3GPP TSG SA WG4#120-e meeting	Tdoc S4-221064
17th – 26th August 2022

Source:	Xiaomi
Title:	On frame submission to the AR Runtime in EDGAR-1 architecture
Document for:	Agreement
Agenda Item:	9.5


1	Introduction
At the 3GPP meeting #119-e, SA4 published the Permanent Document (PD) for MeCAR v2.0 [1]. During the post 119-e period, discussion on MeCAR took place during scheduled Video SWG telcos. This contribution proposes updates to the clause 4.2.1 Device architecture for EDGAR-1 device category based on these discussions around the interface between AR Scene Manager and the AR Runtime.
2	Background on OpenXR rendering
2.1	Rendering cycles
As described in the OpenXR Reference Guide [2], an OpenXR application is composed of different cycles as depicted in Figure 1.
[image: Diagram

Description automatically generated]
[bookmark: _Ref111135619]Figure 1 - OpenXR application lifecycle [2]
In terms of rendering operation, the relevant part is located between the call to xrBeginFrame and the call to xrEndFrame on the bottom right part of the diagram.
When the application calls the xrEndFrame function, the application provides the structure XrFrameEndInfo which contains all necessary information to render the frame that is:
· The time at which this frame should be displayed.
· The mode to be used for blending the user’s envriromnent with the submitted frame
· One or more layers which composes the submitted frame

As documented in the OpenXR specification:
“XrFrameEndInfo may reference swapchains into which the application has rendered for this frame. From each XrSwapchain only one image index is implicitly referenced per frame, the one corresponding to the last call to xrReleaseSwapchainImage.”
This describes how the runtime and the application can exchange visual data, i.e. via the use of swapchains.
2.2	Swapchains
Swapchains are a generic mechanism for computer systems to manage the generation and the display of images. As commonly defined “a swap chain (also swapchain) is a series of virtual framebuffers utilized by the graphics card and graphics API for frame rate stabilization and several other functions. The swap chain usually exists in graphics memory, but it can exist in system memory as well.” [3].
The OpenXR API allows an application to request the creation of swapchains using the xrCreateSwapchain function according to a specific format supported by the platform. The supported formats can be queried by the xrEnumerateSwapchainFormats function.
3	Proposal
3.1	General
The proposal is as follows :
· Add an arrow from the AR Scene Manager to the AR Runtime where frames are submitted.
· Add a Swapchains API seating on the AR runtime to allow submitting the images in the Swapchains.
· Add text describing the usage of Swapchains.
3.2	Proposed updated clause

[bookmark: _Toc103876424][bookmark: _Toc103918525]4.2.1	Device architecture
[Editor’s note] At SA4#119, this section was added while further improvements were improved.
Figure 2  provides the technical architecture of EDGAR-1 UE. 

[image: Diagram, schematic

Description automatically generated]
[image: Diagram

Description automatically generated]
[bookmark: _Ref103839657]Figure 2 - Device architecture of EDGAR-1 device
The EDGAR-1 is regular 5G UE with 5G connectivity provided through an embedded 5G modem and 5G system components. The EDGAR-1 UE also features several sensors and user controllers relevant for AR experiences that are cameras, microphones, speakers, display and generic user input. The AR/MR Application is responsible for orchestrating the various device resources to offer the AR experience to the user. In particular, the AR/MR Application can leverage three main internal components on the device which are:
· The Media Access Functions (MAF)
· The AR Runtime
· The AR Scene Manager
The AR/MR Application can communicate with those three components via dedicated APIs called the MAF-API, the AR Scene Manager API and the AR Runtime API. Among other functionalities, those APIs enables the AR/MR Application to discover and query the media capabilities in terms of support as well as available resources at runtime. Regarding rendering, the AR/MR application obtains the head pose information from the AR Runtime which is then provided to the AR Scene Manager. Based on this information, the AR Scene Manager determines the objects visible to the user at a given point in time or more generally the objects that may be needed to be rendered in the next rendering cycles. Upon negotiation or predetermined configuration with the AR Runtime, tThe AR Scene Manager then submits the rendered views (sometimes called layers) to the AR Runtime as frames written to the images of the Swapchains which formats where configured beforehand by the AR/MR Application using the information provided by the AR Runtime API. From those viewsimages in the Swapchains, the AR Runtime then generates the left and right eye buffers possibly based on late adjustment techniques using updated head pose information, if available, commonly known as late stage reprojection (LSR).
Once the AR/MR application is running, the downlink media flows from the 5G System to the MAF in compressed form and then from The MAF to the AR Scene Manger in a decoded form. In parallel, the EDGAR-1 UE is capable of establishing an uplink data flow from the AR Runtime to the MAF wherein the data may be in an uncompressed form and then from the MAF to the 5G System wherein the MAF may have compressed the data in order to facilitate the expected transmission over the network.

References
[1] [bookmark: _Ref102547365]S4-220760, MeCAR Permanent Document v2.0, 3GPP TSG SA WG4 119-e Meeting, 11th – 12th May 2022
[2] [bookmark: _Ref111135597]OpenXR 1.0 Reference Guide, https://www.khronos.org/files/openxr-10-reference-guide.pdf 
[3] [bookmark: _Ref111137459]Wikipedia contributors, "Swap chain," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Swap_chain&oldid=1053599560 (accessed August 11, 2022).

		Page: 1/4
		Page: 4/4
image1.png
OpenXR API Overview

Ahigh level overview of a typical OpenXR application including the order of function calls, creation of objects, session state changes, and the rendering loop.

xrEnuneratenpilayerproperties

XR_ERROR_
FORM_FACTOR_UNAVAI

xrEnunerateInstancebxtensionProperties

ide APT and

xrCreatelnstance

Session

xrDestroyInstance

tance
Destroyed

Application
Completed

xrGetInstanceproperties
xrGetsystenProperties
xrEnunerateEnvironnent8lendiodes

xrEnumerateVieuConfigurations
xrGetVienConfigurationProperties
xrEnunerateviewConfigurationViews

xrCreateactionset
xrCreateaction
xrSuggestInteractionProfilepindings

xrEnunerateReferencespaces
xrCreateReferencespace
xrGetReferencespaceBoundsRect

xrCreateActionspace
xrAttachsessionactionsets

xrEnunerateswapchainformats
xrCreateSwapchain
xrEnunerateswapchaintnages

-

xrGetsysten

v

xrcreatesession

xrpollevent

v

Session States
and
Frane Loop

BaTING

OA//\O

xrbestroySession

TATE

xrBeginsession

XR_SESSION S
STOPPING

xrEndsession

SS10N_STATE
PENDING

xrsyncactions
xrGetactionstategoolean
xrGethctionstateFloat
xrGetActionstatevector2f
xrGetActionstatePose

xrlocatespace

xeApplyHapt icFeedback
xrStopHapticFeedback

xrRequestExitsession

_SESSION_STATE
NCHRONIZED | VISIBLE | FOCUSED

XrWaitFrane
xrBeginrane

¢ Imxmmy

xrAcquireSuapchaininage
xriaitSwapchainInage
xrLocateviews
xrlocateSpace





image2.png
User Input

EDGAR-1 UE

AR
Runtime
AP

Eye Buffer
Display
i Uplink Mediar

Decoded Media Data:

Downlink Media





image3.png
Eye Buffer
Display

Speakers

User Input

T

EDGAR-1 UE

AR
Runtime
AP

AR Scene
Manager
APl

Scene Description:

Decoded Media Data:

Uplink Media——>

Downlink Media





