Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk54879034]3GPP TSG SA WG 4 meeting #124	S4-230877
22nd - 26th May, 2023, Berlin, Germany	

Source: 	Nokia Corporation[footnoteRef:2], Philips, Interdigital Communications [2: Contact: Saba Ahsan, Lukasz Kondrad, Igor Curcio, Nokia Technologies, Finland. Emails: ífirstname.lastnameý@nokia.com]

Title: 	[MeCAR] V3C MIV use cases
Document for	Agreement
Agenda item: 	9.5
Introduction
The permanent document S4-230738 version 7.0.0 contains a use case for delivery of depth or transparency information using auxiliary pictures. In case of HEVC codec the concept of auxiliary pictures is defined in Annex F.
As the auxiliary picture are not supported in HEVC Main and Main 10 profiles as defined in 3GPP, to enable auxiliary pictures in 3GPP UE the group would need to:
· specify new HEVC profile that support auxiliary picture, e.g. Multiview Main profile, or
· specify that decoders shall support independent non-base layer decoding (INBLD) capability in addition to HEVC Main / Main 10 profile.
In this document we present alternative option for device type 3 (XR phone) and device type 4 (XR HMD), where depth and transparency can be provided to 3GPP UE utilizing the existing 3GPP HEVC codec profiles together with atlas data signalling of V3C MIV profile.
Additionally, the iRTCW permanent document (S4-230652) clause 5.2 contains information on the volumetric video use cases and the details for volumetric video pipeline for real-time communication can be found in clause 5.2.4.1. In this document we present how V3C MIV profile with constraints can be utilized for this purpose.
Discussion
General
[bookmark: _Toc72226407]An input to MIV encoder is one or more views, where the view represents a field of view of a volumetric frame for a particular view position and orientation. Each view, at a given time instance, may be represented by one 2D frame providing geometry information (depth) plus one 2D frame per attribute, providing attribute information (e.g., color and transparency). Occupancy information that may either be embedded within geometry 2D frame or represented explicitly as another 2D frame. The information about how the views were stored in 2D frames and how to interpret is provided in the atlas data.
To ensure that a decoder can properly interpret different bitstreams (e.g., geometry, attribute, atlas), the ISO/IEC 23090-5 specification defines a V3C bitstream format. The V3C bitstream encapsulates encoded V3C video components and V3C atlas components in V3C units. Each V3C unit consists of a V3C unit header and a V3C unit payload pair. The V3C unit header contains information such as atlas ID, component type, map index, attribute index, and a flag indicating if auxiliary data are present. The component type indicates whether the payload contains atlas, geometry, occupancy, or attribute information. V3C bitstreams also contain at least one V3C unit which carries V3C parameter set (VPS) information. In case the component type is attribute the V3C_AVD, the VPS provide information about the attribute type itself by mapping attribute index provided in V3C unit header to ai_attribute_type_id.
[bookmark: _Ref21526765][bookmark: _Ref1759450]Table Y – V3C attribute types as defined in ISO/IEC 23090-5
	ai_attribute_type_id[j][i]
	Identifier
	Attribute type

	0
	ATTR_TEXTURE
	Texture

	1
	ATTR_MATERIAL_ID
	Material ID

	2
	ATTR_TRANSPARENCY
	Transparency

	3
	ATTR_REFLECTANCE
	Reflectance

	4
	ATTR_NORMAL
	Normals

	5..14
	ATTR_RESERVED
	Reserved

	15
	ATTR_UNSPECIFIED
	Unspecified

RGBD
The use case of RGBD discussed in S4-230738 version 7.0.0 is equivalent V3C MIV with only one view (mvp_num_views_minus1 equal to 0). This simplifies the operation of MIV encoder/decoder as no duplication of information between the views need to be examined.
The RGBD use case can be achieved utilizing MIV Main profile with further constraint. The constraint can minimize the number of required video decoders to 2 (one for color information and one for depth information, ptl_max_decodes_idc equal to equal to 1) and number of atlases to 1 (ptc_max_atlas_count_minus1 equal to 0)
In this use case atlas would provide the following information:
· Where in 2D frames (geometry, attributes) the view is present through patch_data_unit(), shown in Table 1. In RGBD scenario where only one view is considered, patch would correspond to the whole 2D frame.
· how to interpret the luma samples of geometry 2D frame through depth_quantization(), shown in Table 2.
· About camera used to capture the content and how to reproject the depth information through camera_intrinsics(), shown in Table 3. Equirectangular, perspective, and orthographic projection format are supported.
· where the camera is placed in virtual space through camera_extrinsics(), shown in Table 4.
Additionally, VPS and V3C unit headers would allow to identify the different video bitstreams.
An example of the V3C data that provide the information on how to interpret the video bitstream is provided in Table 6.
Profile Summary:
· ptl_profile_toolset_idc equal to 64 (MIV Main)
· ptl_max_decodes_idc equal to 1 (maximum 2 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· ai_attribute_count equal to 1
· ai_attribute_type_id equal to 0 (ATTR_TEXTURE)
· mvp_num_views_minus1 equal to 0 (only 1 view)
Transparency
The use case of auxiliary video providing transparency information discussed in S4-230738 version 7.0.0 can also be achieved through MIV.
This use case can be achieved utilizing MIV Extended profile that allows of presence of attribute of type ATTR_TRANSPARENCY. The constraint can be further applied on the profile to minimize the number of required video decoders to 3 (one for color information, one for depth information, and one for transparency information, ptl_max_decodes_idc equal to 2) and number of atlases to 1 (ptc_max_atlas_count_minus1 equal to 0)
Profile Summary:
· ptl_profile_toolset_idc equal to 65 (MIV Extended)
· ptl_max_decodes_idc equal to 2 (maximum 3 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· ai_attribute_count equal to 2
· ai_attribute_type_id equal to 0 (ATTR_TEXTURE) or 2 (ATTR_TRANSPARENCY)
· mvp_num_views_minus1 equal to 0 (only 1 view)
Minimizing number of encoders/decoders
The number of the decoders can be further constrained in MIV Extended profile to just one encoder/decoder instance (ptl_max_decodes_idc equal to 0). This can be achieved utilizing packed video type that allow to put geometry and attribute data in one 2D frame. The information on how to extract each component data from the packed frame is provided by V3C parameter set.
Profile Summary:
· ptl_profile_toolset_idc equal to 65 (MIV Extended)
· ptl_max_decodes_idc 0 (maximum 1 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· vps_packed_video_present_flag equal to 1
· pin_geometry_present_flag equal to 1
· pin_attribute_present_flag equal to 1
· pin_attribute_count equal to 1 or 2
· pin_attribute_type_id equal to 0 (ATTR_TEXTURE) or 2 (ATTR_TRANSPARENCY)
· mvp_num_views_minus1 equal to 0 (only 1 view)
An example of the V3C data that provide the information on how to interpret the video bitstream is provided in Table 6.
Conversational 3D video
TS 26.113 clause 5.3.1 states that an iRTC client in terminal can be connected to one or more color cameras, and one or more depth cameras. Further, the iRTC Permanent document clause 5.2.4 on 3D video present the use case with multiple RGBD cameras, i.e. views, as input to the sender. Therefore, any discussion from section 2.1 to 2.4 is applicable to this scenario as well, but with relaxing the constraint of number of views, i.e. mvp_num_views_minus1 can be bigger than 0.
RTP payload for V3C has in the IETF working group draft stage (https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-v3c/).
An example of RGBD data provided over RTP that is signalled by SDP is presented in Table 5.
Profile Summary:
· Same as in 2.2, 2.3, 2.4 without constraint on mvp_num_views_minus1
Pseudo Change Request

[bookmark: _Toc130832417][bookmark: _Toc135166091]6.8.1	Support of RGBD content
6.8.1.1	General
RGBD content refers to a data sequence composed of a video sequence and a depth map sequence that share a known temporal and spatial relation. A depth map may be represented as a video frame of a video sequence in which case each pixel of this depth map sequence may represent a measure of the distance between the surface of an AR object, point (A) and the camera centre (C). Conventionally, the distance is represented by the coordinate of the point on the z-axis obtained by the orthogonal projection of the point (A) on this axis, here denoted as the point (A’). The measured distance is thus the length of the segment (CA’) as depicted in Figure 22.
[image:]
[bookmark: _Ref132931378]Figure 22 - Pixel representation of depth images
A depth map thus contains pixels with the distance attribute (e.g., depth). Distance is one-dimensional information and may be represented in an absolute/relative or linear/non-linear manner. Metadata to interpret the pixels of a depth map image may be provided as well as to determine the spatial and temporal relationship between pixels of the depth video sequence and pixels of the texture video sequence.
RGBD support is also needed for AR conversational. TS 26.113 clause 5.3.1 states that an iRTC client in terminal can be connected to one or more color cameras, and one or more depth cameras. Further, the iRTC Permanent document clause 5.2.4 on 3D video present the use case with multiple RGBD cameras, i.e. views, as input to the sender.

6.8.1.3	Compression of RGBD information
6.8.1.3.1	Video-based depth compression
As described in clause 6.6.1.1, RGBD is essentially composed of a texture video sequence along with a depth sequence. This depth sequence is represented as a sequence of depth frame which constitute a video sequence as well.
Since texture and depth video sequence are by nature different, their spatial resolution, frequency sampling, bit depth may differ. In addition, a texture video sequence is composed of three colour channels while a depth video sequence is essentially a monochrome video sequence.
For those reasons, it is desirable to carry RGBD content as the combination of two independent sequences as opposed to artificially stitching them into one.
In terms of compression, the video coding standard HEVC/H.265 has provisions to carry in a compressed form depth video sequence as auxiliary picture of type AUX_DEPTH.
Since a depth video sequence is essentially a monochrome video sequence, monochrome profiles defined in HEVC (Monochrome, Monochrome 12, Monochrome 16) are also thus relevant for coding the depth sequence.
6.8.1.3.2 V3C MIV-based solution
An input to MIV encoder is one or more views, where the view represents a field of view of a volumetric frame for a particular view position and orientation. Each view, at a given time instance, may be represented by one 2D frame providing geometry information (depth) plus one 2D frame per attribute, providing attribute information (e.g., color and transparency). Occupancy information that may either be embedded within geometry 2D frame or represented explicitly as another 2D frame. The information about how the views were stored in 2D frames and how to interpret is provided in the atlas data.
To ensure that a decoder can properly interpret different bitstreams (e.g., geometry, attribute, atlas), the ISO/IEC 23090-5 specification defines a V3C bitstream format. The V3C bitstream encapsulates encoded V3C video components and V3C atlas components in V3C units. Each V3C unit consists of a V3C unit header and a V3C unit payload pair. The V3C unit header contains information such as atlas ID, component type, map index, attribute index, and a flag indicating if auxiliary data are present. The component type indicates whether the payload contains atlas, geometry, occupancy, or attribute information. V3C bitstreams also contain at least one V3C unit which carries V3C parameter set (VPS) information. In case the component type is attribute the V3C_AVD, the VPS provide information about the attribute type itself by mapping attribute index provided in V3C unit header to ai_attribute_type_id.
Table Y – V3C attribute types as defined in ISO/IEC 23090-5
	ai_attribute_type_id[j][i]
	Identifier
	Attribute type

	0
	ATTR_TEXTURE
	Texture

	1
	ATTR_MATERIAL_ID
	Material ID

	2
	ATTR_TRANSPARENCY
	Transparency

	3
	ATTR_REFLECTANCE
	Reflectance

	4
	ATTR_NORMAL
	Normals

	5..14
	ATTR_RESERVED
	Reserved

	15
	ATTR_UNSPECIFIED
	Unspecified

The use case of RGBD discussed in S4-230738 version 7.0.0 is equivalent V3C MIV with only one view (mvp_num_views_minus1 equal to 0). This simplifies the operation of MIV encoder/decoder as no duplication of information between the views need to be examined.
The RGBD use case can be achieved utilizing MIV Main profile with further constraint. The constraint can minimize the number of required video decoders to 2 (one for color information and one for depth information, ptl_max_decodes_idc equal to equal to 1) and number of atlases to 1 (ptc_max_atlas_count_minus1 equal to 0)
In this use case atlas would provide the following information:
· Where in 2D frames (geometry, attributes) the view is present through patch_data_unit(), shown in Table 1 in Annex Z. In RGBD scenario where only one view is considered, patch would correspond to the whole 2D frame.
· how to interpret the luma samples of geometry 2D frame through depth_quantization(), shown in Table 2 in Annex Z.
· About camera used to capture the content and how to reproject the depth information through camera_intrinsics(), shown in Table 3 in Annex Z. Equirectangular, perspective, and orthographic projection format are supported.
· where the camera is placed in virtual space through camera_extrinsics(), shown in Table 4 in Annex Z.
Additionally, VPS and V3C unit headers would allow to identify the different video bitstreams.
An example of the V3C data that provide the information on how to interpret the video bitstream is provided in Table 6 in Annex Z.
Profile Summary:
· ptl_profile_toolset_idc equal to 64 (MIV Main)
· ptl_max_decodes_idc equal to 1 (maximum 2 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· ai_attribute_count equal to 1
· ai_attribute_type_id equal to 0 (ATTR_TEXTURE)
· mvp_num_views_minus1 equal to 0 (only 1 view)

For the use cases with multiple views defined in 6.8.1.2, the same profile applies without the constraint on mvp_num_views_minus1

6.8.1.3.2.1 Minimizing number of encoders/decoders
The number of the decoders can be further constrained in MIV Extended profile to just one encoder/decoder instance (ptl_max_decodes_idc equal to 0). This can be achieved utilizing packed video type that allow to put geometry and attribute data in one 2D frame. The information on how to extract each component data from the packed frame is provided by V3C parameter set.
Profile Summary:
· ptl_profile_toolset_idc equal to 65 (MIV Extended)
· ptl_max_decodes_idc 0 (maximum 1 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· vps_packed_video_present_flag equal to 1
· pin_geometry_present_flag equal to 1
· pin_attribute_present_flag equal to 1
· pin_attribute_count equal to 1 or 2
· pin_attribute_type_id equal to 0 (ATTR_TEXTURE) or 2 (ATTR_TRANSPARENCY)
· mvp_num_views_minus1 equal to 0 (only 1 view)
An example of the V3C data that provide the information on how to interpret the video bitstream is provided in Table 6.
6.8.1.4	Processing of RGBD content
tbd
6.8.1.5	Carriage of RGBD content over RTP
[bookmark: _Toc73696120][bookmark: _Toc96460093]6.8.1.5.1	Option 1: Single RTP stream
A first option is to carry the RGBD sequence in a single RTP stream which means that both sequences can be part of the same elementary stream. In order to do so, a possible option is to use the concept of independent layers when present in video codec. For instance with the HEVC codec, both the texture and the depth sequences may constitute different layers of the same elementary stream.
6.8.1.5.2	Option 2: Two RTP streams
In this second option, the RGBD sequence is transmitted over two concurrent RTP streams. Both video streams may be encoded with different encoding characteristics and even different codecs. The temporal relation between both sequence will be given by the timestamps.
6.8.1.5.3 RTP carriage of MIV
RTP payload for V3C has in the IETF working group draft stage (https://datatracker.ietf.org/doc/draft-ietf-avtcore-rtp-v3c/).
An example of RGBD data provided over RTP that is signalled by SDP is presented in Table 5 in Annex Z.

6.8.1.6	Storage of RGBD content in ISOBMFF
6.8.1.6.1	Current State
Currently ISO Base Media File Format (ISOBMFF) supports accompanying video with depth via auxiliary tracks – with reference_type as ’auxl’ or ‘vdep’ (or both). This allows to signal a texture video track along with a depth map video track. However, further metadata is needed to be able to interpret the depth map pixels. To this end, ISO/IEC 23002-3 “Representation of auxiliary video and supplemental information” defines such metadata, e.g. stride, near/far plane, to be carried as item of type ‘auvd’ in the auxiliary video metadata of ISOBMFF spec. These two specifications combined merely provide a partial solution for a RGBD storage and would require further specification in order to ensure interoperability for the applications targeted in MeCAR, e.g. split rendering.
For an MIV-based solution, carriage of visual volumetric video-based coding data (ISO/IEC 23090-10), is derived from ISO/IEC 14496-12 and provided information how V3C content such as MIV should be stored in ISOBMFF file. The specification introduces three methods for storing V3C-coded content in ISOBMFF: single-track storage, multi-track storage, and non-timed storage. However only multi-track and non-timed storage should be considered for MeCAR work. Multi-track storage encapsulates each V3C component of the V3C bitstream into its own ISOBMFF track. Non-timed storage mode enables the storage of static V3C objects.
An overview of the storage of V3C bitstream is provided in [x].
[x] https://www.frontiersin.org/articles/10.3389/frsip.2022.883943/full

[bookmark: _Toc135166035]3.6.3	Carrying transparency information
3.6.3.1	Carriage as auxiliary pictures in the video stream
The carriage of transparency information may be achieved by using the concept of auxiliary pictures defined by both the AVC and HEVC codecs.
3.6.3.1.1	AVC
The AVC (H.264) specification provides guidelines for carrying transparency information.
It defines the concept of alpha-blending in clause 3.5 : “A process not specified by this Recommendation | International Standard, in which an auxiliary coded picture is used in combination with a primary coded picture (…) the samples of an auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently, the degrees of transparency) associated with the corresponding luma samples of the primary coded picture.” AVC specification precises in clause 3.7 that “An auxiliary coded picture must contain the same number of macroblocks as the primary coded picture. Auxiliary coded pictures have no normative effect on the decoding process.” It also mentions (clause 3.1) that “In addition to the primary coded picture, an access unit may also contain (…) one auxiliary coded picture”.

Clause 7.3.2.1.2 (Sequence parameter set extension RBSP syntax) of the AVC specification defines fields related to alpha blending (alpha_incr_flag, alpha_opaque_value and alpha_transparent _value) and the semantics are detailed in clause 7.4.2.1.2 (Sequence parameter set extension RBSP semantics). The same clause also explains that “aux_format_idc equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded video sequence, and that for alpha blending purposes the decoded samples of the associated primary coded picture in each access unit should be multiplied by the interpretation sample values of the auxiliary coded picture in the access unit in the display process after output from the decoding process.”
3.6.3.1.2	HEVC
HEVC also defines how to carry an alpha channel in the same video bitstream as the base video.In this case, each frame contains two parts: a base layer containing the video, and an alpha layer containing the alpha channel information. Both layers are compressed using the HEVC codec. The two layers are signalled by a specific HEVC syntax element, namely a specific alpha channel information SEI message has to be added, so that the decoder knows how to interpret the auxiliary pictures. A decoder incapable of handling this SEI message only decodes the base layer.
The concept of auxiliary picture is defined in Annex F of the HEVC (H.265) specification:
F.3.5 auxiliary picture: A picture that has no normative effect on the decoding process of primary pictures, and with a nuh_layer_id value such that AuxId[nuh_layer_id] is greater than 0.

In the same Annex, Table F.2 details the different types of auxiliary pictures:
[bookmark: _Ref398987190][bookmark: _Toc452007927]Table F.1 – Mapping of AuxId to the type of auxiliary pictures
	AuxId
	Name of AuxId
	Type of auxiliary pictures
	SEI message describing interpretation of auxiliary pictures

	1
	AUX_ALPHA
	Alpha plane
	Alpha channel information

	2
	AUX_DEPTH
	Depth picture
	Depth representation information

	3..127
	
	Reserved
	

	128..159
	
	Unspecified
	

	160..255
	
	Reserved
	

3.6.3.1.3	V3C MIV
The use case of auxiliary video providing transparency information discussed in S4-230738 version 7.0.0 can also be achieved through MIV.
This use case can be achieved utilizing MIV Extended profile that allows of presence of attribute of type ATTR_TRANSPARENCY. The constraint can be further applied on the profile to minimize the number of required video decoders to 3 (one for color information, one for depth information, and one for transparency information, ptl_max_decodes_idc equal to 2) and number of atlases to 1 (ptc_max_atlas_count_minus1 equal to 0)
Profile Summary:
· ptl_profile_toolset_idc equal to 65 (MIV Extended)
· ptl_max_decodes_idc equal to 2 (maximum 3 decoders)
· ptc_max_atlas_count_minus1 equal to 0 (only 1 atlas)
· ptc_multiple_map_streams_constraint_flag equal to 1 (only 1 map)
· ptc_max_map_count_minus1 equal to 0
· ptc_attribute_max_dimension_minus1 equal to 2
· ptc_attribute_max_dimension_partitions_minus1 equal to 0
· ai_attribute_count equal to 2
· ai_attribute_type_id equal to 0 (ATTR_TEXTURE) or 2 (ATTR_TRANSPARENCY)
· mvp_num_views_minus1 equal to 0 (only 1 view)
The number of decoders needed can be minimized as described in clause 6.8.1.3.2.1.
3.6.3.2	Carriage in ISOBMFF-based formats
ISO/IEC 14496-12 (ISO Base Media File Format) defines a general format which is used as a basis for defining other carriage formats such as MP4, CMAF, HEIF, AVIF, etc. It defines general concepts for the transport and carriage of data in an ISOBMFF-based container format and therefore nothing specific for the transport of auxiliary pictures is mentioned. Among many other things, ISOBMFF specifies the concept of non-timed items that can be used to store static images, and the concept of tracks that can be used to define the carriage of timed video. The format is flexible enough to allow carriage of auxiliary picture information, such as transparency, in the same structure (e.g., using a single item or a single video track) as well as using multiple tracks or items, with dependencies signaled by the item or track reference concept. For example, in the latter case an auxiliary video track needs to be used together with the ‘auxl’ track reference type as defined in clause 8.3.3.
HEIF (High Efficiency Image File format, ISO/IEC 23008-12) builds on top of ISOBMFF and defines a format for carriage of images and image sequences. Because the format is derived from ISOBMFF, transparency information can be carried in a single item or using multiple items, although the latter requires an ‘auxl’ item reference type similar to the video example above.
MIAF (Multi Image Application Format, ISO/IEC 23000-22), which defines additional constraints for HEIF, describes in its clause 7.3.5 how MIAF auxiliary image items can be used to carry alpha planes. In particular, it mentions that “MIAF renderers shall interpret alpha planes and should support alpha blending using alpha-plane auxiliary images. This is especially important for image overlays”. It also details in its clause 6.7 (MAIF renderer processing model) the interpretation of alpha planes.
Carriage of MIV over ISOBMFF is defined in clause 6.8.1.6.1.
3.6.3.3	Carriage in Scene Descriptions
Possible carriage of transparency information or associated transparency information via the scene description has also to be considered. In particular, this may be a solution when an auxiliary picture carrying transparency information is available and not to rely on the SEI messages which not be decoded by all decoders (see HEVC chapter).
As an example for carrying transparency information in scene descriptions, clause 3.9 on Materials in the glTF 2.0 specification has a subclause “additional-texture” and a subclause “alpha-coverage” which describe how to use the fourth (alpha) component, if present, of a texture.

MPEG SD, ISO/IEC 23090-14 Amd1 provides support to include V3C MIV content in a scene description.
Proposal
The proposal is to agree on adding V3C MIV with additional constraints for RGB + Depth + Transparency use case and real-time streaming use case by employing MIV Extended profile with additional constraints as proposed in the pCR S4-230878add proposed changes and Annex Z to the MeCAR PD.
Annex Z
[bookmark: _Ref134190411]Table 1 Patch data unit syntax as defined in ISO/IEC 23090-5
	patch_data_unit(tileID, patchIdx) {
	Descriptor

		pdu_2d_pos_x[tileID][patchIdx]
	ue(v)

		pdu_2d_pos_y[tileID][patchIdx]
	ue(v)

		pdu_2d_size_x_minus1[tileID][patchIdx]
	ue(v)

		pdu_2d_size_y_minus1[tileID][patchIdx]
	ue(v)

		pdu_3d_offset_u[tileID][patchIdx]
	u(v)

		pdu_3d_offset_v[tileID][patchIdx]
	u(v)

		pdu_3d_offset_d[tileID][patchIdx]
	u(v)

		if(asps_normal_axis_max_delta_value_enabled_flag)
	

			pdu_3d_range_d[tileID][patchIdx]
	u(v)

		pdu_projection_id[tileID][patchIdx]
	u(v)

		pdu_orientation_index[tileID][patchIdx]
	u(v)

		if(afps_lod_mode_enabled_flag) {
	

			pdu_lod_enabled_flag[tileID][patchIdx]
	u(1)

			if(pdu_lod_enabled_flag[tileID][patchIdx]) {
	

				pdu_lod_scale_x_minus1[tileID][patchIdx]
	ue(v)

				pdu_lod_scale_y_idc[tileID][patchIdx]
	ue(v)

			}
	

		}
	

		if(asps_plr_enabled_flag)
	

			plr_data(tileID, patchIdx)
	

		if(asps_miv_extension_present_flag)
	

			pdu_miv_extension(tileID, patchIdx) /* Specified in ISO/IEC 23090-12 */
	

	}
	

[bookmark: _Ref134188457][bookmark: _Ref134188441]Table 2 Depth quantization syntax as defined in ISO/IEC 23090-12
	depth_quantization(v) {
	Descriptor

		dq_quantization_law[v]
	ue(v)

		if(dq_quantization_law[v] == 0) {
	

			dq_norm_disp_low[v]
	fl(32)

			dq_norm_disp_high[v]
	fl(32)

		}
	

		dq_depth_occ_threshold_default[v]
	ue(v)

	}
	

[bookmark: _Ref134188668]Table 3 Camera intriniscs syntax as defined in ISO/IEC 23090-12
	camera_intrinsics(v) {
	Descriptor

		ci_cam_type[v]
	u(8)

		ci_projection_plane_width_minus1[v]
	u(16)

		ci_projection_plane_height_minus1[v]
	u(16)

		if(ci_cam_type[v] == 0) {			/* equirectangular */
	

			ci_erp_phi_min[v]
	fl(32)

			ci_erp_phi_max[v]
	fl(32)

			ci_erp_theta_min[v]
	fl(32)

			ci_erp_theta_max[v]
	fl(32)

		} else if(ci_cam_type[v] == 1) {		/* perspective */
	

			ci_perspective_focal_hor[v]
	fl(32)

			ci_perspective_focal_ver[v]
	fl(32)

			ci_perspective_principal_point_hor[v]
	fl(32)

			ci_perspective_principal_point_ver[v]
	fl(32)

		} else if(ci_cam_type[v] == 2) {		/* orthographic */
	

			ci_ortho_width[v]
	fl(32)

			ci_ortho_height[v]
	fl(32)

		}
	

	}
	

[bookmark: _Ref134188478]Table 4 Camera extrinsics syntax as defined in ISO/IEC 23090-12
	camera_extrinsics(v) {
	Descriptor

		ce_view_pos_x[v]
	fl(32)

		ce_view_pos_y[v]
	fl(32)

		ce_view_pos_z[v]
	fl(32)

		ce_view_quat_x[v]
	i(32)

		ce_view_quat_y[v]
	i(32)

		ce_view_quat_z[v]
	i(32)

	}
	

[bookmark: _Ref134431584]Table 5 An example of SDP RGBD content deliver as packed V3C video component over RTP
	v=0
o=- 20518 0 IN IP4 203.0.113.1
s=
c=IN IP4 203.0.113.1
t=0 0
m=video 5002 RTP/AVP 97
a=rtpmap:97 H265/90000
a=fmtp:97 profile-id=1;packetization-mode=1;v3c-unit-header=KAAAAA==;v3c-parameter-set=AUH/AAAP/zwAAAAAACgIAtEAgQLAIAAUQBACWAM5QEDgQCAIAAAAABP8CzwAAAAAAAAAQAAAtAE/wLPAAAAAAAg=;v3c-atlas-data=SAGAFAQBaKjuXgABQEKA,SgHmIA==,LgFoDOAFAABaAAAAAAA+;v3c-common-atlas-data=YAEHgFA=,YgEAMAAAC/B0qcvv/Dbr/pTvb8oqfhC5JQVS9jn7kAQT/As9EFyrjRBcmxEQe+j5DuGbTT9mZmZAQAAAoA==
a=sendonly

[bookmark: _Ref134431662]Table 6 An log of V3C data related to atlas that provide information about RGBD data stored as packed video V3C component
	INFO:Container:
 profile_tier_level = Container:
 ptl_tier_flag = 0
 ptl_profile_codec_group_idc = 1
 ptl_profile_toolset_idc = 65
 ptl_profile_reconstruction_idc = 255
 ptl_reserved_zero_16bits = 0
 ptl_max_decodes_idc = 0
 ptl_reserved_0xfff_12bits = 4095
 ptl_level_idc = 60
 ptl_num_sub_profiles = 0
 ptl_extended_sub_profile_flag = 0
 ptl_sub_profile_idc = None
 ptl_toolset_constraints_present_flag = 0
 vps_v3c_parameter_set_id = 0
 vps_reserved_zero_8bits = 0
 vps_atlas_count_minus1 = 0
 vps_atlas_information = ListContainer:
 Container:
 vps_atlas_id = 0
 vps_frame_width = 1280
 vps_frame_height = 720
 vps_map_count_minus1 = 0
 vps_auxiliary_video_present_flag = 0
 vps_occupancy_video_present_flag = 0
 vps_geometry_video_present_flag = 0
 vps_attribute_video_present_flag = 0
 vps_extension_present_flag = 1
 vps_extension_count = 2
 vps_extensions_length_minus1 = 43
 vps_extensions_information = ListContainer:
 Container:
 vps_extension_type = 2
 vps_extension_length = 1
 vps_extension = Container:
 vme_geometry_scale_enabled_flag = 0
 vme_embedded_occupancy_enabled_flag = 1
 gm_group_count = 1
 gm_group_id = ListContainer:
 0
 Container:
 vps_extension_type = 1
 vps_extension_length = 37
 vps_extension = Container:
 packing_information = ListContainer:
 Container:
 vps_packed_video_present_flag = 1
 packing_information = Container:
 pin_codec_id = 0
 pin_occupancy_present_flag = 0
 pin_geometry_present_flag = 1
 pin_attribute_present_flag = 1
 pin_geometry_information = Container:
 pin_geometry_2d_bit_depth_minus1 = 7
 pin_geometry_msb_align_flag = 0
 pin_geometry_3d_coordinates_bit_depth_minus1 = 10
 pin_attribute_information = Container:
 pin_attribute_count = 1
 pin_attribute_entry = ListContainer:
 Container:
 pin_attribute_type_id = 0
 pin_attribute_2d_bit_depth_minus1 = 7
 pin_attribute_msb_align_flag = 0
 pin_attribute_map_absolute_coding_persistence_flag = 0
 pin_attribute_dimension_minus1 = 2
 pin_attribute_dimension_partitions_minus1 = 0
 pin_regions_count_minus1 = 1
 pin_regions_information = ListContainer:
 Container:
 pin_region_tile_id = 0
 pin_region_type_id_minus2 = 2
 pin_region_top_left_x = 0
 pin_region_top_left_y = 0
 pin_region_width_minus1 = 1279
 pin_region_height_minus1 = 719
 pin_region_unpack_top_left_x = 0
 pin_region_unpack_top_left_y = 0
 pin_region_rotation_flag = 0
 pin_region_map_index = 0
 pin_region_auxiliary_data_flag = 0
 pin_region_attr_index = 0
 pin_region_attr_partition_index = 0
 Container:
 pin_region_tile_id = 0
 pin_region_type_id_minus2 = 1
 pin_region_top_left_x = 0
 pin_region_top_left_y = 720
 pin_region_width_minus1 = 1279
 pin_region_height_minus1 = 719
 pin_region_unpack_top_left_x = 0
 pin_region_unpack_top_left_y = 0
 pin_region_rotation_flag = 0
 pin_region_map_index = 0
 pin_region_auxiliary_data_flag = 0
 byte_alignment = Container:
 alignment_bit_equal_to_one = 1
 alignment_bit_equal_to_zero = 0
INFO:Container:
 casps_common_atlas_sequence_parameter_set_id = 0
 casps_log2_max_common_atlas_frame_order_cnt_lsb_minus4 = 2
 casps_extension_present_flag = 1
 casps_miv_extension_present_flag = 1
 casps_extension_7bits = 0
 casps_miv_extension = Container:
 casme_depth_low_quality_flag = 0
 casme_depth_quantization_params_present_flag = 1
 casme_vui_params_present_flag = 0
 rbsp_trailing_bits = Container:
 rbsp_stop_one_bit = 1
 rbsp_alignment_zero_bit = 0
INFO:Container:
 caf_common_atlas_sequence_parameter_set_id = 0
 caf_common_atlas_frm_order_cnt_lsb = 0
 caf_extension_present_flag = 1
 caf_miv_extension_present_flag = 1
 caf_extension_7bits = 0
 caf_miv_extension = Container:
 miv_extension_info = Container:
 mvp_num_views_minus1 = 0
 mvp_explicit_view_id_flag = 0
 camera_extrinsics = ListContainer:
 Container:
 camera_extrinsics = Container:
 ce_view_pos_x = -0.52848219871521
 ce_view_pos_y = -0.4995378851890564
 ce_view_pos_z = -1.8227221965789795
 ce_view_quat_x = -56449055
 ce_view_quat_y = 194138197
 ce_view_quat_z = 795058105
 mvp_inpaint_flag = 0
 mvp_intrinsic_params_equal_flag = 0
 camera_intrinsics = ListContainer:
 Container:
 ci_cam_type = 1
 ci_projection_plane_width_minus1 = 1279
 ci_projection_plane_height_minus1 = 719
 ci_camera_intrinsics = Container:
 ci_perspective_focal_hor = 604.6701049804688
 ci_perspective_focal_ver = 604.605712890625
 ci_perspective_principal_point_hor = 635.9100341796875
 ci_perspective_principal_point_ver = 368.8033142089844
 mvp_depth_quantization_params_equal_flag = 0
 depth_quantization = ListContainer:
 Container:
 dq_quantization_law = 0
 dq_norm_disp_low = 0.8999999761581421
 dq_norm_disp_high = 3.0
 dq_depth_occ_threshold_default = 0
 mvp_pruning_graph_params_present_flag = 0
 rbsp_trailing_bits = Container:
 rbsp_stop_one_bit = 1
 rbsp_alignment_zero_bit = 0
INFO:Container:
 asps_atlas_sequence_parameter_set_id = 0
 asps_frame_width = 1280
 asps_frame_height = 720
 asps_geometry_3d_bit_depth_minus1 = 10
 asps_geometry_2d_bit_depth_minus1 = 7
 asps_log2_max_atlas_frame_order_cnt_lsb_minus4 = 2
 Log2MaxAtlasFrmOrderCntLsb = 6
 MaxAtlasFrmOrderCntLsb = 64
 asps_max_dec_atlas_frame_buffering_minus1 = 0
 asps_long_term_ref_atlas_frames_flag = 0
 asps_num_ref_atlas_frame_lists_in_asps = 1
 ref_list_struct = ListContainer:
 Container:
 num_ref_entries = 0
 asps_use_eight_orientations_flag = 1
 asps_extended_projection_enabled_flag = 1
 asps_max_number_projections_minus1 = 0
 asps_normal_axis_limits_quantization_enabled_flag = 0
 asps_normal_axis_max_delta_value_enabled_flag = 0
 asps_patch_precedence_order_flag = 0
 asps_log2_patch_packing_block_size = 0
 PatchPackingBlockSize = 1
 asps_patch_size_quantizer_present_flag = 0
 asps_map_count_minus1 = 0
 asps_pixel_deinterleaving_enabled_flag = 0
 asps_raw_patch_enabled_flag = 0
 asps_eom_patch_enabled_flag = 0
 asps_plr_enabled_flag = 0
 asps_plr_information = None
 asps_vui_parameters_present_flag = 0
 asps_extension_present_flag = 1
 asps_vpcc_extension_present_flag = 0
 asps_miv_extension_present_flag = 1
 asps_extension_6bits = 0
 asps_miv_extension = Container:
 asme_ancillary_atlas_flag = 0
 asme_embedded_occupancy_enabled_flag = 1
 asme_depth_occ_threshold_flag = 0
 asme_geometry_scale_enabled_flag = 0
 asme_patch_constant_depth_flag = 0
 asme_patch_attribute_offset_enabled_flag = 0
 asme_max_entity_id = 0
 asme_inpaint_enabled_flag = 0
 rbsp_trailing_bits = Container:
 rbsp_stop_one_bit = 1
 rbsp_alignment_zero_bit = 0
INFO:Container:
 afps_atlas_frame_parameter_set_id = 0
 afps_atlas_sequence_parameter_set_id = 0
 atlas_frame_tile_information = Container:
 afti_single_tile_in_atlas_frame_flag = 1
 afti_signalled_tile_id_flag = 0
 NumTilesInAtlasFrame = 1
 AftiSignalledTileIDBitCount = 0
 afti_tile_id = None
 afps_output_flag_present_flag = 0
 afps_num_ref_idx_default_active_minus1 = 0
 NumRefIdxActive = 1
 afps_additional_lt_afoc_lsb_len = 0
 afps_lod_mode_enabled_flag = 0
 afps_raw_3d_offset_bit_count_explicit_mode_flag = 0
 afps_extension_present_flag = 0
 rbsp_trailing_bits = Container:
 rbsp_stop_one_bit = 1
 rbsp_alignment_zero_bit = 0
INFO:Container:
 atlas_tile_header = Container:
 ath_no_output_of_prior_atlas_frames_flag = 0
 ath_atlas_frame_parameter_set_id = 0
 ath_atlas_adaptation_parameter_set_id = 0
 ath_id = None
 ath_type = 1
 ath_atlas_output_flag = None
 ath_atlas_frm_order_cnt_lsb = 0
 ath_ref_atlas_frame_list_asps_flag = 1
 ath_non_skip_tile = Container:
 AthPosMinDQuantizer = 0
 byte_alignment = Container:
 alignment_bit_equal_to_one = 1
 alignment_bit_equal_to_zero = 0
 atlas_tile_data_unit = ListContainer:
 Container:
 atdu_patch_mode = 0
 patch_information_data = Container:
 patch_data = Container:
 pdu_2d_pos_x = 0
 pdu_2d_pos_y = 0
 pdu_2d_size_x_minus1 = 1279
 pdu_2d_size_y_minus1 = 719
 pdu_3d_offset_u = 0
 pdu_3d_offset_v = 0
 pdu_3d_offset_d = 0
 pdu_3d_range_d = None
 pdu_projection_id = 0
 pdu_orientation_index = 0
 Container:
 atdu_patch_mode = 14
 rbsp_trailing_bits = Container:
 rbsp_stop_one_bit = 1
 rbsp_alignment_zero_bit = 0

- 4/4 -
image1.emf

