void" if the TS/TR does not define any terms, symbols, or abbreviations.
[bookmark: _Toc138769580]3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
Definition format (Normal)
<defined term>: <definition>.
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc138769581]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
AI	Artificial Intelligence
DNN	Deep Neural Network
HDR	High Dynamic Range
ML	Machine Learning
NLP	Natural Language Processing
NN	Neural Network
SDR	Standard Dynamic Range
UE	User Equipment
UL	Up-Link

[bookmark: _Toc138769582]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
Abbreviation format (EW)
<ABBREVIATION>	<Expansion>

[bookmark: clause4][bookmark: _Toc138769583]4	Introduction to AI/ML for media
[bookmark: _Toc138769584]4.1	General
[Editor’s note: Introduction to the concepts of artificial intelligence and machine learning].
[bookmark: _Toc138769585]4.2	Media-based AI/ML use cases and scenarios
[bookmark: _Toc138769586]4.2.1	Introduction
TR 22.874 [aa] has identified a set of use cases for AI/ML with the following key operations:
-	AI/ML operation splitting between AI/ML endpoints
-	The AI/ML operation/model is split into multiple parts according to the current task and environment. The intention is to offload the computation-intensive, energy-intensive parts to network endpoints, whereas leaving the privacy-sensitive and delay-sensitive parts at the end device. The device executes the operation/model up to a specific part/layer and then sends the intermediate data to the network endpoint, the network endpoint then executes the remaining parts/layers and feeds the inference results back to the device. Alternatively, the network endpoint may firstly execute the operation/model up to a specific part/layer and then sends intermediate data to the device, which then executes the remaining parts/layers before consuming the inference results.
-	AI/ML model/data distribution and sharing over 5G system
-	Multi-functional mobile terminals might need to switch the AI/ML model in response to task and environment variations. The condition of adaptive model selection is that the models to be selected are available for the mobile device. However, given the fact that the AI/ML models are becoming increasingly diverse, and with the limited storage resource in a UE, it can be determined to not pre-load all candidate AI/ML models on-board. Online model distribution (i.e., new model downloading) is needed, in which an AI/ML model can be distributed from a network endpoint to the devices when they need it to adapt to the changed AI/ML tasks and environments. For this purpose, the model performance at the UE needs to be monitored constantly.
-	Distributed/Federated Learning over 5G system
-	The cloud server trains a global model by aggregating local models partially trained by each end devices. Within each training iteration, a UE performs the training based on the model downloaded from the AI server using the local training data. Then the UE reports the interim training results to the cloud server via 5G UL channels. The server aggregates the interim training results from the UEs and updates the global model. The updated global model is then distributed back to the UEs and the UEs can perform the training for the next iteration.
These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation. These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation.
The use cases and scenarios listed in this technical report, which are described in this clause, are based on a selection of the media-based AI/ML use cases identified in TR 22.874 [aa].
[bookmark: _Toc138769587]4.2.2	Object recognition in image and video
Based on clause 5.1 and 5.2 of TR 22.874 [aa], this set of use cases, images and video streams are processed to identify and recognize objects and extract some metadata, such as bounding boxes, object labels, movement counters, etc.
The uses cases are applicable for the different topologies described in clause 5.1, including UE inference only, network inference only and split inferences topologies.
The computationally intensive and memory and power consuming AI/ML inference used to perform this processing requires offloading some inference parts from the mobile device to the edge or a cloud data center.
Split inference of trained ML model(s) for object recognition is distributed between multiple endpoints, typically between the network and UE. Split points may depend on various factors including UE capabilities, network conditions, model characteristics, and user/task specific requirements:
-	Device/UE capabilities on running whole or part of model such as the required memory, the processing capabilities, the energy consumption, and the inference latency.
-	Network conditions for delivering media and/or the intermediate data. This may include, for example the amount of data to transfer in one shot for an image or at a specific frame rate for video, the required bandwidth in UL and/or DL with different impact on the network load and the related UL and DL network latencies. Network inference latency is also to be considered.
-	Model characteristics include split inference with a task-specific model head running on the UE for object recognition. For example, in one UE, the task is to recognize pedestrians, whereas in another it is to recognize traffic signs. The core of the network model as well as the input image/video are the same, but the tasks (and their required task-specific models) in the UEs are different.
-	User or task specific requirements. For example, it may be necessary to perform some processing tasks on end-device in order to preserve privacy or because they are delay sensitive operations.
Two main scenarios, both involving either image or video processing are proposed:
a)	The UE captures images or video and first feeds the input data to the UE inference model (e.g., to preserve privacy). The UE then uploads intermediate output data from the UE inference model to the network inference, which in turn executes the remaining part of the model (e.g., process the intensive computations) and finally returns the results or a processed image/video to the UE.
b)	Unlike the previous scenario, the UE uploads the captures image or video to the network where a network inference processes inputs video/image, then sends back the intermediate data to the UE inference executing the remaining layers of the model (e.g., task specific operations) and returning the final results.
These scenarios involve the key operation of AI/ML model/data distribution and require the delivery of trained ML model(s) for object recognition to the UE in 5GS, including the selection of models for different tasks or environments and the possible selection of the split points based on the various factors described above
These scenarios also involve the distribution of distributed online training of image and video recognition models based on input from different UEs. Depending on the configuration of the ML training framework, different data may need to be delivered between the UEs and the network. Typically, a shared model in the network is calibrated continuously based on the training results from all UEs. This scenario involves all the three key operations related to AI/ML model distribution, splitting, and distributed/federated learning.
[bookmark: _Toc138769588]4.2.3	Video quality enhancement in streaming
[bookmark: _Toc138769589]4.2.3.1	Sender-receiver approaches
[bookmark: _Toc138769590]4.2.3.1.1	End-to-End neural network-based video coding
Based on clause 5.3 of TR 22.874 [aa], in this use case, the sender and receiver apply parts of a DNN model (e.g. an autoencoder model) to enhance the quality of a video stream. An example of an autoencoder DNN is depicted in figure 4.2.3-1:
 [image: 说明: A screenshot of a cell phone

Description automatically generated]
Figure 4.2.3-1: Example of DNN-based Down/Up-scaler

The sender is typically represented by various media functions in the network, which processes the high-fidelity video using the down-scaling part of a pre-trained DNN model to an intermediate data stream that is streamed together with a lower resolution encoding of the video. The receiver (UE) runs an inference algorithm (e.g. the up-scaling part of DNN model) on using the received intermediate data and video stream to produce a high-quality video for rendering.
The main scenario in this use case is about streaming intermediate data from the network for processing on the UE, involving AI/ML data distribution and operation splitting.
This use case covers all scenarios where intermediate data stream needs to be sent to the receiver, in addition to a low-resolution video.
[bookmark: _Toc138769591]4.2.3.1.2	Neural network based post-processing for video coding
A neural network (NN) applies post-processing to a decoded video sequence to enhance the quality of the decoded frames. The post-processing is performed outside the coding loop and does not impact the decoding process of the video. Possible post-processing algorithms include:
-	Post-filtering: where the output of the video decoder is provided as input to a NN to improve the quality of the decoded frames. Such improvements include removal of video coding artifacts, subjective quality enhancement, etc.
-	Super resolution: where a NN is used to increase the resolution of the output video sequence when the resolution of the display is greater than the resolution of the decoded frames. The use of NN-based approaches in super resolution resampling process increases the quality of the resulting resampled frames.
-	NN-based HDR enhancement: a NN is applied for example to enhance a SDR video into an HDR-looking video.
In contrast to 4.2.3.1.1, this approach does not use an intermediate data stream.
[image:]
Figure 4.2.3-2: Neural network based post-processing for video coding use-case
Figure 4.2.3-2 depicts a neural-network-based post-processing use-case where pre-trained NN models are used at the receiver to post-process the decoded video to improve the quality. The video encoder processes the input video source to produce and send content-related metadata to the receiver, based on video/image or block, for example. The content-related metadata can be used to select a pre-trained NN model to be applied to a piece of content and to activate or not the selected NN model on it.
[bookmark: _Toc138769592]4.2.4	Crowd-sourcing media capture
[bookmark: _Toc138769593]4.2.4.1	Introduction
This use case and its corresponding scenarios are based on clause 6.2 of TR 22.874 [aa]. A set of users attending a live concert and capturing the event on their UEs, use a shared (or a set of shared) DNN model(s) to process and improve their respective captured video and/or audio. Audio and video data may be captured in a noisy environment or an environment with poor lighting conditions. Multiple tasks may then be performed on the processed video and/or audio for media content analysis, e.g. to extract lyrics, annotate the video, improve audio and video quality, translate language, anonymize a face, etc.
This use case involves two different scenarios based on either a device inference or a network inference.
[bookmark: _Toc138769594]4.2.4.2	Device inference
The main scenario is to improve the media capture of each UE by using an up-to-date model adapted to the context event.
This scenario may involve the distribution of multiple models to a large number of UEs in a short period of time. The UEs are heterogeneous, running with different types of operating systems (e.g., Android or iOS), supporting different AI/ML engines/frameworks or having different GPU/CPU/NPU and RAM capabilities available for running the AI/ML service on the UE. This will need the distribution of a huge amount of various AI/ML models adapted to the different device capabilities. Depending on each user’s UE, the UE may request the download of a set of DNN models for device inference.
Moving or changing the environment (localization, energy, processing unit, memory, etc.) may need AI/ML model updates, where the DNN models stored in the network may be adapted or updated during the service.
The AI/ML application may optimize the end-to-end latency (e.g., to achieve latency below 1s) or the expected accuracy level of the inference result (e.g., to achieve image recognition precision of 99%) by modifying the model. The desired latency and/or accuracy level can therefore impact the size of the AI/ML model to be distributed. This can be done by:
-	optimizing the model accuracy and latency for on-device execution. The model accuracy and execution latency are known, and the optimization may result in bandwidth saving.
-	compressing the model for reducing the bandwidth usage and improving the delivery latency. This may affect the accuracy of the model.
If an uncompressed model is sent, accuracy is not affected but delivery latency would depend on the size of the model and the network bandwidth.
The distribution of the AI/ML models for a large number of UEs at the same time may also need to serve the models from different endpoints (e.g., cloud, edge, or other UEs), and may use several or different communication links (e.g. unicast, multicast or broadcast).
[bookmark: _Toc138769595]4.2.4.3	Network inference
The main scenario may be the sharing of the input media from multiple sources for network inference, as well as the selection of suitable DNN models according to the UE and/or task.
This scenario requests the UE to upload the media data for network inference. Similarly, to the UE inference, DNN models stored in the network may be adapted or updated during the service for network inferences.
[bookmark: _Toc138769596]4.2.5	Natural Language Processing (NLP) on speech
Based on clause 6.3 of TR 22.874 [aa], this set of use cases covers a wide range of speech processing use cases, e.g. to perform automatic speech recognition, voice translation, voice commands, speech synthesis, etc.
The AI/ML models for NLP are improved with distributed/federated training using multiple UEs. As more users make use of the service, the quality and accuracy of the models improves. The results of the local training of the models by the UEs are shared with the network.
The main scenario here is about UE downloading a partially trained model identified with its training state for local training, and then sharing the results with the network for distributed/federated learning.
[bookmark: _Toc138769597]4.3	Related work
[Editor’s note: list the AI/ML-related activities in 3GPP and elsewhere, e.g. MPEG…].
[bookmark: _Toc138769598]5	Media service architecture for AI/ML
[bookmark: _Toc138769599]5.1	AI/ML Split configurations
[bookmark: _Toc138769600]5.1.1	AI/ML model composition
An AI/ML model may be splittable, meaning that it may be theoretically represented by several sub-models separated by split points as illustrated for a fully connected artificial neural network (ANN) example in figure 5.1.1-1.
[image:]
Figure 5.1.1-1: AI/ML model composition examples with a fully connected ANN
In a general case, illustrated in figure 5.1.1-2, several compositions of the same AI/ML model are represented by the AI/ML subsets (M0, M1), (M’0, M’1), or (M “0, M “1, M “2) with split points highlighted in red. The same AI/ML sub-model may be used in different compositions depending on the configurations of the model composition (e.g. M’0 and M”0 according to figure 5.1-1).
In figure 5.1.1-2, (a) and (b) are examples of AI/ML inference endpoints running an AI/ML model composed of two sub-models M0 and M1.
Examples (c) and (d) demonstrate AI/ML split models where M0, M’0 run on the UE while M1, M1’ run on the network respectively.
[image:]
Figure 5.1.1-2: General AI/ML model composition examples
In this document the following working assumptions are made:
-	Each sub-model describes a unique part of the inference process.
-	The combination of the inference of all sub-models is equivalent to the inference of the entire AI/ML model.
-	Several split points, identifying the frontier between AI/ML sub-models, may be identified within an AI/ML model.
-	Those split points are predefined and may be selected or re-selected dynamically to adapt to the changing conditions.
-	In this report, only service configurations limited to one split-point (i.e., only two sub-models) are addressed in this report.
NOTE:	Service configurations addressing more than 2 AI/ML sub-models are for further study.
[bookmark: _Toc138769601]5.1.2	Topologies of split AI/ML inference
[bookmark: _Toc138769602]5.1.2.1	Introduction
In the context of split AI/ML models, for which one AI/ML sub-model is run in the UE and the other sub-model in the network, there may be different orders of operations and consequently different media flows depending on where the process is initiated and where the media source to be processed is.
This clause introduces the different topologies of AI/ML split operations with the media source being in the UE (Clause 5.1.2.2) and in the network (Clause 5.1.2.3).
[bookmark: _Toc138769603]5.1.2.2	UE as the media source
In this scenario, the media data to be processed by the AI/ML model is in the UE. 2 cases distinguished:
-	The first AI/ML sub-model runs a partial inference in the UE. The intermedia data is then sent to the network and used by the second AI/ML sub-model that completes the inference process. The result is finally sent back to the UE. The configuration is illustrated in figure 5.1.2-1.
-	The media source is sent to the network where the first AI/ML sub-model runs a partial inference. The intermediate data is then sent to the UE and used locally by the second AI/ML sub-model that completes the inference process. The result of the inference is available directly in the UE. This configuration is illustrated in figure 5.1.2-2.
[image:]
Figure 5.1.2-1: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the UE

[image: D:\2022\3GPP\SA4\120\To submit\Final\image001.png]
Figure 5.1.2-2: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the network
[bookmark: _Toc138769604]5.1.2.3	Network as the media source
In this scenario, the media data to be processed by the AI/ML model is in the network. There, the first AI/ML sub-model runs a partial inference. The intermediate data is sent to the UE that already has the second AI/ML sub-model available. This second AI/ML sub-model uses the intermediate data to complete the inference process. The result of the inference is available directly in the UE. This configuration is illustrated in figure 5.1.2-3.
[image:]
Figure 5.1.2-3: Split AI/ML Model inference where the network is the media source
[bookmark: _Toc138769605]5.2	Architectures and service flows
[bookmark: _Toc138769606]5.2.1	Introduction
Considering the related use cases as documented in TR 22.874 [aa] and also in clause 4.2, basic architectures and corresponding workflows for each scenario are presented in this clause.
The basic scenarios are:
1)	Delivery of a pre-trained AI/ML model from network to UE, typically at the start of an AI media service, but may also require updates during the service. At the most basic level AI/ML models can be delivered as a file (e.g. TensorFlow SavedModel, PDF5, ONNX file, NNEF file etc.) containing all the necessary information required for the UE to perform on device inference using the delivered model. For split scenarios, a (partial) AI model to be used in the UE may be delivered.
2)	Split inference of a pre-trained AI/ML model(s) with two further sub-scenarios:
a)	Basic scenario with an inference in the network or in the UE.
b)	Split scenario with inferences between the network and the UE, where the intermediate data output from the network inference (resp. UE inference) is transferred to the UE (resp. network) to be used as the input for UE device inference (resp. network inference). Depending on the characteristics of the intermediate data, such as if the intermediate data is media content data, it may be practical to consider 5GMS architectures, procedures and/or protocols for the streaming delivery of such intermediate media data.
3)	Distributed/federated learning using multiple UE devices with local training sets, and a central server in the network. Typically a central model is distributed to UEs for local training. UEs use local data available to the device for local training, and training result updates are sent back to the central server, which aggregates and updates the central model. Global updates on the central model are then distributed to the UE devices for continuous training.
NOTE:	Compression aspects will be addressed once the digital representation of AI/ML models will be identified together with their associated service requirements (eg. traffic flow characteristics, latency, bitrate…).
[bookmark: _Toc138769607]5.2.2	Complete/basic AI/ML model distribution
[bookmark: _Toc138769608]5.2.2.1	Basic architectures
[image: Une image contenant texte, diagramme, logiciel, Police

Description générée automatiquement]
Figure 5.2.2-1: Basic architecture for AI/ML model delivery with inference in the UE
Figure 5.2.2-1 shows a simple basic architecture for AI/ML model delivery, as described in scenario 1) of clause 5.2.1, with an inference of a pre-trained AI/ML model in the UE, as described in scenario 2a) of clause 5.2.1.
In the network:
-	An AI model in the repository is selected for the AI media service by the network application, and sent to the delivery function for delivery to the UE. Selection of an AI model could depend on UE and network characteristics, such as the memory and CPU capability/availability, as well as current network load and performance status.
-	The AI model delivery function sends the AI model data to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of AI model data.
In the UE:
-	A UE application provides an AI media service using the AI model inference engine and AI model access function.
-	The AI model access function receives the AI model data via the 5G system, and sends it to the AI model inference engine. Receiver side optimization or decompression techniques for AI model data may be included.
-	The AI model inference engine performs inference by using the input data from the data source (e.g. a camera, or other media source) as the input into the AI model received from the AI model access function. The inference output data is sent to the data destination (e.g. a media player).
Depending on the exact service scenario, AI model updates may be necessary during the service, and different AI model data delivery pipelines may be considered for such purposes. An AI model update may consist of a change in the AI model structure without disrupting the AI media service. If the AI model has requirements on UE memory, processing/computing capabilities or if running the AI model will increase the UE’s power consumption dramatically which will also influence the user experience of other services, it may actively request the update of the AI Model. For example, when the memory usage of the UE processing the AI Model exceeds a certain threshold, or if UE performance deteriorates, the UE can actively send a request to the network for an AI Model update. Alternatively, the network may also trigger the AI model update itself, where an interaction between the UE and network side might be needed to help the network collect current UE status information, e.g. Memory, CPU, current load, terminal location, current power consumption, current battery storage, etc.
[bookmark: _Toc138769609]5.2.2.2	Basic workflows
Figure 5.2.2-2 shows a basic workflow for AI/ML model delivery with inference in the UE. Steps for the procedures shown are described below.
[image: Une image contenant texte, reçu, ligne, diagramme

Description générée automatiquement]
Figure 5.2.2-2: Basic workflow for AI/ML model delivery with inference in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable AI/ML model for the service.
1.	The UE Application and Network Application communicate to trigger AI model delivery, using the information from the initialization and establishment step.
2.	An AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected AI model in the AI model Repository/Provider.
4.	The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.
5.	The AI Model Access Function receives the AI model.
6.	The AI Model Access Function passes the AI/ML model to the AI model Inference Engine in the UE.
7.	The Data Source passes media data to the AI model Inference Engine.
8.	The AI Model Inference Engine performs AI inferencing.
9.	The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.
[bookmark: _Toc138769610]5.2.2	Split AI/ML operation
[bookmark: _Toc138769611]5.2.3.1	Basic architectures
[image: Une image contenant texte, diagramme, logiciel, capture d’écran

Description générée automatiquement]
Figure 5.2.3-1: Basic architecture for split inference between the network and UE, with media data source in the network or from the UE via the network
Figure 5.2.3-1 shows a simple basic architecture for split inferences between the network and the UE, as described in scenario 2b) of clause 5.2.1, where the media data source comes from the network, or from the network via the UE. The first part of the AI model is executed on the network side and the second part on the UE.
For the split inference (network-UE) scenario, additional components are required:
In the network:
-	An AI model inference engine that receives both the network AI model subset(s), and input data, for network inference. The input data may come from the UE through the network.An intermediate data delivery function receives the partial inference output (intermediate data) from the network inference engine, and sends it to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of intermediate data.
In the UE:
-	An intermediate data access function receives the intermediate data from the network via the 5GS, and sends it to the UE inference engine for UE inference. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply the corresponding reconstruction or decompression techniques.
-	The final inference output data is sent to the data destination (e.g. a media player).
[image: Une image contenant texte, capture d’écran, diagramme, Police

Description générée automatiquement]
Figure 5.2.3-2: Basic architecture for split inference between the UE and network, with media data source in the UE
Figure 5.2.3-2 shows a basic architecture for split inferences between the UE and the network, as described in scenario 2b) of clause 5.2, where the media data source originates from the UE, the first part of the inference is performed in the UE, the second part in the network. The resulting output data is finally sent back to the UE.
For the split inference (UE - network) scenario, additional components are required:
In the UE:
-	An AI model inference engine that receives both the network AI model subset(s), and input data (from a UE data source), for UE inference.
-	An intermediate data delivery function receives the partial inference output (intermediate data) from the UE inference engine, and sends it to the network via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
-	An inference output access function receives the inference output data from the network via the 5GS, and sends it to the relevant data destination according to the AI media service.
In the network:
-	An intermediate data access function receives the intermediate data from the UE via the 5GS, and sends it to network inference engine for network inference. If the intermediate data delivery function applies optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
-	The final inference output data is sent to the UE via the 5GS, through the inference output delivery function.
For both split inference scenarios, extra factors may be considered, including those such as:
-	Configuration of the split inference between the network and UE. (e.g. definition and selection of the AI/ML model composition into “UE AI model subset” and “network AI model subset”)
-	Resource allocation and management for network inference, including ingestion of network AI model data and media data
-	Intermediate data delivery pipelines between the network and UE, in particular considering the use of 5GMS defined pipelines to stream intermediate data that is media content data.
-	The functionalities of certain components in figure 5.2.1-1 and figure 5.2.2-1 may overlap, and depending on the use case a combined architecture may also be considered FFS.
-	Certain components may also overlap with functions defined in 5GMS, clarifications FFS.
[bookmark: _Toc138769612]5.2.3.2	Basic workflows
Figure 5.2.3-3 shows a basic workflow for split inference between the network and UE, with media data source in the network. Steps for the procedures shown are described below.
[image: Une image contenant texte, reçu, ligne

Description générée automatiquement]
Figure 5.2.3-3: Basic workflow for split inference between the network and UE, with media data source in the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1.	The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2.	A split AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4.	The AI Model Inference Engine in the network receives the network AI model subset.
5.	The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6.	The AI Model Access Function receives the UE AI model subset.
7.	In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8.	In the network, the Data Source passes media data to the AI model Inference Engine.
9.	The network AI model Inference Engine performs network AI inferencing.
10.	The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11.	In the UE, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12.	The AI Model Inference Engine in the UE performs AI inferencing.
13.	The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.
Figure 5.2.3-4 shows a basic workflow for split inference between the UE and network, with media data source in the UE.
[image: Une image contenant texte, reçu, ligne, nombre

Description générée automatiquement]
Figure 5.2.3-4: Basic workflow for split inference between the UE and network, with media data source in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1.	The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2.	A split AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4.	The AI Model Inference Engine in the network receives the network AI model subset.
5.	The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6.	The AI Model Access Function receives the UE AI model subset.
7.	In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8.	In the UE, the Data Source passes media data to the AI model Inference Engine.
9.	The UE AI model Inference Engine performs UE AI inferencing.
10.	The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11.	In the network, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12.	In the network, the AI Model Inference Engine performs network AI inferencing.
13.	The UE Data Destination receives the inference output result from the network.
[bookmark: _Toc138769613]5.2.4	Distributed/federated learning
[bookmark: _Toc138769614]5.2.4.1	Basic architecture
 [image: Une image contenant texte, capture d’écran, diagramme, Plan

Description générée automatiquement]
Figure 5.2.4-1: Basic architecture for distributed/federated learning between the network and multiple UEs
Figure 5.2.4-1 shows a simple basic architecture for distributed/federated learning between the network and UE(s), as described in scenario 3) of clause 5.2.1.
In the network:
-	A federated learning engine receives a partially trained model from the AI model repository, that is passed to the AI model delivery function for delivery to multiple UEs via the 5GS.
-	Training results data from multiple UEs is also received by the federated learning engine via the 5GS, which is then aggregated for the continuous training of the global model.
-	Updates to the global model (e.g. in terms of topology or weights) are delivered to the UEs during the learning process.
In the UE(s):
-	AI model data is received by an AI model access function via the 5GS, which then passes the data to the AI training engine.
-	An AI training engine in the UE trains the AI model using local device data as the training input.
-	Training results (e.g. in the form of updated weights) are delivered to the network via the training results delivery function.
[bookmark: _Toc138769615]5.2.4.2	Basic workflows
Figure 5.2.4-2 shows a basic workflow for distributed/federated learning with training in the UE, the results of which are aggregated in the network. Steps for the procedures shown are described below.

Figure 5.2.4-2: Basic workflow for distributed/federated learning between a UE and the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable partially trained AI/ML model for the service.
1.	The UE Application and Network Application communicate to trigger distributed/federated learning, using the information from the initialization and establishment step.
2.	A partially trained AI model is selected between the UE Application and Network Application.
3.	The Network Application identifies the selected partially trained AI model in the AI model Repository/Provider.
4.	The Federated Learning Engine optionally announces the eligibility criteria for participating in the federated evaluation/learning to the device. The criteria could contain various information such as the device's operating system, processor speed, available memory, characteristics of the data library, geographical location of the device, language setting, and other attributes.
5.	The AI Model Access Function of an eligible device receives the partially trained AI model or its updated version
6.	The Federated Learning Engine optionally announces the failure reporting criteria for the participating devices.
Option A: Model evaluation:
7.	The Federated Learning Engine requests the UE to start the model evaluation. The evaluation mechanism and criteria are defined by the Federated learning Engine.
Note: Whether a user wants its device to participate in the evaluation, depends on the business agreement between the user and the network.
8.	The Data Source passes the training input data to the AI model Training Engine.
9.	The AI Model Training Engine performs the evaluation.
10.	The evaluation results (or the failure information, in the case of a failure) are delivered to the Federated Learning Engine.
11.	Optionally, the device eligibility criteria may get updated depending on the evaluation results.
Option B: Federated training:
12.	The Federated Learning Engine requests the UE to start the training.
Note: Whether a user wants its device to participate in the training, depends on the business agreement between the user and the network.
13.	The Data Source passes the training input data to the AI model Training Engine.
14.	The AI Model Training Engine performs the retraining of the model.
15.	The updated model (or the failure information, in the case of a failure) is delivered to the Federated Learning Engine.
16.	The Federated Learning Engine performs training aggregation of training results from multiple UEs and updates the partially trained AI model.
17.	The updated partially trained AI model is delivered to the UE as from step 5.
Note: As shown in the above call flow, the model evaluation and the federated learning may also occur in a sequence.
[bookmark: _Toc138769616]5.3	Architecture for AI data delivery
[bookmark: _Toc138769617]5.3.1	AI data components
AI-related user plane data includes:
-	AI model data, including data describing the topology/structure of the AI model, data related to the data nodes of the model, i.e. tensors, and other data which may be dependent on the format used for the AI/Ml model.
-	Intermediate data, defined as the output data from the inference process of an AI/Ml model that is not considered the final inference result (depending on the service and output layer of the split AI model, certain intermediate data may have media characteristics, or even be media data). Intermediate data is typically required to be delivered to a second device or entity, as the input to a subsequent second split inference.
-	Inference output data, which is the data corresponding to the output result of the final AI inference process for the service. Depending on the nature of the AI data inferencing for the given AI data service, this inference output data may include: labels for identifying recognition like tasks from media, actual media data such as video and/or audio, or perhaps XR related data such as 3D models.
[bookmark: _Toc138769618]5.3.2	Media-related AI data logical functions
The identified User plane logical functions supporting the scenarios include:
-	AI data delivery function
-	AI data access function
-	AI model inference engine
For split AI/ML, control plane functions in both the UE and network are needed for configuration, capability exchange and reporting:
-	AI capability manager
[bookmark: _Toc138769619]5.3.3	Architecture for AI data delivery over 5G

Figure 5.3.3-1 AI data delivery general architecture
An architecture for AI data delivery over 5GS is shown in figure 5.3.3-1. Depending on the service scenario and/or use case, certain dedicated AI/ML logical subfunctions may be mapped to, or instantiated by 5GMS functions.
The 5G AI data delivery system shown in figure 5.3.3-1 includes the following main functional blocks:
-	5G AI Client running on the UE contains two subfunctions:
-	AI data Session Handler: A function on the UE that communicates with the network side 5G AI Application Function (AF) to establish and control the configuration of an AI data session. The function may include:
-	AI capability manager subfunctions that monitors, shares and/or reports UE capabilities with/to the AI capability manager function of the 5G AI AF. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.
-	AI Data Handler: A function on the UE that communicates with the 5G AI Application Server (AS) and the AI data Handler to establish an AI data delivery session. The function contains:
-	An AI inference engine, which has the capability to perform the inferencing of received (split) AI models.
-	An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data including
-	download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets from local files or over the network (e.g., by streaming or downloading the model from a remote server). The inference engine may comprise format decapsulation and model decoding functions as well as a runtime engine that executes the model from the memory.
-	Access/deliver intermediate data when a inference is split between the UE and the network.
-	Encode data to deliver with serialization and/or compression technique or conversely decode the received data with deserialization or decompression technique.
-	5G AI-Aware Application: An external function controlled by the external 5G AI application provider implementing the AI/ML application logic, which includes triggering the delivery of an AI model to the inference engine and obtaining inference results from the inference engine.
-	5G AI AS(Application Server): An Application Server that hosts 5G AI data functions. It includes
-	An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data as described above.
-	An AI inference engine, which has the capability to perform the inferencing of (split) AI models.
-	5G AI AF(Application Function): An Application Function that provides various control and configuration functions to the AI Data Session Handler on the UE and/or to the AI Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions via the NEF (Network Exposure Function). The Application function can include for example:
-	AI capability manager subfunctions monitors, shares and/or reports Network capabilities with/to the AI capability manager function of the AI data Session Handler. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.
[bookmark: _Toc138769620]5.3.4	Procedure for Split AI/ML operation
Figure 5.3.4-1 shows a procedure for split AI/ML operation, including three main parts:
-	AI split inference management, and
-	AI data delivery session
-	Split inference processing
 [image:]
Figure 5.3.4-1: Procedures for split AI/ML operation
1.	Service provisioning and announcement of AI data service on the network side, in particular between the 5GAI AF (application function) and the 5GAI application provider.
2.	Service access information acquisition. During this step, the available or required AI model(s) for the service can be made known to the UE, by means of information made available via a URL link pointing to a file or manifest which may list such available AI models. Such additional information may contain AI model specific information, such as the structure, the size, complexity and latency requirements of the AI model.
AI split inference management:
3.	Discovering AI data inferencing capabilities and functions in both the UE and network. In this step, the AI capability manger functions in the UE and in the network may use its capabilities to calculate the range of inference latencies for the AI model to be used for the split AI/ML inference service
4.	Requesting AI split inference. Either the UE or the network requests the other side for an AI split inference service. If information describing the AI model was not made known via the service access information in step 2, then such information may also shared during this step.
5.	Negotiate splitting the AI inference process. A split point is negotiated between the UE and the network, using information from steps 2, 3 and 4, in order to satisfy the service, capability and AI model inference latency requirements. The decision of whether the split point is static or whether it can be updated dynamically during the service may be negotiated. Related metadata may be shared between the network and UE depending on the configuration.
6.	Acknowledge the split and provide the AI data split inferencing access info. In this step, the network (5GAI AF) and UE (AI data session handler) both acknowledge the decided split point, and access information for the AI data is provided to the UE.
7.	The split configuration outcome is notified to the 5GAI-aware application.
AI data delivery session
8.	Request the start of AI data delivery. On confirmation, the application triggers the 5GAI client to request the start of AI data delivery using the AI data access information provided in step 7.
9.	The 5GAI client request the AI data to be deliver from the 5GAI AS.
10.	Pipelines for the delivery of AI model data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, or download delivery (such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.
11.	Start inference process in the UE. In this step, the 5GAI client triggers the inference process (the AI inference engine function), namely the UE side of the split inferencing as decided by the result of step 5.
12.	Start inference process in the server. In this step, the 5GAI AF triggers the inference process in the 5GAI AS (the AI inference engine function), namely the network side of the split inferencing as decided by the result of step 5.
13.	Pipelines for the delivery of intermediate data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.
Split inference processing
14.	The split inference runs between the UE and the network. Depending on the specific split inference scenario, the UE and the network may deliver and/or access Intermediate data, Inference output data and/or metadata using the pipelines defined in the AI data delivery session.
Session reporting and update
15.	The AI Data Session Handler may collect and send status reports regarding the UE’s AI media service status (for example AI inference status, latency, resource status, capability status, dynamic media properties etc.) to the 5GAI AF.
16.	The 5GAI AS may send status reports regarding the network’s AI media service status to the 5GAI AF.
17.	The AI Data Session Handler may receive network status, or network AI status reports from the 5GAI AF, as collected in step 16.
18.	The AI Data Session Handler may receive media status reports either from the network or internally from the UE.
19.	Depending on the configurations negotiated in step 5, as well as related information from the status reports in steps 16, 17 and 18, updates of the AI model selection, split point configuration or the AI data delivery pipelines for the session may take place between the UE and network.
[bookmark: _Toc138769621]6	Data components for AI/ML-based media services
[bookmark: _Toc138769622]6.1	General
[Editor’s note: Identify and document the data types and possible data formats for the different data components listed.].
[bookmark: _Toc138769623]6.2	Model data
6.2.1 	Model optimization techniques
Trained models consist of a graph representations of neural networks as well as millions of parameters/weights that are learned during the training phase.
Parameter pruning is one of the main techniques to control the size of a neural network model or an update thereof. Pruning works by removing individual weights or complete structures of a pre-trained model. There is a difference between structured and unstructured pruning. In unstructured pruning, the goal is to reduce the number of non-zero weights in a layer while approximately preserving the output of that layer. The assumption behind this technique is that only a small subset of the weights is dominant and impacts the performance of the model. The rest of the weights may potentially be ignored/removed. The technique starts by assigning a saliency score to each parameter and then removes the weights with a score below a certain threshold. The resulting network may require retraining to regain the original accuracy. However, this type of technique introduces unstructured sparsity into the neural network, but the resulting tensors of parameters have the same size and shape. The receiver may require special inference hardware or some pre-processing to reduce the inference computational complexity.
In structured pruning, the model graph is altered by completely removing certain structures such as neurons and filters. This may be done by assigning an importance score to each neuron/filter based on the current weight or based on inference data. The neurons/filters with a score below a threshold are removed. Compared to unstructured pruning, this approach does not introduce sparsity but may not yield the same compression results.
Low-rank decomposition is another technique to reduce the size of a model. In low-rank decompression, a tensor, representing the weights of a layer in the DNN, is replaced by a product of two lower-rank tensors in which reduces the number of element-wise multiplications potentially without sensibly altering the performance, providing a proper choice of rank. This technique can both speed up the inference and results in compression gains. Algorithms such as the Singular Value Decomposition (SVD) may be used to obtain the tensors corresponding to any desired rank.
Quantization is another compression technique. It consists of decreasing the precision of the parameters of a model, thus reducing the required memory footprint. The parameters are mapped from a larger space of values into a smaller one, a concept widely used in image and video compression. Better performing quantization techniques may be context aware and operate in a non-linear manner to approximate the distribution of the weight values. Knowledge about the used quantization scale will be required to perform inverse quantization and recover the original weights. If non-linear quantization is used, the technique becomes non-transparent. The resulting parameters may further be losslessly entropy coded, e.g. using Huffman coding.
Knowledge distillation takes a different approach to reducing model size. The goal is to transfer knowledge from a trained network into a smaller model for inference. During the distillation process, the smaller model learns to mimic the output of the larger trained model by minimizing a loss function that takes into account both the hard output values and the soft values (i.e. prior to filter application). Knowledge distillation techniques have in several cases surpassed the accuracy of the original model.
The compression levels achieved by these techniques can be controlled to provide a set or "family" of adaptive trained models which perform the same task but meet different constraints (e.g., memory footprint, latency and/or computational cost). Furthermore, by minimizing the difference between the models during training, the family can be optimized to reduce its memory footprint or the transmission cost of model changes. Examples of such approaches include:
· Pruned models, where each neural network of the family (except the largest one) contains a subset of the neurons of the previous network in the ordered family
· Quantized models, where the family contains neural networks with increasing quantization level of the parameters.
· Early-exit models, where the neural network contains exit points before reaching the final output that generate intermediate predictions/results.
Most of the aforementioned techniques are sender-only techniques that do not require processing on the receiver side. The burden is on the creator of the model to apply these techniques to produce a more compact representation of the model. Some techniques may require processing at the receiver side. The complexity of that processing and the amount of information required to recover the model may vary by technique.
6.2.2	Model update requirements and constraints
6.2.2.1	Evolving requirements and environment conditions after model selection
Use-cases and different workflows delivery comprises the selection and the distribution of adapted trained models or model subsets to the UE for performing AI inference. An offline supervised learning can provide a set of trained models adapted for the UE to environment conditions regarding a UE service requirement. Environment conditions in clause 4.1 or clause 4.3.1 describes different sets of conditions including UE capabilities and network limitations. The UE and the network share these environment parameters to select the trained model that fits best the current conditions to meet the requirements. The selection may depend for example on the current UE capabilities such as the available memory, the current power consumption, the current battery storage, the current computing power, as well as on the current network conditions such as the network load, the available or the allocated bandwidth to the UE. This may also depend on the service requirements, or on the user preferences on the expected quality of result and on the maximum UE resources such as the energy, memory, computing power for running the AI/ML service.
During the inference stage, environment conditions as listed above may change to such an extent that the selected trained model e.g., DNNs will no longer be appropriate or not optimal to meet the requirements. This will lead to a degraded QoE for the end user. This highlights the need for model updates to meet the new environment conditions.
6.2.2.2	Model accuracy deviation between the training phase and the delivery phase.
The discrepancy between the data seen during training and data used at the time of inference can lead to a decrease in accuracy performance. The actual accuracy of the system may vary depending on the current input data, environment, and context. Updates to the trained models are necessary to continue to meet the accuracy requirements.
6.2.2.3	Applying inference on evolving characteristics of the input media content
The model to be applied can be adapted to the entire media content or sequence thereof, or to a spatial or temporal partition of an input media content, for example to a group of frames, frame slices, frame blocks. The model and/or model parameters such as biases and weights may be updated to adapt to the characteristics of the processed part of the content. The characteristics can relate to the resolution, light e.g., the noise introduced by the camera, content in dark areas, the type of scene. They can also relate to the current demand by the algorithm or the user in terms of expected accuracy or subjective quality of the produced content.
6.2.3 	Model serialization
In computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g., files in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment).
The process of saving an AI/ML model to use it later is called serialization. After transmitting or storing the serialized data, it is possible to reconstruct the model later and obtain the exact same structure/object.
6.2.4	Classes of AI/ML models
6.2.4.1	Introduction
Depending on the training method selected, AI/ML models can operate various types of operations as depicted in the figure 6.2.4-1 below:
Decision making
Clustering
Regression
Classification
Supervised learning
Unsupervised learning
Reinforcement learning
Machine Learning types

Figure 6.2.4-1: Main classes of AI/ML models
6.2.4.2	Supervised learning
As explained in [bb] supervised learning accounts for a lot of research activity in machine learning and many supervised learning techniques have found application in the processing of multimedia content. The defining characteristic of supervised learning is the availability of annotated training data. The name invokes the idea of a ‘supervisor’ that instructs the learning system on the labels to associate with training examples. Typically, these labels are class labels in classification problems. Supervised learning algorithms induce models from these training data and these models can be used to classify other unlabelled data. The analysis of supervised learning can be seen as the theory of risk minimization. Vector machines and nearest neighbour classifiers are probably the two most popular supervised learning techniques employed in multimedia research.
6.2.4.3	Unsupervised learning
The goal of unsupervised learning is to find the underlying structure of dataset, group that data according to similarities, and represent that dataset in a compressed format. Unsupervised learning is important in the processing of multimedia content as clustering or partitioning of data in the absence of class labels is often a requirement. The absence of class labels in unsupervised learning makes the question of evaluation and cluster quality assessment more complicated than in supervised learning.
6.2.4.4	Reinforcement learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.
Reinforcement learning differs from supervised learning in not needing labelled input/output pairs be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge).
6.2.5	Existing formats for AI/ML models
6.2.5.1	ONNX format
The Open Neural Network Exchange (ONNX) format [2] is an open specification that was developed to facilitate the exchange of machine learning models between different AI frameworks. ONNX consists of the following components:
-	A definition of an extensible computation graph model.
-	Definitions of standard data types.
-	Definitions of built-in operators.
The ONNX format is built around the Protocol Buffers (Protobuf) open-source cross-platform serialization format that was developed initially by Google.
The ONNX Graph is structured as a list of nodes that form an acyclic graph. Each node of the graph represents one of the built-in operators and its attributes. As an example, a node could be a Convolution operation, and its attributes would contain information regarding the padding and stride that must be used. Each edge of the graph represents input or output data tensors. The top-level ONNX construct is a ‘Model.’, and is represented in protocol buffers as the type onnx.ModelProto. It provides metadata that is necessary for the reader to determine if they are able to process the stored model. Each model must explicitly name the operator sets that it relies on for its functionality. Operator sets defines a set of operators and their versions. An operator is identified through its unique operator type (op_type), which is a case-sensitive operator name.
Built-in operators include a large list of widely used operators such as the following:
-	Math operators such as Abs
-	DNN operators such as Conv and LSTM
-	Activation operators such Sigmoid and Relu
-	Pooling operators such as MaxPool
-	Other operators such as error computation and data reformatting operators
The following provides an example of an ONNX model in protobuf format:
	ir_version: 5
producer_name: "skl2onnx"
producer_version: "1.11"
domain: "ai.onnx"
model_version: 0
graph {
 node {
 input: "X"
 output: "Y"
 name: "Pa_Pad"
 op_type: "Pad"
 attribute {
 name: "mode"
 s: "constant"
 type: STRING
 }
 attribute {
 name: "pads"
 ints: 0
 ints: 1
 ints: 0
 ints: 1
 type: INTS
 }
 attribute {
 name: "value"
 f: 1.5
 type: FLOAT
 }
 domain: ""
 }
 name: "OnnxPad"
 input {
 name: "X"
 type {
 tensor_type {
 elem_type: 1
 shape {
 dim {
 }
 dim {
 dim_value: 2
 }
 }
 }
 }
 }
 output {
 name: "Y"
 type {
 tensor_type {
 elem_type: 1
 shape {
 dim {
 }
 dim {
 dim_value: 4
 }
 }
 }
 }
 }
}
opset_import {
 domain: ""
 version: 10
}

6.2.5.2	NNEF format
The Neural Network Exchange Format (NNEF) [3] is a Khronos developed standard that defines a data format for facilitating the exchange of trained network models. The NNEF format enables the encapsulation of both the structure of the neural network model as well as the associated data. NNEF stores the data in structures that are independent of the training environment that was used for training the network, which will facilitate its consumption on any execution platform. NNEF offers itself as an intermediary between deep learning frameworks, which export into NNEF, and neural network accelerator libraries, which will import and compile the NNEF model for hardware-optimized inference.
The NNEF container consists of the following files:
-	a textual file that describes the structure of the neural network
-	a binary data file for each variable tensor. These files are structured hierarchically into sub-folders associated with the corresponding operation. Each tensor may have different representations, each matching a different quantized version.
-	a quantization file that contains details about the quantization algorithm that is used for quantizing the exported tensors.
The NNEF network structure is described through a computational graph. The computational graph is a directed graph. The nodes of the graph may be data nodes or operation nodes. A directed edge from a data node to an operation node indicates the data is input to the operation. A directed edge from an operation node to a data node indicates the data node is an output.
Data nodes are tensors of different ranks and shapes and may be external, constant, variable, or intermediate/regular tensors. external, constant, and variable tensors all provide an explicit declaration of their shapes. Other tensors shapes will be determined based on the input and operation that is applied to them to produce that tensor. This is commonly known as shape propagation.
The NNEF operation nodes may have attributes that describe the exact computation that needs to be performed. Operations may be composed together to produce more compound operations. Primitive operations are operations that cannot be broken down into simpler operations.
The following is an excerpt from an NNEF graph representation of the VGG-16 network model:
	version 1.0;

graph VGG_ILSVRC_16_layers(data) -> (prob)
{
 variable_15 = variable<scalar>(label = 'conv4_1_blob2', shape = [1, 512]);
 variable_14 = variable<scalar>(label = 'conv4_1_blob1', shape = [512, 256, 3, 3]);
 variable_13 = variable<scalar>(label = 'conv3_3_blob2', shape = [1, 256]);
 variable_31 = variable<scalar>(label = 'fc8_blob2', shape = [1, 1000]);
 variable_30 = variable<scalar>(label = 'fc8_blob1', shape = [1000, 4096]);
 variable_29 = variable<scalar>(label = 'fc7_blob2', shape = [1, 4096]);
 variable_28 = variable<scalar>(label = 'fc7_blob1', shape = [4096, 4096]);
 variable_27 = variable<scalar>(label = 'fc6_blob2', shape = [1, 4096]);
 variable_26 = variable<scalar>(label = 'fc6_blob1', shape = [4096, 25088]);
 variable_25 = variable<scalar>(label = 'conv5_3_blob2', shape = [1, 512]);
 variable_24 = variable<scalar>(label = 'conv5_3_blob1', shape = [512, 512, 3, 3]);
 variable_23 = variable<scalar>(label = 'conv5_2_blob2', shape = [1, 512]);
 variable_22 = variable<scalar>(label = 'conv5_2_blob1', shape = [512, 512, 3, 3]);
 variable_21 = variable<scalar>(label = 'conv5_1_blob2', shape = [1, 512]);
 variable_20 = variable<scalar>(label = 'conv5_1_blob1', shape = [512, 512, 3, 3]);
 variable_19 = variable<scalar>(label = 'conv4_3_blob2', shape = [1, 512]);
 variable_18 = variable<scalar>(label = 'conv4_3_blob1', shape = [512, 512, 3, 3]);
 variable_17 = variable<scalar>(label = 'conv4_2_blob2', shape = [1, 512]);
 variable_16 = variable<scalar>(label = 'conv4_2_blob1', shape = [512, 512, 3, 3]);
 variable_12 = variable<scalar>(label = 'conv3_3_blob1', shape = [256, 256, 3, 3]);
 variable_10 = variable<scalar>(label = 'conv3_2_blob1', shape = [256, 256, 3, 3]);
 variable_9 = variable<scalar>(label = 'conv3_1_blob2', shape = [1, 256]);
 variable_8 = variable<scalar>(label = 'conv3_1_blob1', shape = [256, 128, 3, 3]);
 variable_6 = variable<scalar>(label = 'conv2_2_blob1', shape = [128, 128, 3, 3]);
 variable_11 = variable<scalar>(label = 'conv3_2_blob2', shape = [1, 256]);
 variable_5 = variable<scalar>(label = 'conv2_1_blob2', shape = [1, 128]);
 variable_4 = variable<scalar>(label = 'conv2_1_blob1', shape = [128, 64, 3, 3]);
 variable_2 = variable<scalar>(label = 'conv1_2_blob1', shape = [64, 64, 3, 3]);
 variable_1 = variable<scalar>(label = 'conv1_1_blob2', shape = [1, 64]);
 variable_7 = variable<scalar>(label = 'conv2_2_blob2', shape = [1, 128]);
 variable = variable<scalar>(label = 'conv1_1_blob1', shape = [64, 3, 3, 3]);
 variable_3 = variable<scalar>(label = 'conv1_2_blob2', shape = [1, 64]);
 data = external<scalar>(shape = [10, 3, 224, 224]);
 conv = conv(data, variable, variable_1, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu = relu(conv);
 conv_1 = conv(relu, variable_2, variable_3, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_1 = relu(conv_1);
 max_pool = max_pool(relu_1, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_2 = conv(max_pool, variable_4, variable_5, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_2 = relu(conv_2);
 conv_3 = conv(relu_2, variable_6, variable_7, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_3 = relu(conv_3);
 max_pool_1 = max_pool(relu_3, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_4 = conv(max_pool_1, variable_8, variable_9, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_4 = relu(conv_4);
 conv_5 = conv(relu_4, variable_10, variable_11, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_5 = relu(conv_5);
 conv_6 = conv(relu_5, variable_12, variable_13, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_6 = relu(conv_6);
 max_pool_2 = max_pool(relu_6, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_7 = conv(max_pool_2, variable_14, variable_15, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_7 = relu(conv_7);
 conv_8 = conv(relu_7, variable_16, variable_17, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_8 = relu(conv_8);
 conv_9 = conv(relu_8, variable_18, variable_19, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_9 = relu(conv_9);
 max_pool_3 = max_pool(relu_9, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_10 = conv(max_pool_3, variable_20, variable_21, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_10 = relu(conv_10);
 conv_11 = conv(relu_10, variable_22, variable_23, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_11 = relu(conv_11);
 conv_12 = conv(relu_11, variable_24, variable_25, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_12 = relu(conv_12);
 max_pool_4 = max_pool(relu_12, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 reshape = reshape(max_pool_4, shape = [10, -1]);
 linear = linear(reshape, variable_26, variable_27);
 relu_13 = relu(linear);
 linear_1 = linear(relu_13, variable_28, variable_29);
 relu_14 = relu(linear_1);
 linear_2 = linear(relu_14, variable_30, variable_31);
 prob = softmax(linear_2, axes = [1]);
}

6.2.5.3	Neural Network Coding (NNC) format
The Neural Network Coding (NNC) standard [4] has been developed by ISO/IEC for transmission and storage of machine learning models for multimedia description and analysis. It specifies a compressed representation format for neural network data and processes for its decoding. As shown in Figure 6.2.5-1, NNC follows a toolbox approach: It offers a variety of options to represent and code neural network (NN) data, which can be flexibly selected based on the requirements of a particular use case. In particular, NNC defines data structures and syntax elements to support the following:
-	Packaging of NN data of different types in neural network representation (NNR) units for access from a system or application layer.
-	Signaling of metadata related to various methods of pre-processing for data reduction
-	Compression of NN weights/tensor coefficients using quantization and entropy coding
-	Interoperability with other exchange (e.g. NNEF [2], ONNX [3]) or native formats (PyTorch, TensorFlow).
For access from a systems or application layer, NNC packages the NN data in neural network representation (NNR) units. NNR units that can carry different types of NN data: NNR parameter set and NNR layer parameter set units convey metadata and information related to the entire NN and individual NN layers, respectively. NNR topology units contain information on the NN topology, e.g. the connections between layers/tensors. The actual tensor data is conveyed in NNR quantized information and NNR compressed data units. Finally, NNR aggregate units allow to combine several NNR units of different types that are related.
NNC allows to signal metadata related to typical pre-processing and parameter reduction methods in NNR parameter set units or NNR layer parameter set units. More specifically, NNC supports inclusion of parameters related to sparsification, pruning, low-rank decomposition, unification, batch norm folding, and local scaling.
NNC represents the NN weights/tensors in NNR compressed or NNR quantized information data units. Tensor/weight coefficients can be signaled as raw data or quantized with different methods, which are uniform, codebook, or dependent quantization. Furthermore, the quantized coefficients can be binarized and entropy coded using a context adaptive arithmetic coder, called DeepCABAC.
NNC can be used as complement to other native (e.g. PyTorch, TensorFlow) or exchange (e.g. NNEF, ONNX) representation formats. This can be done by two means: First, NNC allows to embed topology information of other formats into an NNR bitstream. More specifically, the byte sequences of other formats can be signaled in NNR topology units, which are then conveyed together with NNR compressed data or NNR quantized information units representing the coded or quantized tensors/weights. Second, NNR units representing coded tensors/weights can be embedded in the containers of other formats. Informative recommendations on how to use NNC in combination with PyTorch, TensorFlow, NNEF, and ONNX are given in the Annexes A to E of the standard [4].
SC29 WG04 is also already working on a second edition of ISO/IEC 15938-17, of which a Draft International Standard (DIS) has been completed. The second edition adds the functionality to compress incremental updates of neural networks, which can e.g. be applied to sending updates of neural networks or to federated learning scenarios.

[image: Une image contenant texte, capture d’écran, Police, logiciel

Description générée automatiquement]
Figure 6.2.5-1: Generation of a neural network representation (NNR) bitstream consisting of NNR units. Tools for pre-processing, parameter reduction, quantization, and entropy coding can be selected based on the complexity and compression requirements of a given use case.
6.3	Existing frameworks for AI/ML
[Ed’s note: add a reference to those solutions]
6.3.1	TensorFlow
6.3.1.1	Introduction
TensorFlow is an open-source platform for creating and deploying machine learning models. It provides a wide range of tools (e.g., mode optimization) and libraries (decision forests, Ranking extensions…) for building and training models, and supports several formats for model distribution, including TensorFlow SavedModel, TensorFlow Lite, and TensorFlow.js. These formats allow models to be easily distributed across different platforms and devices, making it easier to deploy machine learning models in various applications.
6.3.1.2	Tensor
In machine learning, a tensor is a multi-dimensional array of numerical data. A tensor may have any number of dimensions, and each dimension represents a specific feature or attribute of the data. For example, a 1-dimensional tensor usually represents a vector of values, such as a list of numbers, while a 2-dimensional tensor can represent a matrix of values, such as an image.
Tensors are are used to represent the input data and the parameters of the machine learning model. For example, in image recognition, the input data is often represented as a tensor of pixel values, while the parameters of the model, such as the weights and biases, are represented as tensors as well.
Operations applied to tensors can be addition, multiplication, and convolution. These operations are used to perform mathematical computations on the tensors, which are then used to train the machine learning model.
In summary, a tensor is a multi-dimensional array of numerical data that is a fundamental data structure used in many machine learning frameworks. It is used to represent the input data and the parameters of the machine learning model and is manipulated using mathematical operations to train the model.
6.3.1.3	Usage of TensorFlow
The following steps are usually defined:
Definition of the computational graph: In TensorFlow, a machine learning model is represented as a computational graph, which is a series of operations (nodes) that are connected by edges. The nodes represent mathematical operations, such as addition, multiplication, or convolution, and the edges represent the flow of data between the nodes. To define the graph, developers use the TensorFlow API to create nodes and connect them in a specific order.

[bookmark: _Toc138769625]6.4	Media data
[Editor’s note: referring to the media data streaming formats and profiles in 26.512.]
[bookmark: _Toc138769626]6.5	Metadata
[Editor’s note: Metadata may include metadata to describe AI/ML model types, metadata for split operation configurations, AI/ML operation endpoint capability metadata etc.]
6.5.1	Distributed/Federated learning
6.5.1.1	Control information
6.5.1.1.2	General
This clause describes a set of possible control information for managing the training process, synchronization the training rounds, and defining the selection criteria for participating devices, or monitoring the convergence of the training process, in federated learning.
6.5.1.2	Synchronization information
6.5.1.2.1	Definition
Synchronization information may be used to ensure that all devices start the training process simultaneously and progress at the same pace. For example, the server may send a synchronization information to all UEs to start a new round of training.
6.5.1.2.2	Behavior
The network application sends synchronization information to all UE applications to start a new round of training at the same time as described in step 1 of figure 5.2.4-2. The information contains the round number and may also contain a timestamp indicating when the training round should begin.
6.5.1.2.3	Parameters
The possible parameters are:
-	The Round_number indicates the training round in a model training.
-	The Start_time indicates the start time of the training.
-	The Duration indicates the desirable duration of the training. This value just shows an indication of the desirable time for completing the training round.
6.5.1.3	Device eligibility information
6.4.1.3.1	Definition
Device eligibility information may be used to define the criteria for selecting the devices that will participate in the training process. For example, the server may send a device eligibility information to all devices that belong to the defined group by the application.
6.5.1.3.2	Behavior
The Federated learning engine sends a device eligibility information to the AI model training engine to select the devices that meet certain criteria defined by the application as described in step 4 of figure 5.2.4-2. Depending on the number of criteria met, the application assigns a group id to the device. For example, the criteria could contain information about the device's operating system, processor speed, available memory, available image library (number of images…), geographical location of the device, language setting, and other attributes.
6.5.1.3.3	Parameters
The possible parameters are:
-	The Group_id is used to assign a new id for the devices that meet the eligibility criteria of this information. If the device is eligible, it uses this value as one of its group ids and from now on, it reacts to information with the same group id.
-	The Application_group_id, is assigned by the application on the device and if that value is equal to the value of this field, then the device is eligible.
-	The Hardware, Location, and Language parameters define the hardware, location, and language eligibility criteria respectively for the device.
-	The Data_library_id defines the data library an eligible device shall have.
Note: if more than one eligibility field exists, the device needs to meet all criteria to become eligible.
6.5.1.4	Model evaluation information
6.5.1.4.1	Definition
Model evaluation information may be used to evaluate the performance of the global model for each device and make decisions about the training process. After running the learning phase, a device sends a model evaluation information to the server that measures the accuracy of the model. The server can then decide whether to continue training for another round or stop.
Alternatively, this information may be used by the server to request the device to perform an evaluation of a newly downloaded global model.
6.5.1.4.2	Behavior
For Federated learning engine sends the model evaluation information to the AI model training engine in the UE containing the metrics to be used for evaluation such as accuracy or precision as described in step 7 of figure 5.2.4-2.
6.5.1.4.3	Parameters
The possible parameters are:
-	The Round_number shows the round after which the evaluation is performed.
-	The Metric_number shows the number of metrics included in this information body.
-	The Metric is one or more of the Name-Value pairs showing the name of the metric and the corresponding value obtained in the evaluation.
6.5.1.5	Model update information
6.5.1.5.1	Definition
Model update information may be used to update the model parameters on the devices after each round of training. For example, the server may send a model update information to all devices to update the global model with the new model parameters.
Model update information may also be used to update the global model on the server with the new parameters updated by the local training on the device.
6.5.1.5.2	Behavior
The server may send a model update information to all devices to update the AI/ML model with the new model parameters as described in step 5 of figure 5.2.4-2. The information contains the model id of the AI/ML model to be updated, the updated model parameters that the UE will use to train the model in the next round, and the new model id when the parameters are updated.
After running the training locally, each AI Model training Engine in the UEs may send a model update information to the server with the updated parameters as described in step 15 of figure 5.2.4-2. Together with the received model evaluation information, the server can decide if the global model needs to be updated or not. The model update information then only contains the model id of the AI/ML model used for local training and the updated parameters.
6.5.1.5.3	Parameters
The possible parameters are:
-	The Parameters includes the new model vector of values.
-	The New_model_id is the id of the new model when the server sends the model to one or more devices.
6.5.1.6	Failure reporting information
6.5.1.6.1	Definition
Error information may be used to handle unexpected errors or exceptions that may occur during the training process. For example, the server may send an error information to all devices to handle a device failure or network disruption.
6.5.1.6.2	Behavior
The server sends a request to all devices to report a device failure or network disruption as described in step 6 of figure 5.2.4-2. For example, if a device fails to send its model parameters back to the server, the device should notify the server so that the device has been removed from the training process.
The AI Model training engine in the UE sends a failure information to the Federated learning engine in the server if a failure occurs as described in step 15 of figure 5.2.4-2.
6.5.1.6.3	Parameters
The information describes the reason for the failure.
[bookmark: _Toc138769627]7	Traffic characteristics
[bookmark: _Toc138769628]7.1	General
[Editor’s note: Based on the architectures, identify for the relevant data components for each of the scenarios, the corresponding traffic characteristics (burst size, delay/bandwidth/reliability requirements etc.)]
[bookmark: _Toc138769629]7.2	Complete/Basic AI/ML model distribution
[bookmark: _Toc138769630]7.3	Split AI/ML operation
[bookmark: _Toc138769631]7.4	Distributed/federated learning
[bookmark: _Toc138769632]8	KPIs
[bookmark: _Toc138769633]8.1	General
[bookmark: _Toc138769634]8.2	List of KPIs
[Editor’s note: E.g. Latency, data rate, reliability, accuracy…]
[bookmark: _Toc138769635]9	Potential Normative Work

[bookmark: _Toc138769636]10	Conclusion
[bookmark: _Toc138769637]
Annex <A>:
<Informative annex title for a Technical Report>
Informative annexes in Technical Reports do not use "(informative") in the title, since all annexes in TRs are informative. Use style "Heading 9" in TRs.

[bookmark: _Toc138769638][bookmark: historyclause]
Annex <X>:
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-01
	SA4#118e
	S4-220498
	
	
	
	Agreements after SA4#118e (S4-220391: TR skeleton)
	0.1.0

	2022-11
	SA4#121
	S4-221376
	
	
	
	Inclusion of use cases
	0.2.0

	2023-02
	SA4#122
	S4-230378
	
	
	
	Introduction of split models and configurations (S4-230401)
	0.3.0

	2023-02
	SA4#122
	S4-230405
	
	
	
	Update of this Change history table
	0.3.1

	2023-06
	SA4#124
	S4-231043
	
	
	
	Workflow and procedures (S4-230830)
	0.4.0

	2023-11
	SA4#126
	S4-231923
	
	
	
	Model Data (S4-231885), formats (S4-231772), frameworks (S4231884), Federated learning (S4-231886), architecture (S4-231959)
	0.5.0

3GPP
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.wmf
U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

T

r

a

i

n

i

n

g

E

n

g

i

n

e

T

r

a

i

n

i

n

g

R

e

s

u

l

t

s

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

F

e

d

e

r

a

t

e

d

L

e

a

r

n

i

n

g

E

n

g

i

n

e

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

E

s

t

a

b

l

i

s

h

d

i

s

t

r

i

b

u

t

e

d

l

e

a

r

n

i

n

g

s

e

s

s

i

o

n

2

:

S

e

l

e

c

t

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

4

:

A

n

n

o

u

n

c

e

d

e

v

i

c

e

e

l

i

g

i

b

i

l

i

t

y

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

5

:

D

e

l

i

v

e

r

U

E

A

I

m

o

d

e

l

o

r

m

o

d

e

l

u

p

d

a

t

e

D

e

l

i

v

e

r

m

o

d

e

l

6

:

A

n

n

o

u

n

c

e

f

a

i

l

u

r

e

r

e

p

o

r

t

i

n

g

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

7

:

R

e

q

u

e

s

t

a

m

o

d

e

l

e

v

a

l

u

a

t

i

o

n

8

:

T

r

a

i

n

i

n

g

i

n

p

u

t

d

a

t

a

9

:

E

v

a

l

u

a

t

i

o

n

1

0

:

D

e

l

i

v

e

r

e

v

a

l

u

a

t

i

o

n

r

e

s

u

l

t

s

(

o

r

f

a

i

l

u

r

e

m

e

s

s

a

g

e

s

)

O

p

t

i

o

n

A

:

M

o

d

e

l

e

v

a

l

u

a

t

i

o

n

1

1

:

U

p

d

a

t

e

d

e

v

i

c

e

e

l

i

g

i

b

i

l

i

t

y

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

1

2

:

R

e

q

u

e

s

t

a

t

r

a

i

n

i

n

g

1

3

:

T

r

a

i

n

i

n

g

i

n

p

u

t

d

a

t

a

1

4

:

A

I

t

r

a

i

n

i

n

g

1

5

:

D

e

l

i

v

e

r

u

p

d

a

t

e

d

m

o

d

e

l

a

n

d

o

p

t

i

o

n

a

l

l

y

e

v

a

l

u

a

t

i

o

n

r

e

s

u

l

t

s

(

o

r

f

a

i

l

u

r

e

m

e

s

s

a

g

e

s

)

O

p

t

i

o

n

B

:

F

e

d

e

r

a

t

e

d

l

e

a

r

n

i

n

g

1

6

:

T

r

a

i

n

i

n

g

a

g

g

r

e

g

a

t

i

o

n

a

n

d

m

o

d

e

l

u

p

d

a

t

e

1

7

:

U

p

d

a

t

e

d

m

o

d

e

l

f

o

r

d

e

l

i

v

e

r

y

(

l

o

o

p

t

o

s

t

e

p

5

)

U

p

d

a

t

e

f

e

d

e

r

a

t

e

d

m

o

d

e

l

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject1.bin

image18.emf
DNUE5GAI clientAI Data HandlerAI Data Session HandlerAI Inference EngineAI Data Access/Delivery5GAI-Aware Application5GAI Application Provider5GAI AFAI Capability Manager5GAI ASPCFNEF5GAIExternal5GMS Scope5GS ScopeOut of scope5GSAI Inference EngineAI capability managerData encoding/decodingAI Data Access/Delivery5GMSData encoding/decoding

Microsoft_Visio_Drawing.vsdx
DN
UE
5GAI client
AI Data Handler
AI Data Session Handler
AI Inference Engine
AI Data
Access/Delivery
5GAI-Aware Application
5GAI Application Provider
5GAI AF
AI Capability Manager
5GAI AS
PCF
NEF
5GAI
External
5GMS Scope
5GS Scope
Out of scope
5GS
AI Inference Engine
AI capability manager
Data encoding/decoding
AI Data
Access/Delivery
5GMS
Data encoding/decoding

image19.emf

5GAI-Aware
Application

5GAI
Client

AI Data Session
Handler

AI Data
Handler

5GAI AF 5GAI AS 5GAI
Application Provider

1: 5GAI provisioning

2: Service Access Information acquisition

3: AI media capabilities and functions discovery
Capability discovery

4: Request AI split inference

5: Negotiate splitting the AI inference process
Negotiation

6: Acknowledge the split and providing AI data access info

7: Acknowledge the split configuration

8: Request starting
AI data delivery

9: Request starting AI data delivery

5GMS delivery pipelines or other defined data pipelines
10: UE AI Model Delivery Pipelines

11: Create and initialize
UE AI inference runtime

12: Create and initialize
network AI inference runtime

5GMS delivery pipelines or other defined data pipelines
13: Intermediate Data Delivery Pipelines

Split inference between the UE and the network
14: Split inference processing

Split AI Data Session

15: UE AI status reporting

16: Network AI status reporting

17: Network status/network AI status report

18: Media status report

19: Update split configuration &
model delivery pipelines

https://gitlab.com/msc-generator v7.3.1

5GAI-Aware

Application

5GAI

Client

AI Data Session

Handler

AI Data

Handler

5GAI AF5GAI AS5GAI

Application Provider

1: 5GAI provisioning

2: Service Access Information acquisition

3: AI media capabilities and functions discovery

Capability discovery

4: Request AI split inference

5: Negotiate splitting the AI inference process

Negotiation

6: Acknowledge the split and providing AI data access info

7: Acknowledge the split configuration

8: Request starting

AI data delivery

9: Request starting AI data delivery

5GMS delivery pipelines or other defined data pipelines

10: UE AI Model Delivery Pipelines

11: Create and initialize

UE AI inference runtime

12: Create and initialize

network AI inference runtime

5GMS delivery pipelines or other defined data pipelines

13: Intermediate Data Delivery Pipelines

Split inference between the UE and the network

14: Split inference processing

Split AI Data Session

15: UE AI status reporting

16: Network AI status reporting

17: Network status/network AI status report

18: Media status report

19: Update split configuration &

model delivery pipelines

https://gitlab.com/msc-generator v7.3.1

image20.png

image1.png

