3GPP TSG-SA WG4 Meeting #122
S4-230326
Athens, Greece, 20 – 24 February 2023

Source:
NTT

Title:
Discussion on the underlying models for iRTCW signalling and key protocol issues
Agenda item:
10.5

Document for:
Discussion and Agreement
1. Introduction
In iRTCW and FS_eiRTCW, WebRTC signalling has been studied based on the design principles and "major items for consideration in protocol design" [1] [2]. In parallel, a specific signalling protocol for iRTCW was proposed [3], which seems based on a different design principle.
To clarify possible difference between the two streams, this contribution discusses a conceptual model for signalling design and derived protocol issues/details (along with the Key Protocol Issues, rephrased from the listed items in [2]). If differences exist, possible way forward is also discussed.

2. Model for (the enhancement of) WebRTC protocol design
Trapezoid Model:

Figure 1 shows the model underlying in FS_eiRTCW. (Though Figure 1 uses the specific functional names in FS_eiRTCW’s PD, the point of the discussion is about a high-level design concept.)


[image: image6.png]
Figure 1:
Trapezoid model for iRTCW protocol design
WebRTC Signalling Function (WSF) and WebRTC Media Centre Function (WMCF) in the network are responsible for providing reliable high-quality iRTC services.

· WSF terminates all signalling messages from endpoints and other WSFs. This behaviour is equivalent to the behaviours of a back-to-back user agent (B2BUA) in SIP. By manipulating all signalling messages, the WSF fully manages the connection and provides QoS interacting with 5GC and WMCF.

· WMCF involves all media/data paths of endpoints. The WMCF can control and monitor all media/data sessions.

Client-Server model as a building block and its benefits:

The model above can be conceptually summarized as a client-server model between two entities (i.e., between an endpoint and a server, between servers). Figure 2 shows an example between the endpoints and the server. The endpoint (i.e., the terminal) only sees a single entity (i.e., the network server). The server takes care of everything behind the server toward the final endpoint. 


[image: image2]
Figure 2:
Client – server model for iRTCW protocol design example
One of the benefits brought by the model is simplification of the protocol between two entities (e.g., client and server) rather than among three and more (e.g., two endpoints and servers). For example;

· All request/response messages can be defined between the endpoint and the network.

· Signalling message routing can be done by the network without terminal involvement (i.e., routing information (which is included in SIP messages) does not appear in the message between the endpoint and the server).

· The endpoint/application specific characteristics (e.g., capabilities and services) can be converted/terminated by the network.

3. Protocol issues/details and directions

The following issues and directions can be identified based on the above model and Key Protocol Issues discussed in [1] and [2].

Key Protocol Issue#2: Way of enhancements of message types and fields
1. Message-part significance: It should be specified which part of a message is network-relevant and fully terminated by the network, and which part is transparently transported by the network.

2. How to support vendor-specific or operator-specific message types and field enhancements, and how to avoid duplicate names of them.

Key Protocol Issue#4: Messaging styles and the method for transaction matching
1. Requests can be specific by reflecting what the client wants the server to do, whereas responses can be defined in a common style with the common response status, such as accepted, provisionally accepted, or error codes. For a request, the specific types should be defined. For a response, the details and the types of the status codes should be defined
2. Along with the request/response pair, the effectiveness of the pair can be defined as a transaction. Both the client and the server can have a transaction and the transaction should be shared between the client and the server. The identifier of the transaction should be defined. The way to synchronize the transaction (and its identifier) should be defined. If the mismatch of the transaction is identified, the way to resolve it should be defined.

3. The possible SDP offer/answer pattern should be defined. The SDP offer can be created by an endpoint or a server according to the service.
Key Protocol Issue#7: State transition (state machine) of the protocol endpoints, and timeouts

1. A state machine should be defined.

2. A server and an endpoint may not be in sync with each other between C-Plane status and U-plane status. The way to monitor the synchronization should be defined. If the mismatch is detected, the way to resolve it should be defined.

3. How to manage the C-Plane connection, i.e., setup, close, and maintain, should be defined (e.g., WebSocket keep alive and presence). It should be noted that the C-plane connection is setup only between the endpoint and the network, not between two endpoints.
4. Proposal

This contribution shows an idea currently being sought for in FS_eiRTCW.

Another proposal [3] looks based on another model. Based on a quick review, the proposal seems using a direct C-plane connection between two endpoints, which is different from the client/server model for trapezoid model. It also models a signalling server as a relay, which implies the network entity as a lightweight proxy or a simple message forwarder.

The source of the contribution wants to discuss the suitable way forward. Options can be:

1. The protocols for iRTCW and eiRTCW are specified based on the single model proposed in this discussion paper. The compatibility between iRTCW and eiRTCW is highly expected. As is discussed in clause 2, the terminal implementation can be simple. However, it may need excessive efforts to realize Collaboration Scenario 3 in Rel-18. The protocol may be too rigid to some cases only used in a single MNO/OTT.

2. The protocol for iRTCW is specified based on the already-proposed direct connection and relay server model [4]. The target is in Rel-18. In parallel, the protocol for eiRTCW is studied in Rel-18 based on the model in the discussion paper, then specified in Rel-19 as a different version of the protocol. In this way, the protocol for iRTCW can be developed rapidly. Compatibility between these protocols may not be guaranteed. iRTC applications can select the protocol version based on the service requirements. 
3. The protocol for iRTCW is specified based on the already-proposed direct connection and relay server model [4]. The target is in Rel-18. In parallel, the protocol for eiRTCW is studied in Rel-18 based on the model in the discussion paper, then specified in Rel-19 as a different protocol. In this way, the protocol for iRTCW can be developed rapidly. In addition, the protocol for iRTCW and eiRTCW can be enhanced independently in future releases. Compatibility between these protocols may not be guaranteed. iRTC applications can select the protocol based on the service requirements.

5. Conclusion
The way forward option 3 is adopted for WebRTC signalling protocol development.

Reference
[1] S4aR220041 : SA4 RTC teleconference (5th, October 2022)
https://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/3GPP_SA4_AHOC_MTGs/SA4_RTC/Docs/S4aR220041.zip
[2] S4-221261 : SA4#121 (November 2022)
https://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/TSGS4_121_Toulouse/Docs/S4-221261.zip
[3] S4aR230036 : SA4 RTC teleconference (1st, February 2023)
https://www.3gpp.org/ftp/tsg_sa/WG4_CODEC/3GPP_SA4_AHOC_MTGs/SA4_RTC/Docs/S4aR230036.zip
[4] S4-230142: [iRTCW] Signaling Protocol for iRTCW, SA4#122 (February 2023)
https://www.3gpp.org/ftp/tsg_sa/WG4_CODEC/TSGS4_122_Athens/Docs/S4-230142.zip
Annex A : Major items for consideration in protocol design
Major items for consideration in protocol design are as follows (from [2]):
1. Protocol versioning and backward compatibility: how to realize coexistence, identification or separation of multiple versions.
2. Way of enhancements of message types and fields: how to support vendor- or operator-specific enhancements and how to avoid duplicate names.
3. Communication models to be supported by the protocol: the number of UEs and servers, direction (e.g., n UEs to n UEs via 1 Server, 1 UE to 1 UE direct (Peer-to-Peer), 1 UE to 1 UE via 1 Server, 1 UE to n UEs like multicast, originating calls, terminating calls, and so on).
4. Transaction models: messaging styles (e.g., request-response, subscribe-notify, or one-way trap) and the method for transaction matching between messages.
5. Authentication models: e.g., username and password, external authentication (OAuth or OIDC), out-channel (certificates) or SIM authentication.
6. Active terminals per user: the number of active terminals for one user ID. This item will affect the transaction models and the authentication models.
7. State transition (state machine) of the protocol endpoints, and timeouts
[image: image3.png][image: image4.jpg]
- 4/5 -

[image: image1][image: image5.png]