3GPP TSG SA WG4 Meeting #122
S4-230393
Athens (Greece), 20-24 February 2023

Agenda item:
10.8
Source:
Nokia Corporation (Rapporteur
)
Title:
5G_RTP Permanent Document v. 0.0.4
Document for
Agreement
1 Introduction

During SA4#119e the Work Item on “5G Real-time Transport Protocols” was agreed in S4-220783, and afterwards approved in by the SA plenary in the SA#96 in SP-220613.
The objective of this work item is to specify functionalities of RTP to improve support for traditional and immersive real-time services and enablers. To develop a commercially relevant set of functionalities that only include technologies that are either commercially relevant or deployed, or demonstrate clear performance or relevant functionality that justifies introducing additional implementation or interoperability complexity.

The work item aims to:

· Specify RTP functionalities that support at least the following services or enablers:

a. IMS-based conversational XR services

b. WebRTC-based conversational XR services

c. WebRTC-based conversational services using traditional media

d. XR split-rendering, i.e., real-time transport of media between the UE and edge

· In the RTP, specify references and further descriptions of

a. Functionalities related to the RTP protocol. For example, uni-directional or bi-directional transmission, use of

i. multiple simultaneous RTP streams in a single RTP session,

ii. multiple RTP sessions,

iii. RTP retransmission,
iv. RTP header extensions,

v. FEC,

vi. RTP retransmission,

vii. SRTP.

viii. RTCP feedback reporting procedures

· In the RTP, specify the usage of SDP attributes and parameters needed to configure RTP appropriately for the services and enablers.

· In the RTP, specify 5G optimizations and cross-layer optimizations based on SA2/RAN (e.g., FS_XRM) enhancements if and when completed.
2 Services and enablers

Here insert use cases, architecture and content about

· IMS-based conversational XR services

· WebRTC-based conversational XR services

· WebRTC-based conversational services using traditional media

· XR split-rendering, i.e., real-time transport of media between the UE and edge.
2.1 What use cases are in scope of the WI?

The WI makes a reference to TR 26.928 and TR 26.998, in particular clauses 8.4, 8.6 from the latter. To have a deep dive on the specific conversational use cases related to RTP communication, we think that clauses 6.5 and 6.6 from TR 26.998 are also of relevance and should be considered as (non-exhaustive) driving path for the development of the work of the 5G_RTP WI.
2.2 What 3GPP services will use 5G_RTP?

5G_RTP should serve a multitude of 3GPP services:

· MBMS

· MTSI

· 5GMS

· Telepresence

· Media Service/Application Enablers, i.e., the so called “Lego” type of services (or applications) that are built starting from individual “blocks”. The 5G_RTP could be seen as a horizontal layer.

· IMS-based AR services (i.e., IBACS)

· non-IMS-based real-time communication (iRTCW).

However, the current WID leads to the following table and scope of work:

	3GPP “Services”
	Immersive media
	Traditional Media

	IBACS
	Yes
	?

	iRTCW
	Yes
	Yes

	Split Rendering
	Yes
	?

	“Media Service Enablers”
	?
	?

	Other existing 3GPP services
	?
	?

It would be good to clarify if the cells with “?” are also in scope of the WI and the new RTP specification.
Being a general-purpose block, a special care must be taken to ensure that the integration of this block in the above-mentioned services provides actual interoperability. It is currently unclear how this goal can be achieved. Perhaps by pre-conditions and post-conditions or other structural mechanism in the specification that does not confuse implementers in easily selecting what parts of the spec to implement for a given service.

3 Requirements

Here insert 5G_RTP requirements for the above services and enablers.
[

3.1 Real-time requirements for AR use cases

The use cases presented in TR 26.928 and TR 26.998 have multiple elements that require real-time communication. The specific requirements for different types of data is listed below.

3.2 AR Media

TBD
Note: AR media may include 2D and 3D media components, and spatial audio. RTP Payload formats for some of these already exist and may need to be defined for others.

3.3 Pose

· A user pose can be defined as yaw, pitch, roll for orientation and three vectors (X, Y, Z in cartesian coordinate system) for position.

· For most use cases, an AR device can compute and use the pose information locally. For more advanced use cases with shared 6DoF experiences (e.g., use case 10 in TR 26.998) UEs may be required to send the pose information to a conferencing server, a spatial computing server or other entity.

· Pose can be transported as metadata along with media, e.g., as metadata with an avatar.

· It should be evaluated whether high-frequency updates of pose information from another device should be delivered to a UE directly or processed with support from a network entity.
3.4 Gesture

· A hand gesture or device controllers can trigger specific actions during an AR experience.

· Gestures are handled on device (AR Runtime) for most use cases but for AR shared experiences, gestures can be used e.g., to manipulate a shared 3D object.

· The UE may process the gesture/controller click locally and this can be a device specific function. For interoperability, specific triggers/actions may be defined that are signalled across the network when needed.

3.5 Motion data

· Motion data captures movements that are used to animate a 3D model. Motion data may be facial expressions, skeletal body movement, etc.

· Motion data is dependent on the model. Interoperability may require sharing 3D modeling data.

· A high-frequency continuous bitstream may be required for a good user experience. Alternatively, sporadic updates triggered by motion can be used.

· It should be evaluated whether high-frequency updates of motion data from another device should be delivered to a UE directly or processed with support from a network entity.
3.6 Summary

Table below summarizes the types of metadata that can be carried as RTP payload for AR RTC services. Reliability is assumed to be not strict when the data is delivered in a continuous manner and old values lose importance when delayed. Continuous bitstreams may be sent at a fixed sampling rate. Bursty traffic is triggered e.g., a motion signal can be sent when motion is detected. The direction is determined based on whether a UE will send the data, receive it or both (sendrecv).

	Data Type
	Reliability
	Traffic
	Direction (UE)

	Pose
	Not strict
	Continuous or bursty if action activated
	send

	Gesture
	Strict
	Bursty, action-activated
	send, recv, sendrecv

	Motion data
	Not strict
	Continuous or bursty if action activated
	send, recv, sendrecv

]

Note: The text will be aligned with the work in MeCAR.

4 RTP Protocol functionalities (potential solutions)
Here specify references and further descriptions of potential solutions for
· Functionalities related to the RTP protocol. For example, uni-directional or bi-directional transmission, use of

a. multiple simultaneous RTP streams in a single RTP session,

b. multiple RTP sessions,

c. RTP retransmission,
d. RTP header extensions,

e. FEC,

f. RTP retransmission,

g. SRTP.
h. RTCP feedback reporting procedures.
5 Real-time transport of interaction metadata

There are at least three different ways to transport real-time metadata using the existing technologies in 3GPP:

1. WebRTC data channel

2. RTP header extension

3. New RTP payload format
A potential solution for Option 1 was proposed in S4-221557 at SA4 #121. The solution proposes to use the SCTP chunk payload data type format to carry the interaction metadata. A generic data channel payload format for timed metadata including a timestamp is added to the chunk user data section.

Data channel is a flexible option for metadata transport since it allows carriage of metadata not directly associated to media and enables differentiation in terms of reliability, priority and ordering requirements by setting up data channels with different properties. On the downside, there is no inherent timing and FEC mechanisms in SCTP.

A potential solution for Option 2 was presented in S4-221555 at SA4 #121. The solution proposes a RTP header extension design to carry metadata while media content is carried in the RTP payload. According to the proposed solution, a single metadata type or multiple metadata types can be carried in the header extension.

RTP header extension solution has the advantage that the transported metadata is time-synchronized to the media data. Moreover, all the robustness and timing mechanisms provided by RTP are included (e.g. timestamp, FEC). However, it only makes sense if a media stream exists. In case no media stream is present, transmission of RTP packets with empty/dummy payloads would be required. Another concern is the potentially large size of the RTP headers, depending on the metadata type. RTP header extensions can also be silently discarded by a receiver, if the latter is unable to parse them.

Option 3 is the usage of a separate RTP stream where the interaction metadata is carried in the RTP payload. In RTP, the details of media encoding, such as signal sampling rate, frame size and timing, are specified in RTP payload formats. Hence, sending interaction metadata in a separate RTP stream requires defining a new RTP payload format for interaction metadata. Such a payload format would enable the usage of all RTP mechanisms (timing, robustness etc.) while providing a generic format that can cover all types of interaction metadata.

RTP payload formats are typically developed in IETF. However, definition of a new payload format typically takes around 2 years in IETF meaning that for 3GPP, the developed format would at the earliest be useful in Rel. 19. In MeCAR, 3GPP has mainly considered the interaction metadata types defined in the XR standards so far (e.g., OpenXR) that have applications reaching beyond 3GPP. This raises the question whether a potential payload format for interaction metadata would not also be useful in other (non-3GPP) applications.
As a summary, the advantages and disadavantages of the discussed options are given in the following table.

	
	Advantages
	Disadvantages

	1. WebRTC data channel
	· Allows carriage of metadata without a media RTP stream.

· Differentiation in terms of reliability, priority and ordering requirements for different data channels

	· No timing mechanism / timestamp in SCTP

· No FEC mechanism in SCTP

	2. RTP header extension
	· Useful for a quick solution in Rel. 18

· Time-synchronized to media stream

· Enables usage of mechanism already provided by RTP (robustness, timing etc.)

· May be silently discarded by a receiver, if it does not understand the header extension, without aborting the ongoing multimedia session.

	· Only feasible when the sender of the metadata is also sending a media stream.

· May cause large RTP headers

	3. New RTP payload format
	· Can be a generic format covering all types of interaction metadata

· All RTP mechanisms can be used

· Can be used in non-3GPP environments
	· Defining a new payload format may take around 2 years if done in IETF. This mean this solution can be useful earliest in Rel. 19.

5.1 Real-time interaction metadata transport over RTP

For the applications that the media streams are exchanged using RTP, the interaction metadata may be carried in RTP header extensions [4] given the data size and low-latency requirements.
5.1.1 RTP and RTP extension

RTP fixed header is specified in [3] and the format is shown in Figure 1.

[image: image1.png]0 1 2 3
01234567890123456789012345678901
B s e St et T s s s s et S S
|V=2|P|X| cC |M| PT | sequence number |
B s e St et T s s s s et S S

| timestamp

B s e St et T s s s s et S S
| synchronization source (SSRC) identifier |
B T T e
| contributing source (CSRC) identifiers |

B e e s s S e e S R S st S

Figure 1 RTP fixed header format

When the extension bit (X) is set, a variable-length header extension must be appended to the RTP header, following the CSRC list if present. Figure 2 shows the general extension format. The RTP header extension may carry metadata in addition to the usual RTP header information as an optimization to lower latency.

[image: image2.png]0 1 2 3
01234567890123456789012345678901
S S
| defined by profile | length |
S S
| header extension |

Figure 2 RTP header extension

Two types of extension designs are specified in [4], one-byte header and two-byte header form of extension.

In the one-byte header form of extension, the 16-bit “defined by profile” must have the fixed bit pattern 0xBEDE. Each extension element MUST start with a byte containing an ID and a length. The 4-bit ID is the local identifier of this element in the range 1-14 inclusive. The 4-bit length is the number, minus one, of data bytes of this header extension element following the one-byte header. Figure 3 is an example of one-byte header extension.
[image: image3.png]0

01234567890123456789012345678901

1

2

3

B e s s s S e e e e e e s
length=3

0XBE |

|
+
| I | L=0 |
+

...data |

0xDE
data

0 (pad)

D

0

(pad)

1

data...

D

| L=

B e s s s S S e e e e T e

data

-
3
-

.

.

Bk e T . ke T T S R T ok o o

B e e e T T e e e e e e T e e
| L=
B e e e e e e e e e T T e e o

.
|

+
|

N

Figure 3 One-byte header extension example

In the two-byte header form of extension, the 16-bit “defined by profile” has 12-bit 0x100 and 4-bit appbits. The appbits field is 4 bits that are application dependent and may be defined to be any value or meaning. Each extension element starts with a byte containing an ID and a byte containing a length. The 8-bit length field is the length of extension data in bytes, not including the ID and length fields. The value zero (0) indicates that there is no subsequent data. Figure 4 is an example of two-byte header extension.
[image: image4.png]0

01234567890123456789012345678901

1

2

3

B e s s s S e e e e e e s

0x10

0x00

length=3

B e e S T e e o e

D

L=0

ID

L=1

B e e S T e e o e

data

0 (pad)

ID

L=4

B e s s s S e e e s

data

B e e S T e e o e

Figure 4 Two-byte header extension example

5.1.2 Potential Solution for using RTP header extension for interaction metadata

The RTP header extension may be used to carry metadata while the media content is carried in the RTP payload data. Depending on the data length, either one-byte or two-byte header extension may be used; a single metadata type or multiple metadata types may be carried in the extension in a RTP packet.

[Editor’s Note: carrying interaction metadata over the RTP header extension using this approach may be useful but further study of use cases and other types of interaction metadata will be investigated to identify other potential solutions]

Figure 5 illustrates an RTP header extension design concept to carry the real-time interaction metadata.

Subprotocol payload ID is a fixed length field indicating the subprotocol or specifications used for the metadata format, such as OpenXR.

Metadata type is a fixed length field indicating the metadata type specified in the sub-protocol.

Metadata attributes is a fixed length field indicating the metadata attributes such as time synchronization.

Metadata length is a fixed length field indicating the length of metadata payload in bytes.
[image: image5.png]Extension element data

Subprotocol payload
1D

Metadata type

Metadata attributes | Metadata length

Metadata payload

Figure 5 RTP header extension for the metadata

[Editor’s note: the data length of Metadata type field will be investigated to accommodate the potential metadata type indication such as URN]

[Editor’s note: FFS the use of URN registered with IANA and included in the SDP to signal the subprotocol payload ID + Metadata type in the RTP header extension.]
5.1.3 Security considerations

The interaction category real-time metadata can contain sensitive information tracking the interactions of an end user, e.g., elements of pose, tracking information of palm, hand, or face, as well as controller inputs. Therefore, the integrity and confidentiality of metadata in transit is in some scenarios, depending on the application requirements, necessary.

The transport of the real-time interaction class metadata over RTP header extensions introduced in clause 4.1.2 can ensure such necessity for integrity and confidentiality using the secure extension protocol of RTP, i.e., SRTP [5] and its extension RFC6904 [6]. SRTP protects the integrity of the RTP extension headers by signing the RTP PDU contents (including any RTP header extensions), whereas RFC6904 ensures confidentiality by encryption of selected RTP header extensions.

1 RTP Header Extension for Rendered Pose

The split rendering server streams the rendered frame using one or more video streams, depending on the view and projection configuration that is selected by the UE. The server uses the proposed RTP header extension to associate the selected pose with the rendered frame. An RTP header extension is the most appropriate option to associate the rendered frame with its pose as it is carried as part of the RTP packets that carry the rendered images of a frame. The RTP header extension may also be used with audio streams of a split rendering process.

Header extensions are declared in the SDP using the “a=extmap” attribute as defined in RFC8285. The header extension is identified through an association between the URI of the header extension and an ID value that is contained as part of the extension. The rendered pose header extension should use the following URN: “urn:3gpp:xr-rendered-pose”.

The two-byte header format of the header extension is used for signaling the rendered pose. The 2-byte (RFC8285) RTP header extension format of the rendered pose header extension is as follows:

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0x100 | appbits| ID | length=36+2n. |
+-+
| x |

+-+

| y |

+-+
| z |

+-+
| rx |

+-+
| ry |

+-+
| rz |

+-+
| rw |

+-+
| |
| timestamp |
+-+
| action_id #1 | ... |

+-+

The (x,y,z) provides the position of the rendered pose and the (rx,ry,rz,rw) provides the orientation of the rendered pose.

The timestamp represents the predicted time for the pose. This timestamp uses the XR system clock. There is no requirement to synchronize the RTP stream timestamps to the XR system clock. The timestamp is passed to the XR runtime together with the rendered swapchain images (e.g. as part of the xrEndFrame call in OpenXR).

Alternatively to this format, the application and the rendering server may use unique identifiers for the transmitted pose information to reduce the required extension header size.

The header also provides the identifiers of all actions that were processed for the rendering of the frame. A maximum limit of 10 actions per RTP header extension for rendered pose is allowed. Hence, the total size of the header extension is set to 36 + 2 * n, where n is the number of action identifiers in the header extension.

6 Usage of SDP attributes (potential solutions)
Here specify the usage of SDP attributes and parameters needed to configure RTP appropriately for the services and enablers.
7 5G and cross-layer optimizations (potential solutions)
Here specify 5G optimizations and cross-layer optimizations based on SA2/RAN (e.g., FS_XRM) enhancements if and when completed.
It is suggested to define a communication mechanism by which the RTC SWG is constantly updated, based on the development of the other WGs. This may be achieved, for example, through the identification of the TRs/TSs under development in other WGs and by meeting-by-meeting updates given by the companies interested in this work.
7.1 PDU Set identification

It was agreed that SA4 will develop a solution based on a RTP header extension to serve SA2’s request in S4-221244 as per SA4’s reply in S4-221548.

[
1 Considerations on Reports for PDU Set feature

1.1 Available information on PDU Sets

At SA2#154-AH-e, it was agreed to update TS 23.501 to reflect conclusion of KI#4 in TR 23.700-60. The following components of the PDU Set Information are given in the CR#3896r1 on TS 23.501 (S2-2301379) agreed at SA2#154-AH-e [1]:

-
PDU Set Sequence Number.

-
Indication of End PDU of the PDU Set

-
PDU Sequence Number within a PDU Set

-
PDU Set Size in bytes.

-
PDU Set Importance, which identifies the importance of a PDU Set within a QoS Flow.

Under the assumption that the above information will be provided by RTP header extension(s), it is expected that an RTP receiver can acquire the following information for an interested time window:

-
Number of received PDU Sets,

-
Fraction/Number of incompletely (or completely) received PDU Sets, and

[-
An estimate of the statistical variance of the PDU Set interarrival time]

Under the same assumption, the following information for each PDU Set can be available in an RTP receiver:

-
Indication whether a PDU Set has been completely received,

-
Fraction/Number of lost RTP packets in a PDU Set (when the number of PDUs in a PDU Set is available)

[-
PDU Set delay for a completely received PDU Set]

It is noted that the above information can also be organized on a PDU Set Importance basis.

1.2 Delivery of Reports on PDU Sets

There are number of possible ways to encapsulate the information discussed in section 2.1 into RTCP packets including profile-specific extensions to the sender (PT=200) and receiver report (PT=201) [2], Application-defined RTCP packet (PT=204) [2], Extended Report (XR; PT=207) [3], Generic RTP Feedback (RTPFB; PT=205) [4] and Payload-specific Feedback (PSFB; PT= 206) [4]. As the PDU Set feature should be supported across RTP profiles and payload types, it is recommended to use Extended Report (XR; PT=207) [3] and/or Generic RTP Feedback (RTPFB; PT=205) [4] as a container(s) for PDU Set-based RTCP feedback.

The format of an XR packet with a single report block is as follows [3]:

[image: image6.png]0

1 2

3

012345678901234567890123456789°01
R R e e Bt e B e

|V=2|P|reserved |

+_
|
+_

|
+_

+_

+

+

—t—t—t—t-

—t—t—t—t-
BT

—t—t—t—t-

—t—t—t—t-

+

+

+

PT=XR=207 | le
==ttt -ttt —F—t—F—F—F—F+—+—
SSRC
==ttt -ttt —F—t—F—F—F—F+—+—
| type-specific | block
==ttt -ttt —F—t—F—F—F—F+—+—
type-specific block contents
==ttt -ttt —F—t—F—F—F—F+—+—

+—t—t—+-
ngth
+—t—t—+-

+—t—t—+-
length
+—t—t—+-

+—t—t—t—

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+— 4+ — +— +

An XR packet consists of a header of two 32-bit words, followed by a number, possibly zero, of extended report blocks which comprises of BT, type-specific, block length and type-specific block contents. Extended report blocks can be stacked, one after the other, at the end of an XR packet. The value of BT (block type) field identifies the block format and its name space is managed by IANA:

https://www.iana.org/assignments/rtcp-xr-block-types/rtcp-xr-block-types.xhtml
The packet format of an RTCP Feedback Message is as follows [4]:

[image: image7.png]0

1

2

3

012345678901234567890123456789°01

+—t—t—t-
[V=2|P]|

+—t—t—t-
|

+—t—t—t-

|
+—t—t—t-

+

+

+

+

e B e et B Rt St S

FMT | PT |

s B e e et B it St S

SSRC of packet sender

e B e et B it St S

SSRC of media source

e B e et B Rt St S

Feedback Control Information

length

(FCI)

+

+

+

+

+

+

+

+

+

+

-+
|

-+
|

-+

|
-+

The PT (payload type) field identifies the packet as being an RTCP FB message. Currently two values are defined by the IANA: PT=205 for RTPFB (transport layer FB message) and PT=206 for PSFB (payload-specific FB message). The FMT (feedback message type) field identifies the type of FB message and is interpreted relative to the payload type (i.e., RTPFB or PSFB). The FMT values for both the RTPFB payload type and the PSBF payload type are managed by IANA:

https://www.iana.org/assignments/rtp-parameters/rtp-parameters.xhtml
NOTE: The detailed format for PDU Set-based RTCP feedback is FFS as it may depend on other aspects of the PDU Set feature including RTP header extension and usage scenarios.
]
8 Proposal

It is proposed to agree on the above version of the 5G_RTP Permanent Document that includes the additions from SA4#122 relating to document [8], [9], [10].
9 References
[1] S4-220731, Agreed at SA4#119e.

[2] S4-221087, Agreed text to be added in brackets at SA4#120e.

[3] IETF RFC3550, "RTP: A Transport Protocol for Real-Time Applications", July 2003

[4] IETF RFC8285, “A General Mechanism for RTP Header Extensions”, Oct. 2017

[5] IETF RFC3711, “The Secure Real-time Transport Protocol (SRTP)”, March 2004

[6] IETF RFC6904, “Encryption of Header Extensions in the Secure Real-time Transport Protocol (SRTP)”, April 2013.
[7] S4-221555. Section 2 agreed at SA4#121.

[8] S4-230147. Section 2 agreed (to be added in brackets) at SA4#122.

[9] S4-230290. Section 2 agreed at SA4#122.

[10] S4-230359. Section 3 agreed at SA4#122.
� Contact: Igor D.D. Curcio, Nokia Corporation, Tampere, Finland, igor.curcio@nokia.com

- 4/4 -

