[bookmark: _Hlk99454286]3GPPSA4#121 S4-221386
14 November 2022, Toulouse	

Source: 	NTT
Title: 	Discussion on browser-based XR client architecture
Document for:	Discussion
Agenda item: 	9.5, 10.5

Introduction
This contribution is intended to the XR client architecture discussion, planned on Monday afternoon.
Support of XR media using WebRTC technology is being discussed in iRTCW and FS_eiRTCW under RTC SWG. To assist the discussion on XR client architecture, this contribution reviews the WebRTC functions specified in IETF and W3C and their deployments in practice. The core of the WebRTC technology, the browser, should be taken into account in the XR client architecture.

Analysis of WebRTC functional model
The followings are some excerpts from RFC 8825 [1].
EXCERPTS BEGIN.
IETF RFC 8825, Overview: Real-Time Protocols for Browser-Based Applications, gives an overview and context of a protocol suite intended for use with real-time applications that can be deployed in browsers -- "real-time communication on the Web".
2. Principles and Terminology
2.2. Relationship between API and Protocol
Browser: Used synonymously with "interactive user agent" as defined in [HTML5]. See also the "WebRTC Browser" (aka "WebRTC User Agent") definition below.
[bookmark: _Hlk118623659]WebRTC Browser (also called a "WebRTC User Agent" or "WebRTC UA"): Something that conforms to both the protocol specification and the JavaScript API cited above.
WebRTC Non-Browser: Something that conforms to the protocol specification but does not claim to implement the JavaScript API. This can also be called a "WebRTC device" or "WebRTC native application".
WebRTC Endpoint: Either a WebRTC browser or a WebRTC non-browser. It conforms to the protocol specification.

3. Architecture and Functionality Groups
[image: ダイアグラム

自動的に生成された説明]
EXCERPTS END.

[image:]
Figure 1: WebRTC model (drawn for this contribution)
Based the RFC, the client model including both a WebRTC browser and a WebRTC non-browser can be drawn as Figure 1. A WebRTC non-browser (endpoint) is placed on top of the OS directly. In a WebRTC browser (endpoint), the web browser contains the main functions. It should be noted that, since the web browser is an application from OS’s viewpoint, the box in the figure shows “web browser app.” Applications written in JavaScript in a WebRTC browser (endpoint) works on top to the browser and uses browser’s functionality through the JavaScript APIs, which are defined by W3C.

Protocol stack
It should be noted that the protocol stack is not provided in WebRTC specifications. The protocol stack for WebRTC use in 3GPP SA4 RTC is under discussion in RTC SWG. This subclause discusses the protocol stack from implementation’s viewpoint.
The protocols are generally implemented in the OS of the smartphone and the web browser.
The C-Plane signals of WebRTC is not specified in W3C and left open. In implementations, it typically uses JSON format over WebSocket. (Figure 2)

[image:]
Figure 2: WebRTC typical protocol stack for C-Plane (drawn for this contribution)

The U-Plane signals for WebRTC are specified, and there are two methods for deployment: using RTP format or data channel mechanism [2]. (Figure 3).

[image:]
Figure 3: WebRTC protocol stack for U-Plane (drawn for this contribution)

Session management
Refer to Clause 4. Peer-to-peer connections in [3].
RTCPeerConnection interface defined in W3C WebRTC 1.0 [3] provides the functionality for establishing a peer-to-peer connection (i.e., U-Plane path) between WebRTC browsers, to JavaScript application (It can be used by the endpoint which implements the required protocols). RTCPeerConnection interface creates an RTCPeerConnection object which has a signalling state (including SDP negotiation information), a connection state, an ICE gathering state, and ICE connection state.
The JavaScript application can use the RTCPeerConnection object for management of U-plane connections with a remote peer application. For example, the JavaScript application uses RTCPeerConnection interface to retrieve the local state information from the object. The application uses the information for creating an SDP offer. Via the interface, the JavaScript application sets into the object the remote peer’s U-plane connection information (e.g., IP address, port number, codec information, NAPT interception) as the result of SDP negotiation.

Media stream management/processing at the UE
Refer to Clause 4. MediaStream API in [4].
Media stream management/processing functionalities provided by browsers are defined by W3C Media Capture and Streams specification [4] as MediaStream API. MediaStream API has two main components for management of a media stream track and a media stream. These are MediaStreamTrack and Media Stream interface.
MediaStreamTrack object represents media of a single type that originates from one media source (i.e., audio track from microphone or video track from camera). The MediaStreamTrack which sent to / received from remote peer is linked to RTCPeerConnection object.
MediaStream object is used to group several MediaStreamTrack objects as a media stream. All media tracks in a Media Stream object are intended to be synchronized when these are rendered.
MediaStream API also provides echo cancellation and noise suppression functionalities for audio track.

Media processing
Refer to Clause 5. RTP Media API in [3].
WebRTC APIs (RTP Media API) defined in W3C WebRTC 1.0 [3] provide browser-based media processing functionality for the JavaScript application. The actual encoding and transmission of MediaStreamTracks is managed through objects called RTCRtpSenders. The reception and decoding of MediaStreamTracks is managed through objects called RTCRtpReceivers. The codec which expected to be used between peers is set to the RTCRtpSender and RTCRtpReceiver with the settings from the result of signalling (e.g., SDP negotiation).

Overall picture
The main functions of WebRTC model for audio/video are implemented in the web browser. They include follows:
· Media encoding/decoding,
· Audio video synchronization,
· Echo cancellation, and
· Noise suppression.

[image:]
Figure 4: Functional model of browser-based WebRTC (drawn for this contribnion)

Application of WebRTC technology to XR services
As described above, the browser can perform almost all functionalities required by the current WebRTC communication. The browser-based implementation helps rapid growth of the market and the development of services. Considering the terminal enhancements/extensions for immersive communication using XR media, it is expected that the services should be realized by the browser functions as same as the current WebRTC communication is.

Proposal
XR media is expected to be supported by WebRTC as discussed in iRTCW and FS_eiRTCW.
It is proposed that the browser functionality for WebRTC should be considered in XR client architecture of MeCAR.
In the XR client architecture, the browser should be identified in the description and diagram. The detail arrangement of the diagram and its description need further study.

References
[1] IETF RFC 8825 "Overview: Real-Time Protocols for Browser-Based Applications"
[2] IETF RFC8831 "WebRTC Data Channels"
[3] W3C "WebRTC 1.0: Real-Time Communication Between Browsers" https://www.w3.org/TR/webrtc/
[4] W3C "Media Capture and Streams" https://www.w3.org/TR/mediacapture-streams/
- 9/9 -
image4.png

image5.png

image1.tmp

image2.png

image3.png

