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Start of change 1
6.3	Existing frameworks for AI/ML
6.3.1	TensorFlow
6.3.1.1	Introduction
TensorFlow is an open-source platform for creating and deploying machine learning models. It provides a wide range of tools (e.g., mode optimization) and libraries (decision forests, Ranking extensions…) for building and training models, and supports several formats for model distribution, including TensorFlow SavedModel, TensorFlow Lite, and TensorFlow.js. These formats allow models to be easily distributed across different platforms and devices, making it easier to deploy machine learning models in various applications.
6.3.1.2	Tensor
In machine learning, a tensor is a multi-dimensional array of numerical data. A tensor may have any number of dimensions, and each dimension represents a specific feature or attribute of the data. For example, a 1-dimensional tensor usually represents a vector of values, such as a list of numbers, while a 2-dimensional tensor can represent a matrix of values, such as an image.
Tensors are are used to represent the input data and the parameters of the machine learning model. For example, in image recognition, the input data is often represented as a tensor of pixel values, while the parameters of the model, such as the weights and biases, are represented as tensors as well.
Operations applied to tensors can be addition, multiplication, and convolution. These operations are used to perform mathematical computations on the tensors, which are then used to train the machine learning model.
In summary, a tensor is a multi-dimensional array of numerical data that is a fundamental data structure used in many machine learning frameworks. It is used to represent the input data and the parameters of the machine learning model and is manipulated using mathematical operations to train the model.
6.3.1.3	Usage of TensorFlow
The following steps are usually defined:
Definition of the computational graph: In TensorFlow, a machine learning model is represented as a computational graph, which is a series of operations (nodes) that are connected by edges. The nodes represent mathematical operations, such as addition, multiplication, or convolution, and the edges represent the flow of data between the nodes. To define the graph, developers use the TensorFlow API to create nodes and connect them in a specific order.
[image: Un graphique TensorFlow simple]
Figure 6.3.1-1: Tensorflow computaional graph
Source: https://www.tensorflow.org/guide/intro_to_graphs?hl=fr 
TensorFlow graphs may be used in environments that don't have a Python interpreter, like mobile applications, embedded devices, and backend servers.
Variables Initialization: Before running the computational graph, the variables used in the graph need to be initialized. These variables represent the parameters of the machine learning model, such as weights and biases, and are updated during training to improve the model's performance.
Session execution: To execute the computational graph, a TensorFlow session is created. The session runs the graph by feeding input data into the graph and calculating the output. During training, the session updates the variables in the graph based on the loss function and optimization algorithm.
Model serialization: Once the model is trained, it can be saved in various formats for later use, such as TensorFlow SavedModel, TensorFlow Lite, or TensorFlow.js. These formats allow the model to be easily deployed on various platforms and devices, including mobile devices, web browsers, and embedded systems.
NOTE: it is expected to analyze:
· The different distribution AI/ML formats that can be used with the TensorFlow framework. 
· The impacts of the selection of TensorFlow framework in terms of interoperability of the corresponding AI/ML formats.

Model deployment: To deploy the model, the saved model can be loaded into a new TensorFlow session and used to make predictions on new data. This can be done on a single machine, a cluster of machines, or in the cloud.
6.3.2	PyTorch
6.3.2.1	Introduction
PyTorch is based on the concept of tensors, which are multi-dimensional arrays of numerical data. Similarly to TensorFlow, Tensors are a fundamental data structure used in PyTorch to represent the input data and the parameters of the machine learning model. PyTorch provides a range of operations for manipulating tensors, such as addition, multiplication, and convolution.

PyTorch also supports dynamic computation graphs, which allow for more flexibility in building and training machine learning models. This means that the computational graph can be modified on-the-fly during runtime, which makes it easier to build complex models and experiment with different architectures. Additionally, PyTorch provides a high-level API called TorchScript, which allows for models to be exported to a portable format that can be executed on various platforms.
6.3.2.3	PyTorch for model distribution
PyTorch provides several formats for distributing machine learning models, such as PyTorch JIT (Just-In-Time) and TorchScript. PyTorch JIT allows for models to be compiled on-the-fly, which provides performance benefits for large models or when deploying to resource-constrained environments. TorchScript allows for models to be exported to a portable format that can be executed on various platforms, such as mobile devices, web browsers, and embedded systems.
PyTorch also supports ONNX (Open Neural Network Exchange), which is an open format for exchanging machine learning models between different frameworks. ONNX allows for models to be trained in PyTorch and then exported to be executed in other frameworks, such as TensorFlow or Caffe2
6.3.2.3	Main differences with TensorFlow
Computational graph: TensorFlow uses a static computational graph, which means that the graph is defined and compiled before the training begins. On the other hand, PyTorch uses a dynamic computational graph, which allows for more flexibility in building and modifying the graph during runtime.
Ease of use: PyTorch is generally considered to be more user-friendly and simpler than TensorFlow. This is partly due to its dynamic computational graph, which makes it easier to experiment with different models and architectures. PyTorch also has a more Python-like syntax, which is familiar to many developers.
Visualization: TensorFlow provides a comprehensive visualization tools, which allows users to monitor the training progress and visualize the model's performance. PyTorch does not have a built-in visualization tool, but there are several third-party libraries available, such as PyTorch Lightning and Visdom.
Ecosystem: TensorFlow has a larger ecosystem than PyTorch, with more resources and community support. TensorFlow also has better support for deploying models on mobile devices and in production environments. However, PyTorch has been gaining popularity in recent years and has a growing ecosystem.
Research: PyTorch is more popular in the research community, as it allows for faster prototyping and experimentation due to its dynamic computational graph. TensorFlow is more commonly used in industry for production-level applications due to its static graph and better support for deployment.
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