	
3GPP TSG-SA WG4 e-Meeting post #128	S4aV240026
Online 25th June 2024

Title:	LS on AI logic function mapping to existing IMS architecture
Response to:	
Release:	Release 19		
Work Item:	FS_AI4Media

Source:	SA4
To:	SA2
Cc:

Contact Person:	Yongjing Zhang
	zhangyongjing(at)huawei(dot)com
Send any reply LS to:	3GPP Liaisons Coordinator, mailto:3GPPLiaison@etsi.org 	

Attachments: None	

1. Overall Description:
3GPP SA4 FS_AI4Media has studied media-based AI/ML use cases and scenarios, such as object detection, video quality enhancement, media capture, natural language processing, that can be used for advanced media streaming and real-time communication services (see clause 4 of 3GPP TR 26.927 v0.8.0 and more in the [AI4Media] Functional Permanent Document V1.3.0 (S4-241178)). To support these scenarios, architecture enhancement and service flows have been studied to address the following aspects (see clause 5 of 3GPP TR 26.927 v0.8.0):
-	AI model distribution
-	Split AI inference
-	Distributed/Federated Learning
Correspondingly, media-related logical AI functions are introduced and mapped to the generalized 5G Media Delivery architecture, including:
-	AI Training Engine
-	AI Inference Engine
-	Federated Learning Engine
-	AI Data Access/Delivery Function
-	AI Model Repository/Provider
[bookmark: _Hlk164374961]In addition, SA4 is also working on the study of the potential mapping of the logical AI functions to the existing IMS architecture to support the real-time communication scenarios such as “Sign language translation”, where AI inference function is used to translate the sign language to audio/text, and reversely translate audio to video stream of sign language played by an avatar (see clause 4.1.2 in S4-241178).
This use case is based on the “IMS-based avatar call support for accessibility” use case in SA1 FS_Metaverse study (see clause 5.26 of 3GPP TR 22.856 v19.2.0) and is relevant to the SA2 FS_NG_RTC_Ph2 (KI#8: Support of IMS Avatar Communication of 3GPP TR 23.700-77 v1.0.0).
SA4 would like to invite SA2 to provide comments on the potential mapping of the logical AI functions to the existing IMS architecture as documented in clause 5.4 of S4-241178 (as attached).

2. Actions:
To SA WG2 group.
ACTION: 	SA WG4 kindly asks SA WG2 group to provide comments on the potential mapping of the logical AI functions to the existing IMS architecture as documented in clause 5.4 of S4-2411178 (as attached).

3. Date of Next TSG SA WG4 Meetings:
TSG-SA4 Meeting #129-e	19th – 23th August, 2024			Online
TSG-SA4 Meeting #130		18th – 22th November, 2024		Orlando

S4-241178.zip

S4-241178.docx

3GPP TSG-SA WG4 Meeting #128 S4-241178 revision of S4-240820

Jeju, Korea 20 – 24 May 2024

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:		Samsung Electronics Co., Ltd. (Rapporteur)

Title:			[FS_AI4Media] Functional Permanent Document v1.23.0

Version:		1.23.0

Agenda Item:		9.6

Document for:		Agreement

1	Introduction

During SA4#117-e the New Study Item on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” in S4-220226 was agreed and afterwards approved in by SA#95e in SP-220328.

The objective of this study item are primarily to identify the media service architectures and relevant service flows, model operation configurations, data components including available data formats, and the data traffic characteristics in AI/ML for media related services. Key performance indicators and performance metrics are also identified.

The concrete objectives are as follows:

· List and describe the use cases for media-based AI/ML scenarios, based on those defined in TR 22.874.

· Describe the media service architecture and relevant service flows for the scenarios, identifying for each use case the impacts on the architecture, including any potential gaps with existing 5G media service architectures. Also describe the model operation configurations for each use case, including split AI/ML operations, identifying where certain AI/ML operations occur.

· Identify and document the available data formats and suitable protocols for the exchange of different data components of various AI/ML models, such as model data, metadata, media data, and intermediate data necessary for such model operation configurations. Also investigate the data traffic characteristics of these data components for delivery over 5G system, including whether there are any needs and potentials for data rate reduction.

· Identify and study key performance indicators for such scenarios, based on the initial considerations in TS 22.261, with additional emphasis on the use cases, model operation configurations and data components as identified in earlier objectives, focusing on objective performance metrics considering the KPIs identified.

· Identify potential areas for normative work as the next phase and communicate/align with SA2 as well as other potential 3GPP WGs on relevant aspects related to the study.

2	Related works

2.1	AI/ML work in 3GPP WGs

This clause documents the 3GPP activity related to AI/ML in other Working Groups.

-	SA1 has completed an initial study item on traffic characteristics and performance requirements for AI/ML model transfer in 5GS (FS_AMMT), documented in TR 22.874. This technical report describes a variety of different use cases for AI/ML in 5G, with many that are related to media services. The media related use cases described in TR 22.874 are used as a basis for those listed and described in clause 4.2 of this TR. Resulting from this study item, SA1 has completed related normative works by way of multiple CRs on TS 22.261 (AMMT), reflecting new service requirements and KPIs for AI/ML model transfer in 5GS. Leading from this initial work, SA1 has also subsequently established a Rel-19 study on AI/ML model transfer phase 2 (FS_AIML_MT_Ph2), the objectives of which are to study new use cases and potential service and performance requirements to support efficient AI/ML operations using direct device connection. This study avoids overlaps with stage-23 work ongoing in Rel-18.

-	SA2 is in progress of a study item on system support for AI/ML-based services (AIMLsys). The scope of this study is based on requirements from SA1, including 7 key issues related to the training and inference processes of AI/ML applications, namely monitoring of network resources to support application AI/ML operations, 5GC information exposure to UE and authorized 3rd party, enhancing external parameter provisioning, QoS and policy enhancements, among others.

-	SA3 has recently approved a study item on security and privacy of AI/ML-based services and applications in 5G (FS_AIML). The objectives are to identify what security and privacy management is needed for data transmission to application layer AIML, including authentication and authorization of data collection and sharing between UE, AF and the network, and securing of AIML-based services and operations.

-	SA5 has a study item on AI/ML management (FS_AIML_MGMT), related to automation and intelligence in 5G, including management and orchestration (e.g. MDA), 5GC (e.g., NWDAF), and NG-RAN. The objectives are to provide validation/testing of models and AIML enable functions, deployment of these models and functions, and configuration and performance evaluation of AIML enabled functions. The study will also investigate what coordination is needed between AIML management capabilities and 5GC AIML capabilities.

-	SA6 is in progress of a study on application data analytics enablement service (FS_ADAES), the goal is to study how to provide application layer data analytics as a possible new capability at the enablement layer for supporting the application specific layer to receive useful statistics/predictions for the application service, while complementing the analytics provided by the 5GS.

-	RAN1 is in progress of a study on the 3GPP framework for AI/ML for NR air interface. The goal of this study is to explore the benefits of augmenting the air-interface with features enabling improved support of AI/ML based algorithms for enhanced performance and/or reduced complexity/overhead. Enhanced performance here depends on the use cases under consideration and could be, e.g., improved throughput, robustness, accuracy or reliability, etc.

-	RAN3 has a study item on specify data collection enhancements and signalling support within existing NG-RAN interfaces and architecture (including non-split architecture and split architecture) for AI/ML-based Network Energy Saving, Load Balancing and Mobility Optimization (AIML_RAN). Normative work is expected to start in Q3 2022.

2.2	AI/ML work in MPEG WGs

MPEG currently has two working groups studying coding technologies optimized for machine vision tasks: Feature Compression for Video Coding for Machines (FC-VCM) and Video Coding for Machines (VCM). In the following the source content is referred to as video but the system can also be used with still images. The scope of these two groups differs in the inputs/outputs: the inputs to the encoder of VCM are videos or images, while the inputs and outputs to the FC-VCM codec are features extracted from the images or videos, which corresponds to the split-inference pipeline considered in this document.

VCM has issued a Call for Proposals (CfP) in Apr. 2022, and is currently performing Core Experiments (CE) to decide what should be included in the reference software. FC-VCM, on the other hand, is in a relatively earlier stage. It issued a CfP in April. 2023, the responses will be evaluated in October 2023.

2.2.1	MPEG Feature Compression for Video Coding for Machines (FC_VCM)

In the MPEG Requirements Working Group which explores new market needs, an ad-hoc group has been created to study the optimization of the Compression of Features in the context of Video Coding for Machine tasks (FC-VCM).

Intermediate data can consist of large tensors of floating-point values, which would require very large bitstream over 5G to enable split inference between the network and the UE. Therefore, compression may be required in this scenario. The FC-VCM encoder and the FC-VCM decoder would then be part of the intermediate delivery function and intermediate access function, respectively.

Figure 2.2.1-1 illustrates the considered pipeline where, like in the current study, a first part of the Neural-Network-based algorithm is split into two parts. The intermediate features are first encoded on the sender side and embedded in a bitstream, which is decoded at the receiver before inferring the second part of the Neural Network.

[image:]

[bookmark: _Ref126187396]Figure 2.2.1-1: FC-VCM pipeline

This standard, which targets use-cases matching the proposed Intermediate data transfer, is expected to be finalized by the end of 2025.

The current baseline considers the use of traditional video compression methods, e.g., the latest H.266/Versatile Video Coding (VVC) standard, to encode the features that are processed and packed into input frames to the codec. The activity has just started, and new methods are going to be proposed. As the AI models considered in this study rely on Neural Networks, it can be envisioned to optimize the compression of the intermediate features using trained auto-encoders as well, to minimize the size of the bitstreams to be transmitted over 5G, while conserving an acceptable accuracy of the inferred models.

2.2.2	MPEG Video Coding for Machines (VCM)

In the MPEG Video Working Group which explores video coding technologies, an ad-hoc group has been created to study the optimization of the Video Coding for Machine tasks (VCM).

Traditional coding methods aim for the best video reconstruction under certain bit-rate constraints for human consumption. However, with the rise of machine learning applications, along with the abundance of sensors, many intelligent platforms have been implemented with massive data requirements including scenarios such as connected vehicles, video surveillance, and smart city.

The sheer quantity of data being produced constantly leads previous methods with a human in the pipeline to be inefficient, and unrealistic in terms of latency and scale. There are additional concerns in transmission and archive systems which require a more compact data representation and low latency solution.

Figure 2.2.2-1 illustrates the considered pipeline where, like in the current study, videos are embedded in a bitstream, which is decoded to either a reconstructed video or a representation of the input video before inferring the task neural network.

VCM encoder

VCM decoder

Machine Analysis

Human Consumption

Video

Bitstream

Reconstructed Data

Figure 2.2.2-1: VCM pipeline

3	Definition of terms, symbols and abbreviations

3.1	Terms

For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

AI/ML model: A trained AI/ML model.

Model inference: Process by which a deployed machine learning model generates a result [5].

Inference engine: Functionality that provides runtime environment for a machine learning

model and exposes corresponding machine learning model inference capability [5].

AI/ML model subset: An elementary element of an AI/ML model that can be inferred independently.

AI/ML model composition: The composition of an AI/ML Model into one or more AI/ML model subsets.

AI/ML model split points: The points in a DNN AI/ML model where it is split into multiple AI/ML model subsets.

AI/ML inference endpoint: UE or Network inference engine that infers a result from executing an AI/ML model, or a part of it.

Split AI/ML model: An AI/ML model composed of AI/ML subsets that are distributed to, and inferred on different inference endpoints.

Intermediate data: Output from the inference process of an AI/ML model that is not considered the final inference result.

Model update: Partial or full update of a trained model which may include its internal structure and/or related parameters (e.g. weight, biases).

4	Media-based AI/ML use cases and scenarios

TR 22.874 [1] has identified a set of use cases for AI/ML with the following key operations:

· [bookmark: MCCQCTEMPBM_00000086]AI/ML operation splitting between AI/ML endpoints: The AI/ML operation/model is split into multiple parts according to the current task and environment. The intention is to offload the computation-intensive, energy-intensive parts to network endpoints, whereas leaving the privacy-sensitive and delay-sensitive parts at the end device. The device executes the operation/model up to a specific part/layer and then sends the intermediate data to the network endpoint, the network endpoint then executes the remaining parts/layers and feeds the inference results back to the device. Alternatively, the network endpoint may firstly execute the operation/model up to a specific part/layer and then sends intermediate data to the device, which then executes the remaining parts/layers before consuming the inference results.

· AI/ML model/data distribution and sharing over 5G system: Multi-functional mobile terminals might need to switch the AI/ML model in response to task and environment variations. The condition of adaptive model selection is that the models to be selected are available for the mobile device. However, given the fact that the AI/ML models are becoming increasingly diverse, and with the limited storage resource in a UE, it can be determined to not pre-load all candidate AI/ML models on-board. Online model distribution (i.e. new model downloading) is needed, in which an AI/ML model can be distributed from a network endpoint to the devices when they need it to adapt to the changed AI/ML tasks and environments. For this purpose, the model performance at the UE needs to be monitored constantly.

· Distributed/Federated Learning over 5G system: The cloud server trains a global model by aggregating local models partially-trained by each end devices. Within each training iteration, a UE performs the training based on the model downloaded from the AI server using the local training data. Then the UE reports the interim training results to the cloud server via 5G UL channels. The server aggregates the interim training results from the UEs and updates the global model. The updated global model is then distributed back to the UEs and the UEs can perform the training for the next iteration.

These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation.

The use cases and scenarios listed in this technical report, which are described in this clause, are based on a selection of the media-based AI/ML use cases identified in TR 22.874 [1].

4.1	Object Recognition in Image and Video

Based on clause 5.1 and 5.2 of TR 22.874 [1], this set of use cases, images and video streams are processed to identify and recognize objects and extract some metadata, such as bounding boxes, object labels, movement counters, etc.

The uses cases are applicable for the different topologies described in clause 5.1, including UE inference only, network inference only and split inferences topologies.

The computationally intensive and memory and power consuming AI/ML inference used to perform this processing requires offloading some inference parts from the mobile device to the edge or a cloud data center.

Split inference of trained ML model(s) for object recognition is distributed between multiple endpoints, typically between the network and UE. Split points may depend on various factors including UE capabilities, network conditions, model characteristics, and user/task specific requirements:

· Device/UE capabilities on running whole or part of model such as the required memory, the processing capabilities, the energy consumption, and the inference latency.

· [bookmark: _Int_uSC9WpmE]Network conditions for delivering media and/or the intermediate data. This may include, for example the amount of data to transfer in one shot for an image or at a specific frame rate for video, the required bandwidth in UL and/or DL with different impact on the network load and the related UL and DL network latencies. Network inference latency is also to be considered.

· Model characteristics include split inference with a task-specific model head running on the UE for object recognition. For example, in one UE, the task is to recognize pedestrians, whereas in another it is to recognize traffic signs. The core of the network model as well as the input image/video are the same, but the tasks (and their required task-specific models) in the UEs are different.

· User or task specific requirements. For example, it may be necessary to perform some processing tasks on end-device in order to preserve privacy or because they are delay sensitive operations.

Two main scenarios, both involving either image or video processing are proposed:

a) The UE captures images or video and first feeds the input data to the UE inference model (e.g., to preserve privacy). The UE then uploads intermediate output data from the UE inference model to the network inference, which in turn executes the remaining part of the model (e.g., process the intensive computations) and finally returns the results or a processed image/video to the UE.

b) Unlike the previous scenario, the UE uploads the captures image or video to the network where a network inference processes inputs video/image, then sends back the intermediate data to the UE inference executing the remaining layers of the model (e.g., task specific operations) and returning the final results.

These scenarios involve the key operation of AI/ML model/data distribution and require the delivery of trained ML model(s) for object recognition to the UE in 5GS, including the selection of models for different tasks or environments and the possible selection of the split points based on the various factors described above

These scenarios also involve the distribution of distributed online training of image and video recognition models based on input from different UEs. Depending on the configuration of the ML training framework, different data may need to be delivered between the UEs and the network. Typically, a shared model in the network is calibrated continuously based on the training results from all UEs. This scenario involves all the three key operations related to AI/ML model distribution, splitting, and distributed/federated learning.

4.1.1 Scenario: Split inferenced human pose estimation

Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.

Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.

Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.

This scenario falls under the use case of Object Recognition in Image and Video.

4.1.1.1 Description of scenario

User A is wearing a pair of AR glasses, ready to start her daily mat yoga home fitness program. She does her workout in front of a mirror such that the AR glasses can capture her movements for the application to give better feedback by estimating the pose using spatial locations of key body joints (keypoints).

As a mobile fitness application, user A is able to do such a work out either at home, at a hotel room on a business trip, or elsewhere as long as she has a 5G connectivity and enough workout space. At the start of the application service, depending on user A’s AR glass processor capability, 5G connectivity as well as the AI model complexity and architecture, a split inference configuration is negotiated, and the required partial AI/ML model(s) are delivered from the service application in the network to her AR glasses device.

Connected to 5G, during the workout user A’s AR glasses partially inferences the video captured during the workout, before sending the intermediate data to a remote server where the rest of the inferencing is processed. The results of the inference are sent back to her AR glasses, interpreted by the fitness application, and displayed to her when necessary.

Depending on the AI/ML model used for the service as well as AR Glass processing capability and 5G Network bandwidth, appropriate split points are firstly identified by the application provider, before the selection of a suitable split point according to the characteristics of the service instance.

4.1.2 Scenario: Sign language translation in real-time communication

4.1.2.1 Motivation and use case relevance

[image:]

Figure 4.1.2-1: Graphical representation of sign language translation in real-time communication

The hearing-speech impaired people are unable to have a regular voice call with normal people, they can use sign language instead. The sign language can be transferred to audio or text in real-time and sent to the normal people. The normal people can still use voice as if he is talking to a normal person, the voice of the normal people can be transferred to sign language or text to display on the screen of the hearing-speech impaired people. This helps hearing-speech impaired people to easily communicate with normal people.

However, the sign language AI model usually has several millions of parameters [27], network AI inference may be involved. For privacy reasons, the hearing-speech impaired user might not want to transmit his/her sign language video stream to the IMS or the peer user. Therefore, the AI inference for sign language needs to be split between the UE and IMS.

The hearing-speech impaired person UE-A uses a phone to have a voice call with UE-B. UE-A opens his camera to capture his sign language video, AI inference is performed to translate his sign language to voice or text, the translated voice or text is sent to the UE-B. On the other side, UE-B can use his speaker to talk, the voice of the UE-B can be converted into sign language video stream or text and sent to hearing-speech impaired person UE-A.

4.1.3 Scenario: Bit-incremental transmission and deployment of AI/ML models

4.1.3.1 Motivation and use case relevance

In many AI/ML mobile applications, end devices require very low latency to execute the model. End devices also have low bandwidth for model communication. Even the bandwidth from the server is limited. On the other hand, AI/ML models in many applications are very large in size and slow to transfer requiring a high amount of bandwidth. For example, consider the “object recognition in image and video” usecase considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO family of models or EfficientNet combined with EfficientDet, depending on the variant, may have 50-100M parameters. Transformer models are very successful models adopted in speech applications and their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models require a huge amount of bandwidth for transfer and high execution latency is expected in the UE.

Given these limitations, compression of AI/ML model data for distribution over 5G and splitting AI/ML model operation between endpoints are considered as two key operations for AI/ML related services. In an example scenario, assume that the server has access to different precisions of a model, e.g., a 32-bit floating-point precision of EfficientNet and a 16-bit precision of the same model for object recognition task. When requested by the UE, instead of delivering the AI/ML model in full precision, e.g., 32-bit precision, the server first sends the reduced precision, e.g., the 16-bit precision model. This version of the model is smaller in size and can be transferred faster. The UE starts running the model for the task at hand upon receiving this lower-bit precision model. This reduces the latency of receiving and executing the model by the UE.

Deploying a reduced precision model may negatively affect the task performance in the UE, e.g., object recognition using EfficientNet. To mitigate this, after the lower-bit version of the model is received by the UE, the server sends a model update to the UE. This model update is the difference between the full precision version of the model, e.g., the 32-bit version EfficientNet, and the lower-bit version of the model, e.g., the 16-bit version of the EfficientNet, as the base model. The update could be compressed using compression techniques and packages introduced in the PD. The two models, i.e., the smaller model and the update, are sent sequentially.

A caching mechanism is used when a full precision model update is received, allowing to load the updated model at once (i.e., all the nodes are updated and loaded afterwards). When mixed precision operation is allowed, the update model could be loaded incrementally, that is, for some nodes an update could apply where the implementation could involve a caching mechanism for applying an update to a subset of nodes that could be loaded into the memory after being updated. The cache could be temporarily created and released after the operations. It is expected that this type of operation allows having a working model deployed sooner which reduces the time for delivery to execution and having some results, i.e., the latency is expected to be reduced. It is expected that deploying an update does not break the continuity of process since the load operation happens in a fraction of a second. In critical tasks a buffer mechanism for inputs could be used to avoid disruption to the process continuity. Nonetheless, such a buffer may not be necessary in many use cases, e.g., in video processing missing one or two frames does not influence the video analytics significantly rather ability to start the task sooner with less latency may be more critical.

When compression is applied before transmission, it is expected that the total data size of the reduced precision model and model update will be smaller than the full precision model or compressed full precision model, since the model update is of sparse nature and thus more compressible. The bit-rate saving could be further studied using the evaluation framework.

The bit-incremental deployment allows running an operational lower-bit precision model until a higher-bit precision model is constructed using the rest of the lower-bit precision of the model which is communicated from the server to the UE as an update.

[image: A diagram of a cloud

Description automatically generated with medium confidence]

Figure 4.1.3-1: Graphical representation of bit-incremental AI/ML model transfer and adoption

4.2	Video Quality Enhancement in Streaming

4.2.1 Sender-receiver approaches

4.2.1.1 End-to-End neural network-based video coding

Based on clause 5.3 of TR 22.874 [1], in this use case, the sender and receiver apply parts of a DNN model (e.g. an autoencoder model) to enhance the quality of a video stream. An example of an autoencoder DNN is depicted in figure 4.2.1.1-1:

[image: 说明: A screenshot of a cell phone

Description automatically generated]

Figure 4.2.1.1-1

The sender is typically represented by various media functions in the network, which processes the high-fidelity video using the down-scaling part of a pre-trained DNN model to an intermediate data stream that is streamed together with a lower resolution encoding of the video. The receiver (UE) runs an inference algorithm (e.g. the up-scaling part of DNN model) on using the received intermediate data and video stream to produce a high-quality video for rendering.

The main scenario in this use case is about streaming intermediate data from the network for processing on the UE, involving AI/ML data distribution and operation splitting.

This use case covers all scenarios where intermediate data stream needs to be sent to the receiver, in addition to a low-resolution video.

4.2.1.2 Neural network based post-processing for video coding

A neural network (NN) applies post-processing to a decoded video sequence to enhance the quality of the decoded frames. The post-processing is performed outside the coding loop and does not impact the decoding process of the video. Possible post-processing algorithms include:

· Post-filtering: where the output of the video decoder is provided as input to a NN to improve the quality of the decoded frames. Such improvements include removal of video coding artifacts, subjective quality enhancement, etc.

· Super resolution: where a NN is used to increase the resolution of the output video sequence when the resolution of the display is greater than the resolution of the decoded frames. The use of NN-based approaches in super resolution resampling process increases the quality of the resulting resampled frames.

· NN-based HDR enhancement: a NN is applied for example to enhance a SDR video into an HDR-looking video.

In contrast to 4.2.1.1, this approach does not use an intermediate data stream.

[image:]

Figure 4.2.1.2-1 Neural network based post-processing for video coding use-case

Figure 4.2.1.2-1 depicts a neural-network-based post-processing use-case where pre-trained NN models are used at the receiver to post-process the decoded video to improve the quality. The video encoder processes the input video source to produce and send content-related metadata to the receiver, based on video/image or block, for example. The content-related metadata can be used to select a pre-trained NN model to be applied to a piece of content and to activate or not the selected NN model on it.

4.3	Crowd-Sourcing Media Capture

This use case and its corresponding scenarios are based on clause 6.2 of TR 22.874 [1]. A set of users attending a live concert and capturing the event on their UEs, use a shared (or a set of shared) DNN model(s) to process and improve their respective captured video and/or audio. Audio and video data may be captured in a noisy environment or an environment with poor lighting conditions. Multiple tasks may then be performed on the processed video and/or audio for media content analysis, e.g. to extract lyrics, annotate the video, improve audio and video quality, translate language, anonymize a face, etc.

This use case involves two different scenarios based on either a device inference or a network inference.

4.3.1	Device inference

The main scenario is to improve the media capture of each UE by using an up-to-date model adapted to the context event.

This scenario may involve the distribution of multiple models to a large number of UEs in a short period of time. The UEs are heterogeneous, running with different types of operating systems (e.g., Android or iOS), supporting different AI/ML engines/frameworks or having different GPU/CPU/NPU and RAM capabilities available for running the AI/ML service on the UE. This will need the distribution of a huge amount of various AI/ML models adapted to the different device capabilities. Depending on each user’s UE, the UE may request the download of a set of DNN models for device inference.

Moving or changing the environment (localization, energy, processing unit, memory, etc.) may need AI/ML model updates, where the DNN models stored in the network may be adapted or updated during the service.

The AI/ML application may optimize the end-to-end latency (e.g., to achieve latency below 1s) or the expected accuracy level of the inference result (e.g., to achieve image recognition precision of 99%) by modifying the model. The desired latency and/or accuracy level can therefore impact the size of the AI/ML model to be distributed. This can be done by:

· optimizing the model accuracy and latency for on-device execution. The model accuracy and execution latency are known, and the optimization may result in bandwidth saving.

· compressing the model for reducing the bandwidth usage and improving the delivery latency. This may affect the accuracy of the model.

If an uncompressed model is sent, accuracy is not affected but delivery latency would depend on the size of the model and the network bandwidth.

The distribution of the AI/ML models for a large number of UEs at the same time may also need to serve the models from different endpoints (e.g., cloud, edge, or other UEs), and may use several or different communication links (e.g. unicast, multicast or broadcast).

4.3.2	Network inference

The main scenario may be the sharing of the input media from multiple sources for network inference, as well as the selection of suitable DNN models according to the UE and/or task.

This scenario requests the UE to upload the media data for network inference. Similarly, to the UE inference, DNN models stored in the network may be adapted or updated during the service for network inferences.

4.4	NLP on Speech

Based on clause 6.3 of TR 22.874 [1], this set of use cases covers a wide range of speech processing use cases, e.g. to perform automatic speech recognition, voice translation, voice commands, speech synthesis, etc.

The AI/ML models for NLP are improved with distributed/federated training using multiple UEs. As more users make use of the service, the quality and accuracy of the models improves. The results of the local training of the models by the UEs are shared with the network.

The main scenario here is about UE downloading a partially trained model identified with its training state for local training, and then sharing the results with the network for distributed/federated learning.

4.4.1	NLP on Speech in real-time communication

NLP on speech in real-time communication can be done on both UE and network, or fully on the network. A use case which is fully completed on network is described as below.

UE-B has subscribed intelligent translation service. UE-A initiates an audio/video call and establishes a connection between UE-A and UE-B through IMS network. When detecting that UE-B has intelligent translation service, the IMS serving for UE-B decodes the audio stream from UE-A, recognizes and translates into text of required language based on the AI recognition, then sends the text to UE-B through a new unidirectional channel.

[image: C:\Users\s00301411\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\B4D1D471.tmp]

Figure 4.4.1-1: workflow for NLP on speech

4.5	Split model adjustment during ongoing AI/ML service

Based on clause 5.5 of TR 22.874 [1], this use case covers all the cases where when the AI/ML models are computing intensive, the work tasks can be fully or partially offloaded to the network and the AI/ML split points can be dynamically adjusted by considering various factors such as UE capabilities (e.g. processing capability/computation resources), service performance, intermediate data volume, and network conditions such as bandwidth etc.

The AI/ML models are set to have different candidate split points and each candidate split point has different workload and communication requirements, as well as intermediate data characteristics. A policy decision point for the media task will adjust the split points of the AI/ML model for an ongoing service based on the factors of current UE’s capabilities, communication performance, intermediate data volume, network conditions etc. to make sure that the media work task can be executed well, guaranteeing the UE experience and avoiding service interruption.

For the 5G media system, both UE capabilities and network conditions are required to be monitored and used as some of the considering factors when updating the AI/ML model split points for an ongoing service; the UE and network can then inference based on the newly updated AI/ML split models in real time.

4.6	Deployment options

AI4Media services can be categorized into one of four different deployment scenarios, depending on how AI/ML is used in the service, these four scenarios and their characteristics being:

1.	AI/ML used for media processing and/or handling:

-	Where both the source and output to the service are media data.

-	The AI/ML inference engine is typically inside that of a media-processing pipeline.

-	In this scenario, a media service may trigger an AI4Media service.

2.	AI/ML based service with media data as an input:

	-	Where the source to the service is media data and the output is non-media data.

	-	The AI/ML inference engine is typically outside that of a media-processing pipeline, and acts as a 			media consumer.

	-	In this scenario, an AI4Media service may trigger a media service.

3.	AI/ML used for media generation:

	-	Where the source to the service is non-media data and the output is media data.

	-	The AI/ML inference engine is typically inside that of a media-processing pipeline, and acts as a 			media generator.

	-	In this scenario, a media service may trigger an AI4Media service.

4.	AI/ML media service where a media pipeline is dedicated for the AI/ML framework:

	-	Where split AI/ML involves intermediate data having media characteristics.

	-	Where an AI/ML model is delivered in a streaming manner.

	-	In this scenario, an AI4Media service may trigger a media service.

Considering the use cases in this permanent document, the use cases may be mapped to the scenarios introduced as shown in the table below:

			

			Scenario 1

			Scenario 2

			Scenario 3

			Scenario 4

			Use cases

			Video Quality Enhancement in Streaming

Crowd-Sourcing Media Capture

			Object Recognition in Image and Video

			

			NLP on Speech

Use cases where split AI/ML or AI/ML model streaming is involved

From these scenarios, there is a need to consider both:

1) How an existing media service may support AI/ML, in particular how the media service may be triggered by an AI4Media application or service, or vice-versa. This is important if the media service is one that is supported by existing frameworks in SA4 (such as 5GMS), wherein the AI4Media service may need to be tightly coupled, or integrated into the existing media service framework (depending on the media pipeline).

2) AI/ML media services where a new AI/ML framework (including its related AI/ML data formats and delivery mechanisms), may need to be defined in order to support dedicated AI/ML media pipelines.

4.7	Operator related inputs

4.7.1	Identified challenges and proposals

It is proposed that the study explores and/or evaluates the following challenges identified by an operator during their feasibility research:

· given the recent technical advancements in client devices and all scenarios included in the study, to re-evaluate the trade-off between having powerful client devices capable of executing complex AI workloads and offloading heavy computational task from clients to the network (edge)

· to test more challenging network scenarios including eNB handovers, client device using different mobile operators, international roaming, switching between different operational modes: standalone operation of the client devices versus co-operative operation with the application part on the MEC/edge node when available

· to evaluate the performance (in terms of bandwidth and latency) of 5G and “beyond 5G” networks

· to consider the scalability of the architecture with increasing number of client devices simultaneously making use of the same application against the same MEC node. Main concerns, especially with scenarios in Section 5.1.1.1 in TR 26.927, are limited uplink bandwidth and resource sharing at the edge.

· to assess the complexity of modern popular AI/ML models (like EfficientNet, EfficientDet, and YOLO) that may not be suitable for a clear split/partition like the old model used in the Vodafone research study.

· to consider alternative approaches like “ensemble models”: complementing a simple, fast in-vehicle AI/ML model with more sophisticated additional AI/ML models executed on the MEC node to increase confidence scores for detection results.

4.7.2	Operator topics of interest

Leading from discussions of the text in 4.7.1, a list of operator topics of interest is provided below, which may be used as a comparison with the work and objectives being addressed in the study item. If necessary, the update or addition of new use-cases, requirements, objectives to the study item may also be considered. Following outputs will mention the scope of the topic on whether it is specific to AI4media, SA4, or related to other WGs.

1. Impacts of split inferencing on challenging network scenarios, such us handover to eNBs, client device using different mobile operators, international roaming.

2. Switching between a standalone configuration to a split configuration with Edge, including Edge/Network service availability.

3. Split inferencing between clients and the network, in particular trade-offs on different split configurations and the impacts on processing capability in both the client and the network.

4. Impacts of AI/ML media services on uplink requirements, in particular limited uplink bandwidth and resource sharing at the edge, where an increasing number of client devices may simultaneously make use fo the same application against the same MEC node.

5. Exploring the complexity, and in particular the splitability of the modern state of the art popular AI/ML models for split inferencing.

6. Exploring alternative approaches to split inferencing, such as “ensemble models”, where independent AI models with different complexity requirements may be inferenced in the UE and the network separately but used together for the same AI media service.

4.7.3	 Operator related topics analysis.

The following table presents an analysis of the operator related topics above. The scope column indicates whether the topic addresses AI4media, SA4 in general, other 3GPP Working groups or is linked to other SDO’s. The Status column extracts information from the 26.927 TR/PD, from evaluation the 26.847 TR/PD or from external inputs. The purpose of the Comments column is to discuss on the next steps in terms of requirements to add or possible evaluations to make.

			Topic

			Scope

			Status

			Comments

			1: challenging network scenarios

			SA4: robust delivery when handover

SA2: handovers

			- Not considered now

			Packetization of Intermediate data delivery to support handovers to consider at SA4 level?

			2: switching between standalone and split

			AI4Media

			- Split points configurations support standalone mode in the UE

- Dynamic split reselection requirement to adapt changing conditions TR 5.1.1.

- Dynamic split negotiation and split point update TR 5.3.5

			Dynamic split requirement from standalone mode to split mode and vice versa to consider ?

			3: Processing capabilities impact

			AI4Media

			- Processing capability information metadata shared between a UE and a network endpoint. TR 6.6.5

UE-centric, Network centric mode with processing capability exchanges TR 5.2.3.2

Limited processing capabilities of UE enabler for split TR 4.2

Tools for measurement of split inference on different CPU/GPU available in eval TR

			Evaluation TR: Tools to evaluate available

			4.1 uplink limitation

			AI4Media: feature compression, evaluation

MPEG FC-VCM

			Compression evaluation eval TR

Dedicated feature compression started in MPEG

			Evaluation TR: early encouraging results of agnostic compression

MPEG FC-VCM: Current status mention good results

			4.2 edge resource sharing

			SA6

SA4 global

			- not considered, at least generic to SA4

			Not specific to AI4Media

			5: Splittability

			AIM4media: evaluation TR

			- split for posenet, ssd_resnet, retinanet, eval TR

- single branch, multi branches ONNX split experimentations, APIs in eval TR

- Splittability evaluation Eval TR

			ONNX standard format available for any framework is enabler for splittability.

			6: “ensemble” models

			AI4Media:

			Not considered yet

New requirement to consider ?

			Operator to provide use-case and requirements §4.2 ?

5	Media service architecture for AI/ML

5.1	AI/ML model composition

[bookmark: _Hlk102590833]Figure 5.1-1 depicts an AI/ML model composed of different AI/ML subsets based on various split points. Several compositions of the same AI/ML model are represented by the AI/ML subsets (M0, M1), (M’0, M’1), or (M “0, M “1, M “2) with split points highlighted in red. The same AI/ML subset may be used in different compositions depending on the configurations of the model composition (e.g. M’0 and M ’00 according to figure 5.1-1).

In figure 5.1-1, (a) and (b) are examples of AI/ML inference endpoints running an AI/ML model M composed of two subsets M0, M1. A endpoint (network/UE) may run the AI/ML model subset M0 while downloading the other subset M1.

Examples (c) and (d) demonstrate AI/ML split models where M0, M’0 run on the UE while M1, M1’ run on the network respectively.

[image:]

Figure 5.1-1 AI/ML model composition example

5.1.1 Split AI/ML model inference topologies

5.1.1.1 UE as media data source

Figure 5.1.1.1-1 depicts an example of split AI/ML model inference topology where the UE is the media data source and runs the first model subset M0 as described in scenario (a) of clause 4.1 (object recognition). Figure 5.1.1.1-2 depicts another example of a split AI/ML model inference topology where the UE is also the media data source but the network server runs the first subset M0 as described in scenario (b) of clause 4.1. Assuming that the necessary AI/ML model subsets are already available at each endpoint, figure 5.1.1.1-1 and figure 5.1.1.1-2 show the data exchanged between the different split inference endpoints, including input media data, intermediate data, and inference results.

The results can be a textual indication of the recognized object, an output score, a bounding box, enhanced media data, etc.

[bookmark: _Ref102585439]Figure 5.1.1.1-1: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the UE

[image: D:\2022\3GPP\SA4\120\To submit\Final\image001.png]

Figure 5.1.1.1-2: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the network

5.1.1.2 Provider/network as media data source

Figure 5.1.1.2-1 depicts examples of split model topologies where the network or the AI/ML provider ingests the media data, such as in the use-case of clause 4.2 (video quality enhancement).

[image:]

[bookmark: _Ref102585483]Figure 5.1.1.2-1: Split AI/ML Model inference where the network/ AI/ML service provider ingests the media data

5.2	Basic architectures and workflows

5.2.1	Introduction

Considering the related use cases as documented in TR 22.874 and also as documented in the latest version of the Permanent Document, we can start from some basic scenarios for consideration of a basic architecture for AI/ML media services.

The basic starting scenarios are:

1) Delivery of a pre-trained AI/ML model from network to UE, typically at the start of an AI media service, but may also require updates during the service. At the most basic level AI/ML models can be delivered as a file (e.g. TensorFlow SavedModel, PDF5, ONNX file, NNEF file etc.) containing all the necessary information required for the UE to perform on device inference using the delivered model. For split scenarios, a (partial) AI model to be used in the UE may be delivered.

2) Split inference of a pre-trained AI/ML model(s) with two further sub-scenarios:

a) Basic scenario with an inference in the network or in the UE.

b) Split scenario with inferences between the network and the UE, where the intermediate data output from the network inference (resp. UE inference) is transferred to the UE (resp. network) to be used as the input for UE device inference (resp. network inference). Depending on the characteristics of the intermediate data, such as if the intermediate data is media content data, it may be practical to consider 5GMS architectures, procedures and/or protocols for the streaming delivery of such intermediate media data.

3) Distributed/federated learning using multiple UE devices with local training sets, and a central server in the network. Typically a central model is distributed to UEs for local training. UEs use local data available to the device for local training, and training result updates are sent back to the central server, which aggregates and updates the central model. Global updates on the central model are then distributed to the UE devices for continuous training.

NOTE: Compression aspects will be addressed once the digital representation of AI/ML models will be identified together with their associated service requirements (eg. traffic flow characteristics, latency, bitrate…).

5.2.2	AI data components

AI related media data include:

· AI model data, including data describing the topology/structure of the AI model, data related to the data nodes of the model, i.e. tensors, and other data which may be dependent on the format used for the AI/Ml model.

· Intermediate data, defined as the output data from the inference process of an AI/Ml model that is not considered the final inference result (depending on the service and output layer of the split AI model, certain intermediate data may have media characteristics, or even be media data). Intermediate data is typically required to be delivered to a second device or entity, as the input to a subsequent second split inference.

· Inference output data, which is the data corresponding to the output result of the final AI inference process for the service. Depending on the nature of the AI data inferencing for the given AI data service, this inference output data may include: labels for identifying recognition like tasks from media, actual media data such as video and/or audio, or perhaps XR related data such as 3D models.

5.2.3	Media-related data logical functions

Media logical functions supporting the scenarios identified in the PD include:

· AI data delivery function

· AI data access function

· AI model inference engine

5.2.14	Complete/Basic AI/ML model distribution

5.2.14.1	Basic architectures

[image:]

Figure 5.2.14.1-1: Basic architecture for AI/ML model delivery with inference in the UE

Figure 5.2.14.1-1 shows a simple basic architecture for AI/ML model delivery, as described in scenario 1) of clause 5.2, with an inference of a pre-trained AI/ML model in the UE, as described in scenario 2a) of clause 5.2.

In the network:

· An AI model in the repository is selected for the AI media service by the network application, and sent to the delivery function for delivery to the UE. Selection of an AI model could depend on UE and network characteristics, such as the memory and CPU capability/availability, as well as current network load and performance status.

· The AI model delivery function sends the AI model data to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of AI model data.

In the UE:

· A UE application provides an AI media service using the AI model inference engine and AI model access function.

· The AI model access function receives the AI model data via the 5G system, and sends it to the AI model inference engine. Receiver side optimization or decompression techniques for AI model data may be included.

· The AI model inference engine performs inference by using the input data from the data source (e.g. a camera, or other media source) as the input into the AI model received from the AI model access function. The inference output data is sent to the data destination (e.g. a media player).

Depending on the exact service scenario, AI model updates may be necessary during the service, and different AI model data delivery pipelines may be considered for such purposes. An AI model update may consist of a change in the AI model structure without disrupting the AI media service. If the AI model has requirements on UE memory, processing/computing capabilities or if running the AI model will increase the UE’s power consumption dramatically which will also influence the user experience of other services, it may actively request the update of the AI Model. For example, when the memory usage of the UE processing the AI Model exceeds a certain threshold, or if UE performance deteriorates, the UE can actively send a request to the network for an AI Model update. Alternatively, the network may also trigger the AI model update itself, where an interaction between the UE and network side might be needed to help the network collect current UE status information, e.g. Memory, CPU, current load, terminal location, current power consumption, current battery storage, etc.

5.2.14.2	Basic workflows

Figure 5.2.14.2-1 shows a basic workflow for AI/ML model delivery with inference in the UE. Steps for the procedures shown are described below.

Figure 5.2.14.2-1: Basic workflow for AI/ML model delivery with inference in the UE

During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable AI/ML model for the service.

1. [bookmark: _Hlk119479297][bookmark: _Hlk119480594]The UE Application and Network Application communicate to trigger AI model delivery, using the information from the initialization and establishment step.

2. An AI model is selected between the UE Application and Network Application.

3. The Network Application identifies the selected AI model in the AI model Repository/Provider.

4. The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.

5. The AI Model Access Function receives the AI model.

6. The AI Model Access Function passes the AI/ML model to the AI model Inference Engine in the UE.

7. The Data Source passes media data to the AI model Inference Engine.

8. The AI Model Inference Engine performs AI inferencing.

9. The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.

Figure 5.2.14.2-2 shows a basic workflow for progressive model delivery. Steps for the procedures shown are described below.

Figure 5.2.14.2-2: Basic workflow for progressive model delivery

Progressive model delivery refers to a model delivery paradigm wherein a low precision model is delivered to a UE first to expedite inference at the UE and to improve QoE. Subsequent model updates are delivered to the UE and the model at the UE is updated to a higher precision. The update may be applied to the model in different ways, depending on how the low precision model is obtained. For example, in case of bit-incremental model delivery the model update may be applied in an additive manner.

1. The UE Application and Network Application communicate to establish a progressive model delivery session. The UE Application may receive Service Access information to learn about available services and configurations, including available models, precisions and possible updates. This information may be in a 3GPP URI of/or model manifest file(s). The model manifest file contains size, complexity information etc. of the different versions.

2. An AI model is selected by the UE Application, based on, e.g. model size and currently available network capacity.

3. The UE application requests the selected model from the Network Application

4. The Network Application identifies the selected AI model in the AI model Repository/Provider.

5. The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.

6. The AI Model Access Function receives the AI model of the precision requested by the UE.

7. The AI Model Access Function passes the AI/ML model to the AI model Inference Engine in the UE.

8. Inference loop: The Data Source passes data to the AI model Inference Engine, AI Model Inference Engine performs AI inferencing, and AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.

9. The UE application triggers a model precision update (parallel to the inferencing loop of step 8). The update is a precision update of the model currently at the UE (steps 6-7) rather than a new model.

10. The model update is delivered to the AI model access function

11. The model in the inference engine is updated to a higher precision using the model update from 10.

12. Steps 9-11 may be repeated as 12-13 depending upon number of precision levels and corresponding model updates

5.2.25	Split AI/ML operation

5.2.25.1	Basic architectures

[image:]

Figure 5.2.25.1-1: Basic architecture for split inference between the network and UE, with media data source in the network or from the UE via the network

Figure 5.2.25.1-1 shows a simple basic architecture for split inferences between the network and the UE, as described in scenario 2b) of clause 5.2, where the media data source comes from the network, or peer user. The first part of the AI model is executed on the network side and the second part on the UE.

For the split inference (network-UE) scenario, additional components are required:

In the network:

· An AI model inference engine that receives both the network AI model subset(s), and input data, for network inference. The input data may come from the local media repository or the peer UE. An intermediate data delivery function receives the partial inference output (intermediate data) from the network inference engine, and sends it to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of intermediate data.

In the UE:

· An intermediate data access function receives the intermediate data from the network via the 5GS, and sends it to the UE inference engine for UE inference. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply the corresponding reconstruction or decompression techniques.

· The final inference output data is sent to the data destination (e.g. a media player or screen).

[image:]

Figure 5.2.25.1-2: Basic architecture for split inference between the UE and network, with media data source in the UE

Figure 5.2.25.1-2 shows a basic architecture for split inferences between the UE and the network, as described in scenario 2b) of clause 5.2, where the media data source originates from the UE, the first part of the inference is performed in the UE, the second part in the network. The resulting output data is finally sent back to the UE or the peer user.

For the split inference (UE - network) scenario, additional components are required:

In the UE:

· An AI model inference engine that receives both the network AI model subset(s), and input data (from a UE data source), for UE inference.

· An intermediate data delivery function receives the partial inference output (intermediate data) from the UE inference engine, and sends it to the network via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.

· An inference output access function receives the inference output data from the network via the 5GS, and sends it to the relevant data destination according to the AI media service.

In the network:

· An intermediate data access function receives the intermediate data from the UE via the 5GS, and sends it to network inference engine for network inference. If the intermediate data delivery function applies optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.

The final inference output data is sent to the UE or the peer user via the 5GS, through the inference output delivery function.

For both split inference scenarios, extra factors should be considered, including those such as:

· Configuration of the split inference between the network and UE. (e.g. definition and selection of the AI/ML model composition into “UE AI model subset” and “network AI model subset”)

· Resource allocation and management for network inference, including ingestion of network AI model data and media data

· Intermediate data delivery pipelines between the network and UE, in particular considering the use of 5GMS or RTC defined pipelines to stream intermediate data that is media content data.

· The functionalities of certain components in figure 5.2.1-1 and figure 5.2.2-1 may overlap, and depending on the use case a combined architecture may also be considered FFS.

· Certain components may also overlap with functions defined in 5GMS or RTC architectures, clarifications FFS.

5.2.25.2	Basic workflows

Figure 5.2.25.2-1 shows a basic workflow for split inference between the network and UE. Steps for the procedures shown are described below.

Figure 5.2.25.2-1: Basic workflow for split inference between the network and UE

0. The session is established between the UE and the network.

 AI Split Inference Negotiation (This step may be performed at the beginning or during the session when the UE or network status has changed):

1. The UE Application gets the UE’s capability information, which may include the AI inference processing capabilities, supported AI framework information, connection capabilities, etc.

Alternative Case#1: Network decides the split inference:

2a. When the UE Application discovers the UE’s local capabilities can’t meet the AI service requirement, it sends an AI split inference request to the Network Application with UE’s capability information and the service requirement information.

3a. The Network Application gets the network’s capability information, which includes the AI inference processing capabilities, supported AI framework information from the AI Inference Engine.

4a. The Network Application selects a proper AI model (including the UE AI model subset and the network AI model subset) for split inference from all matched AI models (with different candidate split points) based on the service requirement information, the UE’s capability information and the network’s capability information.

5a. The Network Application sends an AI Inference Resource Allocation request to the AI Model Inference Engine with the selected network AI model subset information (including the split point and the intermediate data information).

6a. The AI Model Inference Engine responds with a successful result to the Network Application.

7a. The Network Application sends the AI Split Inference Response with the selected UE AI model subset information (including the split point and the intermediate data information) to the UE Application.

Alternative Case#2: UE decides the split inference:

2b. The UE Application sends an AI Model Information Request to the network with the UE’s capability information and the service requirement information.

3b. The Network Application collects all matched AI models with different candidate split points based on the service requirement information, the UE’s capability information and the network’s capability information.

4b. The Network Application sends the AI Model Information Response with all matched UE AI model subset(s) information (including the split point and the intermediate data information) to the UE Application.

5b. The UE Application selects a proper AI model based on the UE’s capability information and the received information in the AI Model Information Response.

6b. The UE Application sends an AI Split Inference Request to the Network Application with the selected AI model information.

7b. The Network Application sends an AI Inference Resource Allocation request to the AI Model Inference Engine with the network model subset information corresponding to the AI model selected by the UE Application.

8b. The AI Model Inference Engine responds with a successful result to the Network Application.

9b. The Network Application sends the AI Split Inference Response to the UE Application.

AI Model Subset Delivery:

10. The Network Application identifies the selected UE and network AI model subsets in the AI model Repository.

11. The AI Model Inference Engine in the network receives the network AI model subset.

12. The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.

13. The AI Model Access Function receives the UE AI model subset.

14. In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.

AI split inference:

 Alternative case#1: data source in the network

15a. The network AI model Inference Engine receives media data from the network Data Source or a peer user.

16a. The network AI model Inference Engine performs network AI inferencing.

17a. The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.

18a. In the UE, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.

19a. The AI Model Inference Engine in the UE performs AI inferencing.

20a. The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.

Alternative case#2: data source in the UE

15b. In the UE, the Data Source passes media data to the AI model Inference Engine.

16b. The UE AI model Inference Engine performs UE AI inferencing.

17b. The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.

18b. In the network, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.

19b. In the network, the AI Model Inference Engine performs network AI inferencing.

20b. The network AI Model Inference Engine sends the inference output result to the UE Data Destination or a peer user.

5.2.36	Distributed/federated learning

5.2.6.1	Basic architectures

[image:]

Figure 5.2.36-1: Basic architecture for distributed/federated learning between the network and multiple UEs

Figure 5.2.36-1 shows a simple basic architecture for distributed/federated learning between the network and UE(s), as described in scenario 3) of clause 5.2.

In the network:

· A federated learning engine receives a partially trained model from the AI model repository, that is passed to the AI model delivery function for delivery to multiple UEs via the 5GS.

· Training results data from multiple UEs is also received by the federated learning engine via the 5GS, which is then aggregated for the continuous training of the global model.

· Updates to the global model (e.g. in terms of topology or weights) are delivered to the UEs during the learning process.

In the UE(s):

· AI model data is received by an AI model access function via the 5GS, which then passes the data to the AI training engine.

· An AI training engine in the UE trains the AI model using local device data as the training input.

· Training results (e.g. in the form of updated weights) are delivered to the network via the training results delivery function.

5.2.36.2	Basic workflow

Figure 5.2.3.2-1 shows a basic workflow for distributed/federated learning with training in the UE, the results of which are aggregated in the network. Steps for the procedures shown are described below.

Figure 5.2.36.2-1: Basic workflow for distributed/federated learning between a UE and the network

During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable partially trained AI/ML model for the service.

1. The UE Application and Network Application communicate to trigger distributed/federated learning, using the information from the initialization and establishment step.

2. A partially trained AI model is selected between the UE Application and Network Application.

3. The Network Application identifies the selected partially trained AI model in the AI model Repository/Provider.

4. The Federated Learning Engine optionally announces the eligibility criteria for participating in the federated evaluation/learning to the device. The criteria could contain various information such as the device's operating system, processor speed, available memory, characteristics of the data library, geographical location of the device, language setting, and other attributes.

5. The AI Model Access Function of an eligible device receives the partially trained AI model or its updated version

6. The Federated Learning Engine optionally announces the failure reporting criteria for the participating devices.

Option A: Model evaluation:

7. The Federated Learning Engine requests the UE to start the model evaluation. The evaluation mechanism and criteria are defined by the Federated learning Engine.

Note: Whether a user wants its device to participate in the evaluation, depends on the business agreement between the user and the network.

8. The Data Source passes the training input data to the AI model Training Engine.

9. The AI Model Training Engine performs the evaluation.

10. The evaluation results (or the failure messages, in the case of a failure) are delivered to the Federated Learning Engine.

11. Optionally, the device eligibility criteria may get updated depending on the evaluation results.

Option B: Federated training:

12. The Federated Learning Engine requests the UE to start the training.

Note: Whether a user wants its device to participate in the training, depends on the business agreement between the user and the network.

13. The Data Source passes the training input data to the AI model Training Engine.

14. The AI Model Training Engine performs the retraining of the model.

15. The updated model (or the failure messages, in the case of a failure) is delivered to the Federated Learning Engine.

16. The Federated Learning Engine performs training aggregation of training results from multiple UEs and updates the partially trained AI model.

17. The updated partially trained AI model is delivered to the UE as from step 5.

Note: As shown in the above call flow, the model evaluation and the federated learning may also occur in a sequence.

5.3	Architecture and procedures for AI data delivery over 5G

5.3.1	AI data components

AI related user plane data include:

· AI model data, including data describing the topology/structure of the AI model, data related to the data nodes of the model, i.e. tensors, and other data which may be dependent on the format used for the AI/Ml model.

· Intermediate data, defined as the output data from the inference process of an AI/Ml model that is not considered the final inference result (depending on the service and output layer of the split AI model, certain intermediate data may have media characteristics, or even be media data). Intermediate data is typically required to be delivered to a second device or entity, as the input to a subsequent second split inference.

· Inference output data, which is the data corresponding to the output result of the final AI inference process for the service. Depending on the nature of the AI data inferencing for the given AI data service, this inference output data may include: labels for identifying recognition like tasks from media, actual media data such as video and/or audio, or perhaps XR related data such as 3D models.

5.3.2	AI4media data logical functions

User plane logical functions supporting the scenarios identified in the PD include:

· AI data delivery function

· AI data access function

· AI model inference engine

For split AI/ML, control plane functions in both the UE and network are needed for configuration, capability exchange and reporting:

· AI capability manager

5.3.31	Architecture for AI data delivery over 5Gand components

5.3.1.1	Introduction

[image: Une image contenant texte, capture d’écran, diagramme, Plan

Description générée automatiquement]

[bookmark: _Ref127952926]Figure 5.3.31-1 AI data delivery general architecture

A generalized 5G Media Delivery architecture supporting AI media functionality is shown in figure 5.3.1.1-1. Depending on the service scenario and/or use case, certain dedicated AI/ML logical subfunctions may be mapped to, or instantiated by the generalized media architecture functions..

5.3.1.2	Network functions and UE entities

In addition to the media related definitions described in TS 26.501, additional definitions for AI data related functions include:

-	Media Client running on the UE contains two subfunctions:

-	Media Session Handler: A function on the UE that communicates with the network side Media AF to establish and control the configuration of an AI data session. The function may include:

-	Features that monitors, shares and/or reports UE capabilities with/to the Media AF. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.

-	Media Access Function: A function on the UE that communicates with the Media AS and the Media Session Handler to establish an AI data delivery session. The function contains:

-	An AI Inference Engine, which has the capability to perform the inferencing of received (split) AI models.

-	An AI Data Access/Delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data including

-	Download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets from local files or over the network (e.g., by streaming or downloading the model from a remote server). The inference engine may comprise format decapsulation and model decoding functions as well as a runtime engine that executes the model from the memory.

-	Access/deliver intermediate data when an inference is split between the UE and the network.

-	Encode data to deliver with serialization and/or compression techniques or conversely decode the received data with deserialization or decompression technique.

-	Media-aware Application: An external function controlled by the external media application provider implementing the AI/ML application logic, which includes triggering the delivery of an AI model to the inference engine and obtaining inference results from the inference engine.

-	Media AS (Application Server): An Application Server that hosts 5G AI data functions. It includes

-	An AI data Access/Delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data as described above.

-	An AI Inference Engine, which has the capability to perform the inferencing of (split) AI models.

-	Media AF (Application Function): An Application Function that provides various control and configuration functions to the Media Session Handler on the UE and/or to the Media Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions via the NEF (Network Exposure Function). The Application function can include for example:

-	Supporting features such as monitoring, sharing and/or reporting Network capabilities with/to the Media Session Handler. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network via the Media Access Function.

A possible architecture for AI data delivery over 5GS is shown in figure 5.3.3-1. The architecture shows AI/ML logical subfunctions potentially mapped to, or instantiated by 5GMS subfunctions described in TS 26.501 clause 4.2.2 and 4.3.2. These subfunctions may be core function, Metrics Collection and Reporting or Network Assistance and QoS.

The 5G AI data delivery system shown in figure 5.3.3-1 includes the following main functional blocks:

· 5G AI Client running on the UE contains two subfunctions:

· AI data Session Handler: A function on the UE that communicates with the network side 5G AI Application Function (AF) to establish and control the configuration of an AI data session. The function may include:

· AI capability manager subfunctions that monitors, shares and/or reports UE capabilities with/to the AI capability manager function of the 5G AI AF. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.

· AI Data Handler: A function on the UE that communicates with the 5G AI Application Server (AS) and the AI data Handler to establish an AI data delivery session. The function contains:

· An AI inference engine, which has the capability to perform the inferencing of received (split) AI models.

· An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data including

· Download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets from local files or over the network (e.g., by streaming or downloading the model from a remote server). The inference engine may comprise format decapsulation and model decoding functions as well as a runtime engine that executes the model from the memory.

· Access/deliver intermediate data when an inference is split between the UE and the network.

· Encode data to deliver with serialization and optionally compression techniques. Or conversely decode the received data with deserialization or optionally decompression techniques.

· 5G AI-Aware Application: An external function controlled by the external 5G AI application provider implementing the AI/ML application logic, which includes triggering the delivery of an AI model to the inference engine and obtaining inference results from the inference engine.

· 5G AI AS(Application Server): An Application Server that hosts 5G AI data functions. It includes

· An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data as described above.

· An AI inference engine, which has the capability to perform the inferencing of (split) AI models.

· 5G AI AF(Application Function): An Application Function that provides various control and configuration functions to the AI Data Session Handler on the UE and/or to the AI Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions via the NEF (Network Exposure Function). The Application function can include for example:

· AI capability manager subfunctions monitors, shares and/or reports Network capabilities with/to the AI capability manager function of the AI data Session Handler. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.

5.3.42	Example pProcedures for Split AI/ML operation

Figure 5.3.42-1 shows an example procedure for split AI/ML operation, including three main parts:

· AI split inference management, and

· AI data delivery session

· Split inference processing

[image: Une image contenant texte, diagramme, reçu, Parallèle

Description générée automatiquement]

Figure 5.3.2-1: Procedures for split AI/ML operation

1. Service provisioning and announcement of AI data service on the network side, in particular between the Media AF (application function) and the 5GAI application provider.

2. Service access information acquisition. During this step, the available or required AI model(s) for the service can be made known to the UE, by means of information made available via a URL link pointing to a file or manifest which may list such available AI models. Such additional information may contain a list of features available from each AI model, including its variants, including specific information such as the inferencing accuracy, the size, , the amount of nodes, structure, complexity and latency requirements of the AI model.

AI split inference management:

3. Discovering AI data inferencing capabilities and functions in both the UE and network. In this step, the Media Session Handler in the UE and the Media AF in the network may use its capabilities to calculate the range of inference latencies for the AI model to be used for the split AI/ML inference service.

4. Requesting AI split inference. Either the UE or the network requests the other side for an AI split inference service. If information describing the AI model was not made known via the service access information in step 2, then such information may also be shared during this step.

5. Negotiate splitting the AI inference process. A split point is negotiated between the UE and the network, using information from steps 2, 3 and 4, in order to satisfy the service, capability and AI model inference latency requirements. The decision of whether the split point is static or whether it can be updated dynamically during the service may be negotiated. Related metadata may be shared between the network and UE depending on the configuration and a set of split points can be negotiated.

6. Acknowledge the split and provide the AI data split inferencing access info. In this step, the network (Media AF) and UE (AI data session handler) both acknowledge the decided split point, and access information for the AI data is provided to the UE.

7. The split configuration outcome is notified to the Media-aware application.

Split AI data session

8. Request the start of intermediate data delivery. On confirmation, the application triggers the Media Client to request the start of AI data delivery using the AI intermediate data access information provided in step 7.

9. The Media Client request the intermediate data to be deliver from the Media AS.

10. Pipelines for the delivery of AI model data from the Media AS to the Media Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, or download delivery (such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

11. Start inference process in the UE. In this step, the Media Client triggers the inference process (the AI inference engine function), namely the UE side of the split inferencing as decided by the result of step 5.

12. Start inference process in the server. In this step, the Media AF triggers the inference process in the Media AS (the AI inference engine function), namely the network side of the split inferencing as decided by the result of step 5.

13. Pipelines for the delivery of intermediate data from the Media AS to the Media Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

Split inference processing

14. The split inference runs between the UE and the network. Depending on the specific split inference scenario, the UE and the network may deliver and/or access Intermediate data, Inference output data and/or metadata using the pipelines defined in the AI data delivery session.

Split point update and inference processing

15. A split point update is triggered, for example from the media aware application to adapt to the new conditions (e.g. UE capabilities or network capacity has changed). The new split point metadata information is either negotiated between the UE and the network or pass alongside the delivery pipeline from the UE to the network side.

Session reporting and update

16. The Media Session Handler may collect and send status reports regarding the UE’s AI media service status (for example AI inference status, latency, resource status, capability status, dynamic media properties etc.) to the Media AF.

17. The Media AS may send status reports regarding the network’s AI media service status to the Media AF.

18. The Media Session Handler may receive network status, or network AI status reports from the Media AF, as collected in step 16.

19. The Media Session Handler may receive media status reports either from the network or internally from the UE.

20. Depending on the configurations negotiated in step 5, as well as related information from the status reports in steps 16, 17 and 18, updates of the AI model selection, split point configuration or the AI data delivery pipelines for the session may take place between the UE and network.

[bookmark: _Toc163673416]5.3.3	Procedure for AI/ML model distribution and operation

Figure 5.3.3-1 shows a procedure for AI/ML model distribution and operation.

Similar to the procedures for 5GMS downlink Media Streaming, assuming that the network operator provides such an AI/ML model distribution service, as well as the availability of AI models from the Media Application Provider, the procedure consists of an ingest session (where AI models are uploaded to the Media AS), and a provisioning session, during which the Media Client can access the AI models and the Media Application Provider can control and monitor the AI models and its delivery.

 [image: Une image contenant texte, diagramme, nombre, Police

Description générée automatiquement]

Figure 5.3.3-1: Procedure for AI/ML model distribution and operation

Steps 1 to 8 assume the same steps as defined in TS 26.501 for downlink media streaming, but for AI/ML distribution; the Service Announcement Information (whether acquired in whole in step 4 or through a reference and later in whole in step 6) contains information allowing the Media Client to activate the reception of one or more AI models. In step 9, the Media Client performs AI inferencing using media as an input into the AI model delivered and received in step 8.

Depending on the distribution use case, media delivery features (such as dynamic policy, network assistance, metrics reporting etc.) may also be applicable to AI/ML distribution.

5.4	Architecture and procedures for AI data delivery over IMS

Editor's note:	As the mapping to the IMS architecture has implications to the work in SA2, a proper LS needs to be sent to SA2 to check the potential architectural impact when the content of this clause is incorporated into the target TR 26.927.

Editor's note:	In the context of this clause, all the AI related functionalities (including AI Data Access/Delivery, AI Inference Engine, AI Model Repository) are limited to the scope of media AI data processing rather than generic AI data processing. The names are kept concise without explicitly mentioning ‘media’ to be consistent with the rest of the document. Whether the naming needs update is FFS.

5.4.1	Architecture and components

Figure 5.4.1-1 AI data delivery over IMS architecture

Figure 5.4.1-1 shows a mapping of AI media functionalities to the IMS data channel architecture which is defined in clause AC.2 of TS 23.228 v18.5.0. The mapped AI media functionalities over IMS are the following:

UE:

-	AI Inference Engine: It has the capability to perform the inferencing of received (split) AI models.

-	AI Data Access/Delivery: It handles the access and delivery of AI data including

-	Download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets over the network (e.g., by streaming or downloading the model from a remote server).

-	Access/deliver intermediate data when an inference is split between the UE and the network.

-	Encode data to deliver with serialization and optionally compression techniques. Or conversely decode the received data with deserialization or optionally decompression techniques.

MF:

-	AI Data Access/Delivery: It handles the access and delivery of AI data as described above.

-	AI Media Inference Engine: It has the capability to perform the inferencing of (split) AI models.

DC AS:

-	It monitors, shares and/or reports network capabilities with/to the UE. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.

AI Model Repository (AIMR):

-	It provides the AI models (including subsets) storage and downloading function. AIMR can be inside the PLMN, e.g. a new network function, or outside the PLMN, e.g. a webserver of the 3rd party provider.

5.4.2	Procedures for Split AI/ML operation

Figure 5.4.2-1 Procedures for split AI/ML operation

0. The audio/video and data channel sessions are established between the UE-A and the UE-B.

 AI Split Inference Negotiation (This step may be performed at the beginning or during the session when the UE or network status has changed):

Alternative Case#1: Network decides the split inference:

1a. The UE-A gets the UE’s capability information, which may include the AI inference processing capabilities, supported AI framework information, connection capabilities, etc. When the UE-A discovers the UE’s local capabilities can’t meet the AI service requirement, it decides to trigger the split inference process.

2a. The UE-A sends an AI split inference request to the DC AS with UE’s capability information and the service requirement information.

3a. The DC AS gets the MF’s capability information, which includes the AI inference processing capabilities, supported AI framework information from the AI Inference Engine, and selects a proper AI model (including the UE AI model subset and the network AI model subset) for split inference from all matched AI models (with different candidate split points) based on the service requirement information, the UE’s capability information and the network’s capability information.

4a. The DC AS sends an AI Inference Resource Allocation request to the DCSF, the request includes the selected network AI model subset information (including the split point and the intermediate data information). The request is transferred to the IMS AS.

5a. The IMS AS instructs a media resource allocation request to the MF.

6a. The MF responds with a successful result to the IMS AS, the IMS AS transfers the response to the DCSF, and the DCSF transfers it to the DC AS.

7a. The DC AS sends the AI Split Inference Response with the selected UE AI model subset information (including the split point and the intermediate data information) to the UE-A.

Alternative Case#2: UE decides the split inference:

1b. The UE-A gets the UE’s capability information, which may include the AI inference processing capabilities, supported AI framework information, connection capabilities, etc. When the UE-A discovers the UE’s local capabilities can’t meet the AI service requirement, it decides to get the AI models from the network for split inference process.

2b. The UE-A sends an AI Model Information Request to the DC AS with the UE’s capability information and the service requirement information.

3b. The DC AS collects all matched AI models with different candidate split points based on the service requirement information, the UE’s capability information and the network’s capability information.

4b. The DC AS sends the AI Model Information Response with all matched UE AI model subset(s) information (including the split point and the intermediate data information) to the UE-A.

5b. The UE-A selects a proper AI model based on the UE’s capability information and the received information in the AI Model Information Response.

6b. The UE-A sends an AI Split Inference Request to the DC AS with the selected network AI model information.

7b. The DC AS sends an AI Inference Resource Allocation request to the DCSF, the request includes the selected network AI model subset information (including the split point and the intermediate data information). The request is transferred to the IMS AS.

8b. The IMS AS instructs a media resource allocation request to the MF.

9b. The MF responds with a successful result to the IMS AS, the IMS AS transfers the response to the DCSF, and the DCSF transfers it to the DC AS.

10b. The DC AS sends the AI Split Inference Response to the UE-A.

AI Model Subset Delivery:

11. The MF downloads the network AI model subset from the AIMR.

12. The UE-A downloads UE AI model subset from the AIMR over the established data channel.

AI split inference:

 Alternative case#1: data source from peer user

13a. The MF receives media data from the peer user.

14a. The MF performs network AI inferencing.

15a. The MF deliveries the intermediate data to the UE-A.

16a. The UE-A performs AI inferencing and output the inference result.

Alternative case#2: data source from local user

13b. The UE-A performs UE AI inferencing based on the media data generated locally.

14b. The UE-A deliveries the intermediate data and passes it to the MF.

15b. The MF performs network AI inferencing.

16b. The MF sends the inference output result to the UE-B.

21. Service provisioning and announcement of AI data service on the network side, in particular between the 5GAI AF (application function) and the 5GAI application provider.

22. Service access information acquisition. During this step, the available or required AI model(s) for the service can be made known to the UE, by means of information made available via a URL link pointing to a file or manifest which may list such available AI models. Such additional information may contain AI model specific information, such as the structure, the size, complexity and latency requirements of the AI model.

AI split inference management:

23. Discovering AI data inferencing capabilities and functions in both the UE and network. In this step, the AI capability manger functions in the UE and in the network may use its capabilities to calculate the range of inference latencies for the AI model to be used for the split AI/ML inference service.

24. Requesting AI split inference. Either the UE or the network requests the other side for an AI split inference service. If information describing the AI model was not made known via the service access information in step 2, then such information may also shared during this step.

25. Negotiate splitting the AI inference process. A split point is negotiated between the UE and the network, using information from steps 2, 3 and 4, in order to satisfy the service, capability and AI model inference latency requirements. The decision of whether the split point is static or whether it can be updated dynamically during the service may be negotiated. Related metadata may be shared between the network and UE depending on the configuration.

26. Acknowledge the split and provide the AI data split inferencing access info. In this step, the network (5GAI AF) and UE (AI data session handler) both acknowledge the decided split point, and access information for the AI data is provided to the UE.

27. The split configuration outcome is notified to the 5GAI-aware application.

AI data delivery session

28. Request the start of AI data delivery. On confirmation, the application triggers the 5GAI client to request the start of AI data delivery using the AI data access information provided in step 7.

29. The 5GAI client request the AI data to be deliver from the 5GAI AS.

30. Pipelines for the delivery of AI model data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, or download delivery (such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

31. Start inference process in the UE. In this step, the 5GAI client triggers the inference process (the AI inference engine function), namely the UE side of the split inferencing as decided by the result of step 5.

32. Start inference process in the server. In this step, the 5GAI AF triggers the inference process in the 5GAI AS (the AI inference engine function), namely the network side of the split inferencing as decided by the result of step 5.

33. Pipelines for the delivery of intermediate data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

Split inference processing

34. The split inference runs between the UE and the network. Depending on the specific split inference scenario, the UE and the network may deliver and/or access Intermediate data, Inference output data and/or metadata using the pipelines defined in the AI data delivery session.

Session reporting and update

1. The AI Data Session Handler may collect and send status reports regarding the UE’s AI media service status (for example AI inference status, latency, resource status, capability status, dynamic media properties etc.) to the 5GAI AF.

2. The 5GAI AS may send status reports regarding the network’s AI media service status to the 5GAI AF.

3. The AI Data Session Handler may receive network status, or network AI status reports from the 5GAI AF, as collected in step 16.

4. The AI Data Session Handler may receive media status reports either from the network or internally from the UE.

5. Depending on the configurations negotiated in step 5, as well as related information from the status reports in steps 16, 17 and 18, updates of the AI model selection, split point configuration or the AI data delivery pipelines for the session may take place between the UE and network.

6	Data components for AI/ML-based media services

6.1	Model data

6.1.1 	Model optimization techniques

Trained models consist of a graph representations of neural networks as well as millions of parameters/weights that are learned during the training phase. Table 6.1.1-1 depicts the characteristics of some of the state-of-the-art DNNs as provided by [6].

			Model

			#Parameters (M)

			Footprint (MB)

			#FLOPs (B)

			1.0 MobileNet-224

			3.3

			13.2

			0.28

			EfficientNet-B0

			5.3

			21.2

			0.39

			DenseNet-169

			14

			56

			3.5

			Inception-v3

			24

			96

			5.7

			ResNet-50

			26

			104

			4.1

			VGG-16

			138

			552

			16

			SSD300-MobileNet

			6.8

			27.2

			1.2

			EfficientDet-D0

			3.9

			15.6

			2.5

			FasterRCNN-MobileNet

			6.1

			24.4

			25.2

			SSD300-Deeplab

			33.1

			132.4

			34.9

			FasterRCNN-VGG

			138.5

			554

			64.3

			YOLOv3

			40.5

			122

			71

Table 6.1.1-1: State-of-the-art DNN characteristics [6]

Parameter pruning is one of the main techniques to control the size of a neural network model or an update thereof. Pruning works by removing individual weights or complete structures of a pre-trained model. We differentiate between structured and unstructured pruning. In unstructured pruning, the goal is to reduce the number of non-zero weights in a layer while approximately preserving the output of that layer. The assumption behind this technique is that only a small subset of the weights is dominant and impacts the performance of the model. The rest of the weights may potentially be ignored/removed. The technique starts by assigning a saliency score to each parameter and then removes the weights with a score below a certain threshold. The resulting network may require retraining to regain the original accuracy. However, this type of technique introduces unstructured sparsity into the neural network, but the resulting tensors of parameters have the same size and shape. The receiver may require special inference hardware or some pre-processing to reduce the inference computational complexity.

In structured pruning, the model graph is altered by completely removing certain structures such as neurons and filters. This may be done by assigning an importance score to each neuron/filter based on the current weight or based on inference data. The neurons/filters with a score below a threshold are removed. Compared to unstructured pruning, this approach does not introduce sparsity but may not yield the same compression results.

Low-rank decomposition is another technique to reduce the size of a model. In low-rank decompression, a tensor, representing the weights of a layer in the DNN, is replaced by a product of two lower-rank tensors in which reduces the number of element-wise multiplications potentially without sensibly altering the performance, providing a proper choice of rank. This technique can both speed up the inference and results in compression gains. Algorithms such as the Singular Value Decomposition (SVD) may be used to obtain the tensors corresponding to any desired rank.

Quantization is another very efficient compression technique. It consists of decreasing the precision of the parameters of a model, thus reducing the required memory footprint. The parameters are mapped from a larger space of values into a smaller one, a concept widely used in image and video compression. Better performing quantization techniques may be context aware and operate in a non-linear manner to approximate the distribution of the weight values. Knowledge about the used quantization scale will be required to perform inverse quantization and recover the original weights. If non-linear quantization is used, the technique becomes non-transparent. The resulting parameters may further be losslessly entropy coded, e.g. using Huffman coding.

Knowledge distillation takes a different approach to reducing model size. The goal is to transfer knowledge from a trained network into a smaller model for inference. During the distillation process, the smaller model learns to mimic the output of the larger trained model by minimizing a loss function that takes into account both the hard output values and the soft values (i.e. prior to filter application). Knowledge distillation techniques have in several cases surpassed the accuracy of the original model.

The compression levels achieved by these techniques can be controlled to provide a set or “family” of adaptive trained models which perform the same task but meet different constraints (e.g., memory footprint, latency and/or computational cost). Furthermore, by minimizing the difference between the models during training, the family can be optimized to reduce its memory footprint or the transmission cost of model changes. Examples of such approaches include:

· Pruned models, where each neural network of the family (except the largest one) contains a subset of the neurons of the previous network in the ordered family

· Quantized models, where the family contains neural networks with increasing quantization level of the parameters.

· Early-exit models, where the neural network contains exit points before reaching the final output that generate intermediate predictions/results.

Most of the aforementioned techniques are sender-only techniques that do not require processing on the receiver side. The burden is on the creator of the model to apply these techniques to produce a more compact representation of the model. Some techniques may require processing at the receiver side. The complexity of that processing and the amount of information required to recover the model may vary by technique.

6.1.2	Model update requirements and constraints

Evolving requirements and environment conditions after model selection

Use-cases and different workflows delivery comprises the selection and the distribution of adapted trained models or model subsets to the UE for performing AI inference. An offline supervised learning can provide a set of trained models adapted for the UE to environment conditions regarding a UE service requirement. Environment conditions in clause 4.1 or clause 4.3.1 describes different sets of conditions including UE capabilities and network limitations. The UE and the network share these environment parameters to select the trained model that fits best the current conditions to meet the requirements. The selection may depend for example on the current UE capabilities such as the available memory, the current power consumption, the current battery storage, the current computing power, as well as on the current network conditions such as the network load, the available or the allocated bandwidth to the UE. This may also depend on the service requirements, or on the user preferences on the expected quality of result and on the maximum UE resources such as the energy, memory, computing power for running the AI/ML service.

During the inference stage, environment conditions as listed above may change to such an extent that the selected trained model e.g., DNNs will no longer be appropriate or not optimal to meet the requirements. This will lead to a degraded QoE for the end user. This highlights the need for model updates to meet the new environment conditions.

Model accuracy deviation between the training phase and the delivery phase.

The discrepancy between the data seen during training and data used at the time of inference can lead to a decrease in accuracy performance. The actual accuracy of the system may vary depending on the current input data, environment, and context. Updates to the trained models are necessary to continue to meet the accuracy requirements.

Applying inference on evolving characteristics of the input media content

The model to be applied can be adapted to the entire media content or sequence thereof, or to a spatial or temporal partition of an input media content, for example to a group of frames, frame slices, frame blocks. The model and/or model parameters such as biases and weights may be updated to adapt to the characteristics of the processed part of the content. The characteristics can relate to the resolution, light e.g., the noise introduced by the camera, content in dark areas, the type of scene. They can also relate to the current demand by the algorithm or the user in terms of expected accuracy or subjective quality of the produced content.

6.1.3 	Model serialization

In computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g., files in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment).

The process of saving an AI/ML model to use it later is called serialization. After transmitting or storing the serialized data, it is possible to reconstruct the model later and obtain the exact same structure/object.

6.1.4	Classes of AI/ML models

6.1.4.1	Introduction

Depending on the training method selected, AI/ML models can operate various types of operations as depicted in the figure below:

[image:]

6.1.4.2	Supervised learning

As explained in [Cunningham, P., Cord, M., Delany, S.J. (2008). Supervised Learning. In: Cord, M., Cunningham, P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2] supervised learning accounts for a lot of research activity in machine learning and many supervised learning techniques have found application in the processing of multimedia content. The defining characteristic of supervised learning is the availability of annotated training data. The name invokes the idea of a ‘supervisor’ that instructs the learning system on the labels to associate with training examples. Typically, these labels are class labels in classification problems. Supervised learning algorithms induce models from these training data and these models can be used to classify other unlabelled data. The analysis of supervised learning can be seen as the theory of risk minimization. Vector machines and nearest neighbour classifiers are probably the two most popular supervised learning techniques employed in multimedia research.

6.1.4.3	Semi-supervised learning

Semi-supervised learning is a method that combines supervised and unsupervised learning. It uses a small amount of labeled data and a large amount of unlabeled data to train an AI/ML model to improve its prediction ability. The benefits of this method include improving the accuracy of trained models, and saving time and cost of AI/ML model training. It can be used for classification, regression, and clustering tasks.

6.1.4.4	Unsupervised learning

The goal of unsupervised learning is to find the underlying structure of dataset, group that data according to similarities, and represent that dataset in a compressed format. Unsupervised learning is important in the processing of multimedia content as clustering or partitioning of data in the absence of class labels is often a requirement. The absence of class labels in unsupervised learning makes the question of evaluation and cluster quality assessment more complicated than in supervised learning.

6.1.4.5	Reinforcement learning

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.

Reinforcement learning differs from supervised learning in not needing labelled input/output pairs be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge).

6.2	Intermediate data

6.2.1	Intermediate data transfer optimization techniques

Intermediate data consist of large tensors computed by the first part of a split neural network. The following table provides some examples of intermediate data sizes for a few neural networks taking an input image of size 224x224x3, i.e., a tensor containing 150,528 values):

			Model

			Layer

			Dimension

			Number of values

			squeezeNet

			maxpool4

			27x27x256

			186 624

			

			maxpool8

			13x12x512

			79 872

			mobileNet v3

			layer 7

			28x28x40

			31 360

			

			layer 14

			14x14×112

			21 952

			VGG

			layer 6

			112x112x128

			1 605 632

			

			layer 12

			28x28x512

			401 408

Some compression approaches (e.g., quantization, entropy coding, transformations) can be used to reduce the size of the transferred intermediate data and to adapt the split AI/ML operations between the UE and the network to changing conditions.

As a generic approach, the UE or the network endpoint selects a function among a set of compression and/or decompression functions built to adjust the characteristics of output intermediate data to the current network conditions or to meet the expected latency. For example, different functions can meet different bandwidth requirements.

6.2.2	Intermediate data size

Intermediate data characteristics depends on various aspects described in clause 4.1 and clause 4.5 including intermediate data volume or size.

Different factors can impact the size of the intermediate data for delivery, which may require the adaptation of split AI/ML operations between the UE and the network:

· AI inference task use-case and requirement: The requirements on an AI task required for the service drives the intermediate data size. For example, a complex AI task for detecting multiple objects in a dense and moving video requires far more intermediate data than for a simpler AI task on static scene or about a single object.

· AI model for the AI inference task: Different trained AI models for the same AI inference task can be available with different characteristics on not only the AI model architecture and size, but also on the intermediate output size, depending on the split point(s).

· Split point selection: The selection of a split point within an AI model determines the dimension of the intermediate data. The output size at a given split point compared to another may vary from 1 to 5 or more [aa].

· Adapted trained model for split operation: Adapted models can be designed to provide reduced intermediate data at identified split points.

· Optimization: accuracy/quality metrics determine the result of a split inference. Basic precision quantization, from 32 bits to 16/8 bits may reduce the overall size of intermediate data while still meeting the required output result quality/accuracy for the service.

· Inference input video frame rate adjustment: The frame rate input in case of video determines the streaming bitrate of the intermediate data to be delivered. An AI inference task may not produce media content and does not necessarily need to produce an output result at 30 or 60 frames as in the case of video streaming.

· Non-real time delivery: The transmission of intermediate data may not necessarily need to be delivered in a real-time based manner. The result of inferencing split model on an image, a set of images or a video sequence may not require an immediate result. The transmission of intermediate data can be done progressively with a constrained bandwidth.

6.3	Media data

6.4	Metadata

6.4.1	Distributed/Federated Learning

6.4.1.1	Control messages

6.4.1.1.2	General

This clause describes a set of control messages for managing the training process, synchronization the training rounds, and defining the selection criteria for participating devices, or monitoring the convergence of the training process, in federated learning.

Editor’s note: The messages and parameters in this clause need further alignment with clause 5.2.3.

6.4.1.2	Synchronization message

6.4.1.2.1	Definition

Synchronization messages are used to ensure that all devices start the training process simultaneously and progress at the same pace. For example, the server may send a synchronization message to all UEs to start a new round of training.

6.4.1.2.2	Behavior

From network server to device.

The server sends a synchronization message to all UEs to start a new round of training at the same time. The message contains the round number and may also contain a timestamp indicating when the training round should begin.

6.4.1.2.3	Parameters

1. The Round_number indicates the training round in a model training.

2. The Start_time indicates the start time of the training.

3. The Duration indicates the desirable duration of the training. This value just shows an indication of the desirable time for completing the training round.

6.4.1.3	Device eligibility message

6.4.1.3.1	Definition

Device eligibility messages are used to define the criteria for selecting the devices that will participate in the training process. For example, the server may send a device eligibility message to all devices that belong to the defined group by the application.

6.4.1.3.2	Behavior

From network server to device.

The server sends a device eligibility message to select the devices that meet certain criteria defined by the application. Depending on the number of criteria met, the application assigns a group id to the device. For example, the criteria could contain information about the device's operating system, processor speed, available memory, available image library (number of images…), geographical location of the device, language setting, and other attributes.

6.4.1.3.3	Parameters

1. The Group_id is used to assign a new id for the devices that meet the eligibility criteria of this message. If the device is eligible, it uses this value as one of its group ids and from now on, it reacts to messages with the same group id.

2. The Application_group_id, is assigned by the application on the device and if that value is equal to the value of this field, then the device is eligible.

3. The Hardware, Location, and Language parameters define the hardware, location, and language eligibility criteria respectively for the device.

4. The Data_library_id defines the data library an eligible device shall have.

Note that if more than one eligibility field exists, the device needs to meet all criteria to become eligible.

6.4.1.4	Model evaluation message

6.4.1.4.1	Definition

Model evaluation messages are used to evaluate the performance of the global model for each device and make decisions about the training process. After running the learning phase, a device sends a model evaluation message to the server that measures the accuracy of the model. The server can then decide whether to continue training for another round or stop.

Alternatively, this message can be used by the server to request the device to perform an evaluation of a newly downloaded global model.

6.4.1.4.2	Behavior

For the server to the device

The message contains the metrics to be used for evaluation.

From device to server

The message could contain a metric such as accuracy or precision.

6.4.1.4.3	Parameters

1. The Round_number shows the round after which the evaluation is performed.

2. The Metric_number shows the number of metrics included in this message body.

3. The Metric is one or more of the Name-Value pairs showing the name of the metric and the corresponding value obtained in the evaluation.

6.4.1.5	Model update message

6.4.1.5.1	Definition

Model update messages are used to update the model parameters on the devices after each round of training. For example, the server may send a model update message to all devices to update the global model with the new model parameters.

Model update messages are also used to update the global model on the server with the new parameters updated by the local training on the device.

6.4.1.5.2	Behavior

From server to device:

The server sends a model update message to all devices to update the AI/ML model with the new model parameters. The message contains the model id of the AI/ML model to be updated, the updated model parameters that the UE will use to train the model in the next round, and the new model id when the parameters are updated.

From device to server:

After running the training locally, each device may send a model update message to the server with the updated parameters. Together with the received model evaluation message, the server can decide if the global model needs to be updated or not. The model update message then only contains the model id of the AI/ML model used for local training and the updated parameters.

6.4.1.5.3	Parameters

1. The Parameters includes the new model vector of values.

2. The New_model_id is the id of the new model when the server sends the model to one or more devices.

6.4.1.6	Failure reporting message

6.4.1.6.1	Definition

Error messages are used to handle unexpected errors or exceptions that may occur during the training process. For example, the server may send an error message to all devices to handle a device failure or network disruption.

6.4.1.6.2	Behavior

From server to device:

The server sends a request to all devices to report a device failure or network disruption. For example, if a device fails to send its model parameters back to the server, the device should notify the server so that the device has been removed from the training process.

From device to server:

The device sends a failure message to the server if a failure occurs.

6.4.1.6.3	Parameters

The Message describes the reason for the failure.

6.4.2	Split AI/ML operations

Table 6.4-2-1 shows a set of metadata information communicated between the UE and the network when a first device (UE or Network endpoint) transmits data to a second device (respectively Network endpoint or UE) according to a split configuration.

When a device dynamically selects or reselects the model or a model subset to be executed on an input media segment, metadata may need to be passed alongside the output data transmitted to the other device.

Editor’s Note: The metadata types below are descriptive and optional information that may be redundant. Additional work may be needed on the description of metadata.

			Metadata category

			Metadata type

			Definition

			Metadata type description (Examples)

			Model information

(Information on model selected for split operations)

			Model identifier

			An identifier of the split model that sends intermediate data. Identifier may be a name, a number, a combination thereof, a hash value. The identifier is defined during the configuration stage.

			Example: model_1, model_2

			

			Number of Parameters

			Total number of parameters in the neural network

			Example: 11 millions (ResNet 18)

			Split Point information (Information on the selected split point corresponding to output data being sent)

			Split point identifier

			An identifier of the model split point in a description of a computing graph, may be generated by a neural network description language such as ONNX/NNEF. The identifier must guarantee unique identification of a split point. Example can be based on split point number or split point name (below).

			Example: 10, Layer_10, L0-2 at points 75, 90, and 105

			

			Split point number

			The number of the split point where the split occurs. The number may belong to set of identified numbers defined at the configuration stage.

			Example: 10

			

			Split point name

			The name of the split point where the split occurs. The name may belong to set of identified split point names defined at the configuration stage.

			Example: conv2d_1234

			

			Split point flag

			An information on whether to consider the split point before the split point identifier or after. The convention on whether it is before or after may be defined at the configuration stage.

			Example: before, after

			Output data format

(Format Information of output data being sent)

			Data type

			The type of output data format. Depending on the split configuration, the type of output data can be media data when the split point is configured to the first layer of the model, result data when the split point is set to the first layer, or otherwise intermediate data when the split point is an intermediate layer. The data type representation or identification (e.g., number) is defined at the configuration stage.

			Example: media, intermediate data, result, or predefined type e.g... 1, 2, 3

			

			Tensor shape

			The tensor shape(s) when the output is intermediate data. Tensor shape is a tuple of positive integers, where the size of the tuple represents the dimension of the tensor, and each value represents the size in each dimension.

			Example: [1,64,64,64].

			

			Tensor structure information

			The exact underlying tensor structure of the intermediate data tensors including the exact version of it.

			Example: PyTorch 2.0, tensor flow v2.13.0, NumPy v1 .25

			Processing capabilities (Information on processing capabilities recommended or estimated for processing the other part of the split model)

			Processing capabilities identifier

			An identifier of the allocated or recommended processing capabilities. Processing capabilities may be negotiated at the configuration stage where each processing capabilities setting may be stored and identified with a processing capabilities identifier.

			Example:

			

			Parameters precision

			Number of bits for storing the parameter. Additionally, use “I” for indicating an integer parameter and use “F” to indicate a floating-point number.

			Example: If the proposed method uses 16-bit integer to represent a parameter, parameter precision may be “16 (I)”.

			

			Multiply–accumulate (MAC)

			Number of multiply–accumulate (MAC) operations in the worst case for the inference stage, where the multiply–accumulate operation is a common step that computes the product of two numbers and adds that product to an accumulator.

			Example: ResNet-18 for (32x32 (1x1024) 36 million units

			

			Temporary memory

			Indicates the memory needed to store the output feature map for all intermediate layers (forward pass).

			Example: Resnet18 (Conv2d output): 3.2MB

			Framework information

(Framework information on processing of part of the model)

			Framework configuration set identifier

			An identifier of the framework configuration set used for processing the first part of the model and required for processing the next part for compatibility reasons. A set of identifiers may have been defined during the configuration stage.

			Example

			

			Framework description

			This identifies the framework configuration including the exact version (language, name, version, specific component name) used by the UE or the network producing intermediate data.

			Example: Pytorch 2.0

[bookmark: _Hlk142995211]Table 6.4-2-1: Metadata for split AI/ML operations

6.5	Existing frameworks for AI/ML

6.5.1	TensorFlow

TensorFlow is an open-source platform for creating and deploying machine learning models. It provides a wide range of tools (e.g., mode optimization) and libraries (decision forests, Ranking extensions…) for building and training models, and supports several formats for model distribution, including TensorFlow SavedModel, TensorFlow Lite, and TensorFlow.js. These formats allow models to be easily distributed across different platforms and devices, making it easier to deploy machine learning models in various applications.

6.5.1.1	Tensor

In machine learning, a tensor is a multi-dimensional array of numerical data. A tensor may have any number of dimensions, and each dimension represents a specific feature or attribute of the data. For example, a 1-dimensional tensor usually represents a vector of values, such as a list of numbers, while a 2-dimensional tensor can represent a matrix of values, such as an image.

Tensors are are used to represent the input data and the parameters of the machine learning model. For example, in image recognition, the input data is often represented as a tensor of pixel values, while the parameters of the model, such as the weights and biases, are represented as tensors as well.

Operations applied to tensors can be addition, multiplication, and convolution. These operations are used to perform mathematical computations on the tensors, which are then used to train the machine learning model.

In summary, a tensor is a multi-dimensional array of numerical data that is a fundamental data structure used in many machine learning frameworks. It is used to represent the input data and the parameters of the machine learning model and is manipulated using mathematical operations to train the model.

6.5.1.2	Usage of TensorFlow

The following steps are usually defined:

Definition of the computational graph: In TensorFlow, a machine learning model is represented as a computational graph, which is a series of operations (nodes) that are connected by edges. The nodes represent mathematical operations, such as addition, multiplication, or convolution, and the edges represent the flow of data between the nodes. To define the graph, developers use the TensorFlow API to create nodes and connect them in a specific order.

[image: Un graphique TensorFlow simple]

Source: https://www.tensorflow.org/guide/intro_to_graphs?hl=fr

TensorFlow graphs can be used in environments that don't have a Python interpreter, like mobile applications, embedded devices, and backend servers.

Variables Initialization: Before running the computational graph, the variables used in the graph need to be initialized. These variables represent the parameters of the machine learning model, such as weights and biases, and are updated during training to improve the model's performance.

Session execution: To execute the computational graph, a TensorFlow session is created. The session runs the graph by feeding input data into the graph and calculating the output. During training, the session updates the variables in the graph based on the loss function and optimization algorithm.

Model serialization: Once the model is trained, it can be saved in various formats for later use, such as TensorFlow SavedModel, TensorFlow Lite, or TensorFlow.js. These formats allow the model to be easily deployed on various platforms and devices, including mobile devices, web browsers, and embedded systems.

NOTE: it is expected to analyze:

· The different distribution AI/ML formats that can be used with the TensorFlow framework.

· The impacts of the selection of TensorFlow framework in terms of interoperability of the corresponding AI/ML formats.

Model deployment: To deploy the model, the saved model can be loaded into a new TensorFlow session and used to make predictions on new data. This can be done on a single machine, a cluster of machines, or in the cloud.

6.5.2	PyTorch

PyTorch is based on the concept of tensors, which are multi-dimensional arrays of numerical data. Similarly to TensorFlow, Tensors are a fundamental data structure used in PyTorch to represent the input data and the parameters of the machine learning model. PyTorch provides a range of operations for manipulating tensors, such as addition, multiplication, and convolution.

PyTorch also supports dynamic computation graphs, which allow for more flexibility in building and training machine learning models. This means that the computational graph can be modified on-the-fly during runtime, which makes it easier to build complex models and experiment with different architectures. Additionally, PyTorch provides a high-level API called TorchScript, which allows for models to be exported to a portable format that can be executed on various platforms.

6.5.2.1	PyTorch for model distribution

PyTorch provides several formats for distributing machine learning models, such as PyTorch JIT (Just-In-Time) and TorchScript. PyTorch JIT allows for models to be compiled on-the-fly, which provides performance benefits for large models or when deploying to resource-constrained environments. TorchScript allows for models to be exported to a portable format that can be executed on various platforms, such as mobile devices, web browsers, and embedded systems.

PyTorch also supports ONNX (Open Neural Network Exchange), which is an open format for exchanging machine learning models between different frameworks. ONNX allows for models to be trained in PyTorch and then exported to be executed in other frameworks, such as TensorFlow or Caffe2

NOTE: it is expected to analyze:

· The different distribution AI/ML formats that can be used with the PyTorch framework.

· The impacts of the selection of PyTorch framework in terms of interoperability of the corresponding AI/ML formats.

6.5.2.2	Main differences with TensorFlow

Computational graph: TensorFlow uses a static computational graph, which means that the graph is defined and compiled before the training begins. On the other hand, PyTorch uses a dynamic computational graph, which allows for more flexibility in building and modifying the graph during runtime.

Ease of use: PyTorch is generally considered to be more user-friendly and simpler than TensorFlow. This is partly due to its dynamic computational graph, which makes it easier to experiment with different models and architectures. PyTorch also has a more Python-like syntax, which is familiar to many developers.

Visualization: TensorFlow provides a comprehensive visualization tools, which allows users to monitor the training progress and visualize the model's performance. PyTorch does not have a built-in visualization tool, but there are several third-party libraries available, such as PyTorch Lightning and Visdom.

Ecosystem: TensorFlow has a larger ecosystem than PyTorch, with more resources and community support. TensorFlow also has better support for deploying models on mobile devices and in production environments. However, PyTorch has been gaining popularity in recent years and has a growing ecosystem.

Research: PyTorch is more popular in the research community, as it allows for faster prototyping and experimentation due to its dynamic computational graph. TensorFlow is more commonly used in industry for production-level applications due to its static graph and better support for deployment.

6.6	Existing formats for AI/ML models

6.6.1	ONNX format

The Open Neural Network Exchange (ONNX) format [2] is an open specification that was developed to facilitate the exchange of machine learning models between different AI frameworks. ONNX consists of the following components:

· A definition of an extensible computation graph model.

· Definitions of standard data types.

· Definitions of built-in operators.

The ONNX format is built around the Protocol Buffers (Protobuf) open-source cross-platform serialization format that was developed initially by Google.

The ONNX Graph is structured as a list of nodes that form an acyclic graph. Each node of the graph represents one of the built-in operators and its attributes. As an example, a node could be a Convolution operation, and its attributes would contain information regarding the padding and stride that must be used. Each edge of the graph represents input or output data tensors. The top-level ONNX construct is a ‘Model.’, and is represented in protocol buffers as the type onnx.ModelProto. It provides metadata that is necessary for the reader to determine if they are able to process the stored model. Each model must explicitly name the operator sets that it relies on for its functionality. Operator sets defines a set of operators and their versions. An operator is identified through its unique operator type (op_type), which is a case-sensitive operator name.

Built-in operators include a large list of widely used operators such as the following:

· Math operators such as Abs

· DNN operators such as Conv and LSTM

· Activation operators such Sigmoid and Relu

· Pooling operators such as MaxPool

· Other operators such as error computation and data reformatting operators

The following provides an example of an ONNX model in protobuf format:

			ir_version: 5

producer_name: "skl2onnx"

producer_version: "1.11"

domain: "ai.onnx"

model_version: 0

graph {

 node {

 input: "X"

 output: "Y"

 name: "Pa_Pad"

 op_type: "Pad"

 attribute {

 name: "mode"

 s: "constant"

 type: STRING

 }

 attribute {

 name: "pads"

 ints: 0

 ints: 1

 ints: 0

 ints: 1

 type: INTS

 }

 attribute {

 name: "value"

 f: 1.5

 type: FLOAT

 }

 domain: ""

 }

 name: "OnnxPad"

 input {

 name: "X"

 type {

 tensor_type {

 elem_type: 1

 shape {

 dim {

 }

 dim {

 dim_value: 2

 }

 }

 }

 }

 }

 output {

 name: "Y"

 type {

 tensor_type {

 elem_type: 1

 shape {

 dim {

 }

 dim {

 dim_value: 4

 }

 }

 }

 }

 }

}

opset_import {

 domain: ""

 version: 10

}

6.6.2	NNEF format

The Neural Network Exchange Format (NNEF) [3] is a Khronos developed standard that defines a data format for facilitating the exchange of trained network models. The NNEF format enables the encapsulation of both the structure of the neural network model as well as the associated data. NNEF stores the data in structures that are independent of the training environment that was used for training the network, which will facilitate its consumption on any execution platform. NNEF offers itself as an intermediary between deep learning frameworks, which export into NNEF, and neural network accelerator libraries, which will import and compile the NNEF model for hardware-optimized inference.

The NNEF container consists of the following files:

· a textual file that describes the structure of the neural network

· a binary data file for each variable tensor. These files are structured hierarchically into sub-folders associated with the corresponding operation. Each tensor may have different representations, each matching a different quantized version.

· a quantization file that contains details about the quantization algorithm that is used for quantizing the exported tensors.

The NNEF network structure is described through a computational graph. The computational graph is a directed graph. The nodes of the graph may be data nodes or operation nodes. A directed edge from a data node to an operation node indicates the data is input to the operation. A directed edge from an operation node to a data node indicates the data node is an output.

Data nodes are tensors of different ranks and shapes and may be external, constant, variable, or intermediate/regular tensors. external, constant, and variable tensors all provide an explicit declaration of their shapes. Other tensors shapes will be determined based on the input and operation that is applied to them to produce that tensor. This is commonly known as shape propagation.

The NNEF operation nodes may have attributes that describe the exact computation that needs to be performed. Operations may be composed together to produce more compound operations. Primitive operations are operations that cannot be broken down into simpler operations.

The following is an excerpt from an NNEF graph representation of the VGG-16 network model:

			version 1.0;

graph VGG_ILSVRC_16_layers(data) -> (prob)

{

 variable_15 = variable<scalar>(label = 'conv4_1_blob2', shape = [1, 512]);

 variable_14 = variable<scalar>(label = 'conv4_1_blob1', shape = [512, 256, 3, 3]);

 variable_13 = variable<scalar>(label = 'conv3_3_blob2', shape = [1, 256]);

 variable_31 = variable<scalar>(label = 'fc8_blob2', shape = [1, 1000]);

 variable_30 = variable<scalar>(label = 'fc8_blob1', shape = [1000, 4096]);

 variable_29 = variable<scalar>(label = 'fc7_blob2', shape = [1, 4096]);

 variable_28 = variable<scalar>(label = 'fc7_blob1', shape = [4096, 4096]);

 variable_27 = variable<scalar>(label = 'fc6_blob2', shape = [1, 4096]);

 variable_26 = variable<scalar>(label = 'fc6_blob1', shape = [4096, 25088]);

 variable_25 = variable<scalar>(label = 'conv5_3_blob2', shape = [1, 512]);

 variable_24 = variable<scalar>(label = 'conv5_3_blob1', shape = [512, 512, 3, 3]);

 variable_23 = variable<scalar>(label = 'conv5_2_blob2', shape = [1, 512]);

 variable_22 = variable<scalar>(label = 'conv5_2_blob1', shape = [512, 512, 3, 3]);

 variable_21 = variable<scalar>(label = 'conv5_1_blob2', shape = [1, 512]);

 variable_20 = variable<scalar>(label = 'conv5_1_blob1', shape = [512, 512, 3, 3]);

 variable_19 = variable<scalar>(label = 'conv4_3_blob2', shape = [1, 512]);

 variable_18 = variable<scalar>(label = 'conv4_3_blob1', shape = [512, 512, 3, 3]);

 variable_17 = variable<scalar>(label = 'conv4_2_blob2', shape = [1, 512]);

 variable_16 = variable<scalar>(label = 'conv4_2_blob1', shape = [512, 512, 3, 3]);

 variable_12 = variable<scalar>(label = 'conv3_3_blob1', shape = [256, 256, 3, 3]);

 variable_10 = variable<scalar>(label = 'conv3_2_blob1', shape = [256, 256, 3, 3]);

 variable_9 = variable<scalar>(label = 'conv3_1_blob2', shape = [1, 256]);

 variable_8 = variable<scalar>(label = 'conv3_1_blob1', shape = [256, 128, 3, 3]);

 variable_6 = variable<scalar>(label = 'conv2_2_blob1', shape = [128, 128, 3, 3]);

 variable_11 = variable<scalar>(label = 'conv3_2_blob2', shape = [1, 256]);

 variable_5 = variable<scalar>(label = 'conv2_1_blob2', shape = [1, 128]);

 variable_4 = variable<scalar>(label = 'conv2_1_blob1', shape = [128, 64, 3, 3]);

 variable_2 = variable<scalar>(label = 'conv1_2_blob1', shape = [64, 64, 3, 3]);

 variable_1 = variable<scalar>(label = 'conv1_1_blob2', shape = [1, 64]);

 variable_7 = variable<scalar>(label = 'conv2_2_blob2', shape = [1, 128]);

 variable = variable<scalar>(label = 'conv1_1_blob1', shape = [64, 3, 3, 3]);

 variable_3 = variable<scalar>(label = 'conv1_2_blob2', shape = [1, 64]);

 data = external<scalar>(shape = [10, 3, 224, 224]);

 conv = conv(data, variable, variable_1, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu = relu(conv);

 conv_1 = conv(relu, variable_2, variable_3, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_1 = relu(conv_1);

 max_pool = max_pool(relu_1, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);

 conv_2 = conv(max_pool, variable_4, variable_5, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_2 = relu(conv_2);

 conv_3 = conv(relu_2, variable_6, variable_7, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_3 = relu(conv_3);

 max_pool_1 = max_pool(relu_3, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);

 conv_4 = conv(max_pool_1, variable_8, variable_9, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_4 = relu(conv_4);

 conv_5 = conv(relu_4, variable_10, variable_11, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_5 = relu(conv_5);

 conv_6 = conv(relu_5, variable_12, variable_13, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_6 = relu(conv_6);

 max_pool_2 = max_pool(relu_6, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);

 conv_7 = conv(max_pool_2, variable_14, variable_15, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_7 = relu(conv_7);

 conv_8 = conv(relu_7, variable_16, variable_17, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_8 = relu(conv_8);

 conv_9 = conv(relu_8, variable_18, variable_19, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_9 = relu(conv_9);

 max_pool_3 = max_pool(relu_9, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);

 conv_10 = conv(max_pool_3, variable_20, variable_21, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_10 = relu(conv_10);

 conv_11 = conv(relu_10, variable_22, variable_23, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_11 = relu(conv_11);

 conv_12 = conv(relu_11, variable_24, variable_25, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);

 relu_12 = relu(conv_12);

 max_pool_4 = max_pool(relu_12, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);

 reshape = reshape(max_pool_4, shape = [10, -1]);

 linear = linear(reshape, variable_26, variable_27);

 relu_13 = relu(linear);

 linear_1 = linear(relu_13, variable_28, variable_29);

 relu_14 = relu(linear_1);

 linear_2 = linear(relu_14, variable_30, variable_31);

 prob = softmax(linear_2, axes = [1]);

}

6.6.3	Neural Network Coding (NNC) format

The Neural Network Coding (NNC) standard [4] has been developed by ISO/IEC for transmission and storage of machine learning models for multimedia description and analysis. It specifies a compressed representation format for neural network data and processes for its decoding. As shown in Figure 6.5.7-1, NNC follows a toolbox approach: It offers a variety of options to represent and code neural network (NN) data, which can be flexibly selected based on the requirements of a particular use case. In particular, NNC defines data structures and syntax elements to support the following:

· Packaging of NN data of different types in neural network representation (NNR) units for access from a system or application layer.

· Signaling of metadata related to various methods of pre-processing for data reduction

· Compression of NN weights/tensor coefficients using quantization and entropy coding

· Interoperability with other exchange (e.g. NNEF [2], ONNX [3]) or native formats (PyTorch, TensorFlow).

For access from a systems or application layer, NNC packages the NN data in neural network representation (NNR) units. NNR units that can carry different types of NN data: NNR parameter set and NNR layer parameter set units convey metadata and information related to the entire NN and individual NN layers, respectively. NNR topology units contain information on the NN topology, e.g. the connections between layers/tensors. The actual tensor data is conveyed in NNR quantized information and NNR compressed data units. Finally, NNR aggregate units allow to combine several NNR units of different types that are related.

NNC allows to signal metadata related to typical pre-processing and parameter reduction methods in NNR parameter set units or NNR layer parameter set units. More specifically, NNC supports inclusion of parameters related to sparsification, pruning, low-rank decomposition, unification, batch norm folding, and local scaling.

NNC represents the NN weights/tensors in NNR compressed or NNR quantized information data units. Tensor/weight coefficients can be signaled as raw data or quantized with different methods, which are uniform, codebook, or dependent quantization. Furthermore, the quantized coefficients can be binarized and entropy coded using a context adaptive arithmetic coder, called DeepCABAC.

NNC can be used as complement to other native (e.g. PyTorch, TensorFlow) or exchange (e.g. NNEF, ONNX) representation formats. This can be done by two means: First, NNC allows to embed topology information of other formats into an NNR bitstream. More specifically, the byte sequences of other formats can be signaled in NNR topology units, which are then conveyed together with NNR compressed data or NNR quantized information units representing the coded or quantized tensors/weights. Second, NNR units representing coded tensors/weights can be embedded in the containers of other formats. Informative recommendations on how to use NNC in combination with PyTorch, TensorFlow, NNEF, and ONNX are given in the Annexes A to E of the standard [4].

SC29 WG04 is also already working on a second edition of ISO/IEC 15938-17, of which a Draft International Standard (DIS) has been completed. The second edition adds the functionality to compress incremental updates of neural networks, which can e.g. be applied to sending updates of neural networks or to federated learning scenarios.

[image: D:\home\NNR\3GPP\2206XX-SA4_119_Post\overview.png]

Figure 6.5.7-1: Generation of a neural network representation (NNR) bitstream consisting of NNR units. Tools for pre-processing, parameter reduction, quantization, and entropy coding can be selected based on the complexity and compression requirements of a given use case.

6.7 	Existing optimization and compression tools for AI/ML models

6.7.1 	AIMET library

Qualcomm has recently released the AI Model Efficiency Toolkit (AIMET). AIMET is a library that provides advanced model quantization and compression techniques for trained neural network models. The library focuses on unilateral (sender-only) techniques that do not require any decoding on the receiver side.

The following figure depicts the concept of the AIMET library.

The library is designed to work with trained PyTorch and Tensorflow/Keras models and can automate the optimization without significant loss in accuracy. The library supports advanced quantization and compression techniques that contribute to faster inference and lower memory footprint.

The following python code shows how the library may be used to compress a trained DNN:

			from aimet_torch.compress import ModelCompressor

ssvd_compressed_model, ssvd_comp_stats = ModelCompressor.compress_model(model=model, 	eval_callback=eval_callback, 	eval_iterations=1, 	input_shape=(1, 3, 224, 224), 	compress_scheme=CompressionScheme.spatial_svd, 	cost_metric=CostMetric.mac, 	

 parameters=params)

print(ssvd_comp_stats)

The source code may be found in [7].

6.7.2		MPEG NNC

6.7.2.1	NNC use cases and validation results provided by MPEG WG4

Table 6.7.2.1-1 shows examples of AI/ML model distribution using MPEG’s NNC standard. These results have been reported by MPEG for the verification of NNC in different use cases [26]. Compression rates are given in percent of the original models at working points that have approximately the same performance as the original models (transparent performance). More detailed information on the different applications can be found in the documents referenced in [26].

			Application

			Model / layer types

			Datasets

			Metrics

			Codec

			Compression rate at transparent performance

			Image super-resolution

			SWINv2 (Vision transformers)

			DIV2K

			PSNR, SSIM, LPIPS

			NNCodec

			9-15%

			Image super-resolution

			EDSR (2D convolutions)

			DIV2K

			PSNR, SSIM, LPIPS

			NNCodec

			15%

			Image restoration

			NAFNet (2D convolutions)

			GoPro

			PSNR

			NNCodec

			18%

			Learned quality metric (LPIPS)

			AlexNet backbone (2D convolutions, fully connected)

			DIV2K

			LPIPS score

			NNCodec

			9%

			Image Compression

			Autoencoder, 2D convolutions

			CIFAR100

			PSNR, SSIM

			NCTM

			17%

			INVR (NERFs)

			DyNERF, MixVoxels

			CBABasketball, Mirror

			PSNR

			NCTM

			10-20%

			Point cloud compression

			GRASP-Net (3D convolutions)

			MPEG test sequences

			D1/D2 PSNR

			NNCodec

			20%

			Visual object classification

			VGG16, ResNet50, MobileNet v2 (2D convolutions, pooling, batch-normalisation, fully connected)

			ImageNet

			top-1, top-5

			NCTM

			3-12%

			Visual object classification

			SWIN (vision transformers)

			MS COCO

			top-1

			NNCodec

			10-12%

			Object detection

			SWIN (vision transformers)

			ImageNet1K

			mAP

			NNCodec

			16%

			Object detection

			Yolo v3 (2D convolutions, pooling, batch-normalisation, fully connected)

			MS COCO

			F1

			NCTM

			10%

			Acoustic scene classification

			convolutions, fully connected

			DCASE 2017 Task1

			classification accuracy

			NCTM

			4%

			Recommender system

			Custom (feature embedding, fully connected)

			MovieLens

			top-100

			NNCodec

			2-4%

			Adaptive bitrate selection using reinforcement learning

			Pensieve (convolutions, fully connected)

			Pensive-Pytorch

			average reward

			NCTM

			20%

			NLP

			BERT (transformer encoders)

			SQuAD

			F1

			NCTM

			15%

Table 6.7.2.1-1: Application and verification of NNC in different use cases as reported by MPEG [26].

In summary, MPEG reports that some models can be compressed to 2% to 20% at transparent performance. According to [26], even greater bit rate reductions are possible when tolerating small performance reductions as a trade-off.

7 AI/ML evaluation frameworkEditor’s Note: This clause is moved to a separate Permanent Document containing all evaluation aspects of the study.

8	Traffic characteristics

8.1	Complete/Basic AI/ML model distribution

8.2	Split AI/ML operation

8.2.1	Examples of split point references

8.2.1.1	Feature Maps used in MPEG FC-VCM (Feature Compression for Video Coding for Machines) Track 1

The pipeline that is considered for feature compression for video coding for machines is described in Figure 8.2.1.1-1.:

[image:]

Figure 8.2.1.1-1: FC-VCM pipeline

The video or image is first analyzed to extract the feature maps, which will be compressed by FC-VCM. For the standardization process, a so-called anchor model has been defined, to which proponents will compare to evaluate the responses of the Call for Proposal and the upcoming reference software. It corresponds to the implementation of the pipeline of Figure 8.2.1.1-1 using exiting tools and standards. The state-of-the-art H.266/MPEG VVC codec is then used to compress the feature maps. Some pre-processing maybe needed, for example to pack all channels of the feature map into a single atlas map and 10-bit quantization to fit VVC input format. FC-VCM proposals will be measured against this basic approach.

Task networks and corresponding split points that are currently used in the Common Test Conditions for FC-VCM are:

· Mask R-CNN p-layer split point for object segmentation,

· Faster R-CNN p-layer split point for object detection, and

· JDE-1088x608 Darknet-53 split point for object tracking.

Mask R-CNN and Faster R-CNN implementations are part of the detectron2 framework that can be found at https://github.com/facebookresearch/detectron2. JDE (Joint Detection and Embedding) is a multiple object tracker that can be accessed at https://github.com/Zhongdao/Towards-Realtime-MOT.

Anchor results for each task and split point are described by the following graphs. For both object detection and instance segmentation, mean Average Precision (mAP) shall be used to measure the performance of the network Video/Image anchor results correspond to the encoding of input videos/images using VVC and running the entire task network on decoded images/videos as performed in MPEG VCM test configurations. As the extracted features at the proposed split points are larger than input images/videos and VVC is tailored to compress pixel content, one can note that the naïve approach used for feature anchors currently underperforms the compression of input images/videos. New feature compression technologies will be proposed to the CfP and analyzed at the October 2023 meeting.

[image:]

Figure 8.2.1.1-1: Instance Segmentation on OpenImages dataset using Mask R-CNN P-layer split point

[image:]

Figure 8.2.1.1-2: Object Detection on OpenImages Dataset using Faster R-CNN P-layer split point

[image:]

Figure 8.2.1.1-3: Object Detection on SFU Dataset using Faster R-CNN P-layer split point

[image:]

Figure 8.2.1.1-4: Object Tracking on TVD Dataset using JDE Darknet-53 split point

[image:]

Figure 8.2.1.1-5: Object Tracking on Hieve Dataset using JDE Darknet-53 split point

8.3	Distributed/federated learning

9	KPIs

9.1	KPIs for federated learning

In Federated learning an AIML model is trained across multiple decentralized devices or servers while keeping data localized, rather than centralizing data in one location. Evaluating the performance of federated learning systems requires specific Key Performance Indicators (KPIs) to measure their effectiveness. Table 9.1-1 details some common KPIs for federated learning.

Editor’s Note: The KPIs listed may also be relevant for other AIML scenarios and use cases.

			KPI

			Description

			Model accuracy

			The accuracy of the federated model indicates how well the model performs on its intended task, such as image recognition or natural language processing.

			Communication overhead

			Federated learning involves communication between UEs and servers to exchange model updates and information. The amount of data transferred, and the frequency of communication are critical KPIs, as excessive communication may lead to network congestion and increased latency.

			Model convergence speed

			The time it takes for the federated AIML model to converge or reach a stable state is an important performance metric. Faster convergence reduces the training time and resource consumption.

			Privacy aspects

			Ensuring that user data remains private is a key objective of federated learning. KPIs related to privacy may include identifying the data exposure.

			Local AIML model update time

			The time it takes for individual devices or servers to process local updates and contribute to the federated AIML model may be critical depending on the use case.

			Global AIML model update time

			The time it takes to aggregate local AIML model updates and produce a new global AIML model may be important for assessing the responsiveness of the federated learning system.

			Resource usage

			Resource usage assesses the hardware and computational resources required for federated learning. This includes CPU, memory, and GPU usage, as well as power consumption.

			Model Generalization

			The ability of the federated AIML model to generalize well to unseen data. is an indication of how well the model performs on new data.

			System scalability

			Scalability defines how well the federated learning system handles an increasing number of UEs without degrading performance.

10	References

[1]	3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS

[2]	Open Neural Network Exchange (ONNX), https://onnx.ai

[3]	The Khronos NNEF Working Group, “Neural Network Exchange Format”,	https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.5.html

[4]	“Text of ISO/IEC FDIS 15938-17 Compression of Neural Networks for Multimedia Content Description and Analysis”, MPEG document N00080, ISO/IEC JTC 1/SC 29/WG 04, April 2021.

[5]	Y.3179: Architectural framework for machine learning model serving in future networks including IMT-2020

[6]	Agiollo A., et al., “Load Classification: A Case Study for Applying Neural Networks in Hyper-Constrained Embedded Devices” Journal of Applied Sciences, December 2021

[7]	AI Model Efficiency Toolkit (AIMET), https://github.com/quic/aimet

[8]	https://www.tensorflow.org/lite

[9]	https://playtorch.dev/

[10]	https://github.com/quic/aimet

[11]	https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/

[12]	https://pytorch.org/serve/?ref=assemblyai.com

[13]	https://www.tensorflow.org/guide/gpu

[14]	https://www.tensorflow.org/guide/tpu

[15]	https://pytorch.org/docs/stable/notes/cuda.html /GPU

[16]	 https://pytorch.org/xla/release/2.0/index.html XLA/TPU

[17]	 https://modelzoo.co/framework/keras 	

[18]	 https://modelzoo.co/framework/pytorch 	

[19]	 https://onnxruntime.ai/docs/tutorials/tf-get-started.html 	

[20]	 https://pytorch.org/docs/stable/onnx.html 	

[21]	 https://www.khronos.org/api/nnef

[22]	 https://modelzoo.co/frameworks

[23]	 https://github.com/tensorflow/models/tree/master/official

[24]	 https://keras.io/api/applications/

[25]	 https://tfhub.dev/

[26]	“Application and Verification of NNC in Different Use Cases”, MPEG document MDS22894 WG04 N00366, MPEG Video Coding ISO/IEC JTC 1/SC 29/WG 04, July 2023.

[27]	https://www.scitepress.org/Papers/2023/116437/116437.pdf

[bookmark: _Toc120865032][bookmark: _Toc149913033]Annex A (informative):
Change history

			[bookmark: historyclause]Change history

			Date

			Meeting

			TDoc

			CR

			Rev

			Cat

			Subject/Comment

			New version

			2023/11/17

			SA4#126

			S4-231953

			

			

			

			Agreed version at SA4#126:

- S4-231813, S4-231887, S4-231814 (partially accepted), S4-232025

			1.0.0

			2023/12/05

			Post #126

			S4aV230120

			

			

			

			Updates from Video Adhoc 2023/11/28:

- S4aV230085, S4aV230088

			1.0.1

			2024/01/31

			SA4#127

			S4-240388

			

			

			

			Agreed version at SA4#127:

- S4-240075, S4-240105, S4-240440

			1.1.0

			2024/04/12

			SA4#127-bis-e

			S4-240820

			

			

			

			Agreed version at SA4#127-bis-e:

- S4-240818

			1.2.0

			2024/05/23

			SA4#128

			S4-241178

			

			

			

			Agreed version at SA4#128:

[bookmark: _GoBack]- S4-241118, S4-241284

			1.3.0

image3.png

5G Cloud

32-bit EfficientNet 16-bit EfficientNet 32-bit update

Subtract(: i) —)

J 09

t t+m t+m+n

image4.png

iduesey

image5.png

UE (Decoder side)
NN model(s) + NN updates

Content-related

Network
(Encoder side)

Video
decoder

Post-Processing
NN

metadata

Encoded
video

Video
encoder

Input video

source

image6.png

English Audio/Video| English Audio/Video Call
cal hinese Text over a new unidirectional channel
—
Ms

UE-A UE-B

image7.png

Al/ML Model composition

Al/ML
Subset

.

plit points Split AI/IlVIL model inference

[\

network Network Network

endpoint endpoint endpoint
UE UE UE

endpoint endpoint endpoint

a) b) o) d)

image8.emf

M1

Network

App

M0

UE

intermediate data

media data

result

M1

Network

App

M0

UE

intermediate data

media data

result

Case1: inference result send back to UE Case2: inference result send to peer

Microsoft_Visio_Drawing.vsdx

M1
Network
App
M0

UE
intermediate data
media data

result
M1
Network
App
M0

UE
intermediate data
media data

result
Case1: inference result send back to UE
Case2: inference result send to peer

image9.png

media data

image10.png

media data

intermediate data

image11.png

UE application

UE (Al enabled device)

data

A4

Data source
Input (e:6. camera)

Almodel
inference
engine

Inference
output
data

Almodel
delivery
function

Almodel
access.
function

5G System
5G System

Network

Network application

repository /

image12.wmf

U

E

U

E

D

a

t

a

D

e

s

t

i

n

a

t

i

o

n

U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

/

P

r

o

v

i

d

e

r

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

T

r

i

g

g

e

r

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

2

:

S

e

l

e

c

t

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

A

I

m

o

d

e

l

4

:

E

s

t

a

b

l

i

s

h

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

5

:

A

I

/

M

L

m

o

d

e

l

d

e

l

i

v

e

r

y

6

:

P

a

s

s

A

I

/

M

L

m

o

d

e

l

f

o

r

i

n

f

e

r

e

n

c

i

n

g

7

:

I

n

p

u

t

m

e

d

i

a

d

a

t

a

8

:

A

I

i

n

f

e

r

e

n

c

i

n

g

9

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject1.bin

image13.wmf

U

E

U

E

D

a

t

a

D

e

s

t

i

n

a

t

i

o

n

U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

/

P

r

o

v

i

d

e

r

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

1

:

I

n

i

t

i

a

l

i

z

a

t

i

o

n

a

n

d

E

s

t

a

b

l

i

s

h

m

e

n

t

:

S

e

r

v

i

c

e

A

c

c

e

s

s

I

n

f

o

r

m

a

t

i

o

n

:

/

M

o

d

e

l

D

e

s

c

r

i

p

t

i

o

n

D

o

c

u

m

e

n

t

/

3

G

P

P

r

e

s

o

u

r

c

e

U

R

L

2

:

S

e

l

e

c

t

A

I

m

o

d

e

l

a

n

d

p

r

e

c

i

s

i

o

n

3

:

R

e

q

u

e

s

t

s

e

l

e

c

t

e

d

p

r

e

c

i

s

i

o

n

m

o

d

e

l

4

:

I

d

e

n

t

i

f

y

A

I

m

o

d

e

l

5

:

E

s

t

a

b

l

i

s

h

a

n

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

6

:

D

e

l

i

v

e

r

r

e

q

u

e

s

t

e

d

p

r

e

c

i

s

i

o

n

m

o

d

e

l

7

:

P

a

s

s

m

o

d

e

l

f

o

r

i

n

f

e

r

e

n

c

e

8

a

:

I

n

p

u

t

d

a

t

a

f

o

r

i

n

f

e

r

e

n

c

e

8

b

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

9

:

T

r

i

g

g

e

r

m

o

d

e

l

p

r

e

c

i

s

i

o

n

u

p

d

a

t

e

1

1

0

:

D

e

l

i

v

e

r

m

o

d

e

l

u

p

d

a

t

e

1

1

1

:

U

p

d

a

t

e

m

o

d

e

l

t

o

h

i

g

h

e

r

p

r

e

c

i

s

i

o

n

8

a

:

I

n

p

u

t

d

a

t

a

f

o

r

i

n

f

e

r

e

n

c

e

8

b

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

1

2

:

T

r

i

g

g

e

r

m

o

d

e

l

p

r

e

c

e

s

i

o

n

u

p

d

a

t

e

2

1

3

:

D

e

l

i

v

e

r

m

o

d

e

l

u

p

d

a

t

e

2

1

4

:

U

p

d

a

t

e

m

o

d

e

l

t

o

h

i

g

h

e

r

p

r

e

c

i

s

i

o

n

8

a

:

I

n

p

u

t

d

a

t

a

f

o

r

i

n

f

e

r

e

n

c

e

8

b

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

8

:

I

n

f

e

r

e

n

c

e

oleObject2.bin

image14.png

Network

UE (Al enabled device)

Network application

UE application
UE Almodel
Almodel Almodel | subsetls)
UE|Al model . Almodel
access delivery '« °
data y y repositol
function function
LE’ LE’ Lz
inference . 2 2 e
engine Intermediate & & subsetls
data sccess @ @ Intermediate Almodel et
unction : ata source
Inference datadeliery 1@ inference (e.g. peeruser)
output engine
dat:
ata > Data destination I"PMT
dia player) Partial inference data
(e.g. media play output(intermediate | Data source
data) (e.g.media

repository)

image15.png

Network

UE (Al enabled device)

Network application

UEapplication
UE Al model
Almode] Almodel | subset(s)
N Almodel UE Almodel i Almodel
e access| | [. delivery Bt
functior| function P
Almodel Hevork
inference model
. Intermediate £ £ ‘subset(s)
engine data delivery 3} 5 —
functi % | mtermediate| 2 Intermediate Al model
u N
Input netion F s & [P dewaccess ——pi inference
o o function ;
data Partialinference output 2 2 engine
Data source (intermediatedata)
(e.g. camera)
Inference Send Inference output. Inference output data
| outputaccess |« | _send |
inference delivery function (inference result)
i function
! outputdata
Data destination i to UE
i

sendinference output
data to peeruser

(e.g. media player
orscreen)

image16.emf

Network UE

UE Data

Destination

UE

Application

AI Model

Access

Function

Intermediate

Data Access

Function

AI Model

Inference

Engine

Intermediate

Data Delivery

Function

AI Model

Delivery

Function

AI Model

Repository

AI Model

Inference

Engine

Network

Application

Data

Source

0.Session Establishment

2a. AI Split Inference Request

3a. Get network͛s AI processing capability

5a. AI inference Resouce Allocate

4a. Select split AI model

6a. AI inference Resouce Allocate Resp

7a. AI Split Inference Response

1. Get UE͛s

Endpoint capability

information

UE Data

Source

Alt#1: Network Decide

Alt#2: UE Decide

AI Split Inference Negotiation

AI split inference

19b.AI inferencing

17b.Establish intermediate data delivery session

18b.Intermediate data delivery

16b.AI inferencing

20b.1.Inference output result

15b.Input media data

20b.2.Inference output result

15a.1.Input media data from network

16a. AI inferencing

17a.Establish intermediate data delivery session

18a.Intermediate data delivery

19a.AI inferencing

15a.2. Input media data from peer user

20a.Inference output result

Alt#1:

data source in the network

Alt#2:

data source in the UE

10. Identify selected AI model subsets

11. Pass network AI/ML subset for inferencing

12.Establish UE AI model subset delivery session

13.UE AI/ML model subset delivery

14.Pass UE AI/ML model

subset for inferencing

AI Model Subset Delivery

4b. AI Model Information Response

5b. Select split AI model

6b. AI Split Inference Request

7b. AI inference Resouce Allocate

8b. AI inference Resouce Allocate Resp

9b. AI Split Inference Response

2b. AI Model Information Request

3b. Select all AI model

Microsoft_Visio_Drawing1.vsdx

Network
UE
UE Data Destination
UE Application
AI Model Access Function
Intermediate Data Access Function
AI Model Inference Engine
Intermediate Data Delivery Function
AI Model Delivery Function
AI Model Repository
AI Model Inference Engine
Network Application
Data Source
0.Session Establishment

2a. AI Split Inference Request
3a. Get network’s AI processing capability

5a. AI inference Resouce Allocate
4a. Select split AI model

6a. AI inference Resouce Allocate Resp

7a. AI Split Inference Response
1. Get UE’s Endpoint capability information
UE Data Source
Alt#1: Network Decide

Alt#2: UE Decide

AI Split Inference Negotiation
AI split inference

19b.AI inferencing
17b.Establish intermediate data delivery session
18b.Intermediate data delivery
16b.AI inferencing
20b.1.Inference output result

15b.Input media data
20b.2.Inference output result

15a.1.Input media data from network
16a. AI inferencing

17a.Establish intermediate data delivery session

18a.Intermediate data delivery

19a.AI inferencing

15a.2. Input media data from peer user
20a.Inference output result
Alt#1: data source in the network

Alt#2: data source in the UE

10. Identify selected AI model subsets

11. Pass network AI/ML subset for inferencing

12.Establish UE AI model subset delivery session

13.UE AI/ML model subset delivery

14.Pass UE AI/ML model subset for inferencing
AI Model Subset Delivery

4b. AI Model Information Response
5b. Select split AI model

6b. AI Split Inference Request

7b. AI inference Resouce Allocate

8b. AI inference Resouce Allocate Resp

9b. AI Split Inference Response

2b. AI Model Information Request
3b. Select all AI model

image17.png

Modeltopology
& global updates
(e.g.weights) etc

UE (Al enabled device) Network

ork application

UE application

| Aimodel |
UE|aImodel Almodel
- access - delivery
function function
m 5 5
Altraining H Z
engine & & Federated
g 9 learning
engine
Training Trainigresuts Trainin Pa
results deliveryfuncton resultedata trainedmodel
Almodel
repository

Other UEs

image18.wmf

U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

T

r

a

i

n

i

n

g

E

n

g

i

n

e

T

r

a

i

n

i

n

g

R

e

s

u

l

t

s

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

F

e

d

e

r

a

t

e

d

L

e

a

r

n

i

n

g

E

n

g

i

n

e

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

E

s

t

a

b

l

i

s

h

d

i

s

t

r

i

b

u

t

e

d

l

e

a

r

n

i

n

g

s

e

s

s

i

o

n

2

:

S

e

l

e

c

t

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

4

:

A

n

n

o

u

n

c

e

d

e

v

i

c

e

e

l

i

g

i

b

i

l

i

t

y

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

5

:

D

e

l

i

v

e

r

U

E

A

I

m

o

d

e

l

o

r

m

o

d

e

l

u

p

d

a

t

e

D

e

l

i

v

e

r

m

o

d

e

l

6

:

A

n

n

o

u

n

c

e

f

a

i

l

u

r

e

r

e

p

o

r

t

i

n

g

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

7

:

R

e

q

u

e

s

t

a

m

o

d

e

l

e

v

a

l

u

a

t

i

o

n

8

:

T

r

a

i

n

i

n

g

i

n

p

u

t

d

a

t

a

9

:

E

v

a

l

u

a

t

i

o

n

1

0

:

D

e

l

i

v

e

r

e

v

a

l

u

a

t

i

o

n

r

e

s

u

l

t

s

(

o

r

f

a

i

l

u

r

e

m

e

s

s

a

g

e

s

)

O

p

t

i

o

n

A

:

M

o

d

e

l

e

v

a

l

u

a

t

i

o

n

1

1

:

U

p

d

a

t

e

d

e

v

i

c

e

e

l

i

g

i

b

i

l

i

t

y

c

r

i

t

e

r

i

a

O

p

t

i

o

n

a

l

1

2

:

R

e

q

u

e

s

t

a

t

r

a

i

n

i

n

g

1

3

:

T

r

a

i

n

i

n

g

i

n

p

u

t

d

a

t

a

1

4

:

A

I

t

r

a

i

n

i

n

g

1

5

:

D

e

l

i

v

e

r

u

p

d

a

t

e

d

m

o

d

e

l

a

n

d

o

p

t

i

o

n

a

l

l

y

e

v

a

l

u

a

t

i

o

n

r

e

s

u

l

t

s

(

o

r

f

a

i

l

u

r

e

m

e

s

s

a

g

e

s

)

O

p

t

i

o

n

B

:

F

e

d

e

r

a

t

e

d

l

e

a

r

n

i

n

g

1

6

:

T

r

a

i

n

i

n

g

a

g

g

r

e

g

a

t

i

o

n

a

n

d

m

o

d

e

l

u

p

d

a

t

e

1

7

:

U

p

d

a

t

e

d

m

o

d

e

l

f

o

r

d

e

l

i

v

e

r

y

(

l

o

o

p

t

o

s

t

e

p

5

)

U

p

d

a

t

e

f

e

d

e

r

a

t

e

d

m

o

d

e

l

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject3.bin

image19.emf

DN

UE

5GAI client

AI Data Handler

AI Data Session

Handler

AI Inference

Engine

AI Data

Access/Delivery

5GAI-Aware Application

5GAI Application

Provider

5GAI AF

AI Capability

Manager

5GAI AS

PCF

NEF

5GAI

External

5GMS Scope

5GS Scope

Out of scope

5GS

AI Inference

Engine

AI capability

manager

Metrics collection

&reporting

Network assistance

an QoS

Core Function

Data

encoding/

decoding

AI Data

Access/Delivery

5GMS

Data

encoding/

decoding

Microsoft_Visio_Drawing2.vsdx

DN
UE
5GAI client
AI Data Handler
AI Data Session Handler
AI Inference Engine
AI Data
Access/Delivery
5GAI-Aware Application
5GAI Application Provider
5GAI AF
AI Capability Manager
5GAI AS
PCF
NEF
5GAI
External
5GMS Scope
5GS Scope
Out of scope
5GS
AI Inference Engine
AI capability manager
Metrics collection &reporting
Network assistance an QoS
Core Function
Data encoding/decoding
AI Data
Access/Delivery
5GMS
Data encoding/decoding

image20.png

Al Data
Access/Deliver

Media Client

M4

—Media Delivery scope——
— — —5GSscope- — —

UE Exposed API () ====seaen Out of scope---------

DN

image21.wmf

5

G

A

I

-

A

w

a

r

e

A

p

p

l

i

c

a

t

i

o

n

5

G

A

I

C

l

i

e

n

t

A

I

D

a

t

a

S

e

s

s

i

o

n

H

a

n

d

l

e

r

A

I

D

a

t

a

H

a

n

d

l

e

r

5

G

A

I

A

F

5

G

A

I

A

S

5

G

A

I

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

5

G

A

I

p

r

o

v

i

s

i

o

n

i

n

g

2

:

S

e

r

v

i

c

e

A

c

c

e

s

s

I

n

f

o

r

m

a

t

i

o

n

a

c

q

u

i

s

i

t

i

o

n

3

:

A

I

m

e

d

i

a

c

a

p

a

b

i

l

i

t

i

e

s

a

n

d

f

u

n

c

t

i

o

n

s

d

i

s

c

o

v

e

r

y

C

a

p

a

b

i

l

i

t

y

d

i

s

c

o

v

e

r

y

4

:

R

e

q

u

e

s

t

A

I

s

p

l

i

t

i

n

f

e

r

e

n

c

e

5

:

N

e

g

o

t

i

a

t

e

s

p

l

i

t

t

i

n

g

t

h

e

A

I

i

n

f

e

r

e

n

c

e

p

r

o

c

e

s

s

N

e

g

o

t

i

a

t

i

o

n

6

:

A

c

k

n

o

w

l

e

d

g

e

t

h

e

s

p

l

i

t

a

n

d

p

r

o

v

i

d

i

n

g

A

I

d

a

t

a

a

c

c

e

s

s

i

n

f

o

7

:

A

c

k

n

o

w

l

e

d

g

e

t

h

e

s

p

l

i

t

c

o

n

f

i

g

u

r

a

t

i

o

n

8

:

R

e

q

u

e

s

t

s

t

a

r

t

i

n

g

A

I

d

a

t

a

d

e

l

i

v

e

r

y

9

:

R

e

q

u

e

s

t

s

t

a

r

t

i

n

g

A

I

d

a

t

a

d

e

l

i

v

e

r

y

5

G

M

S

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

o

r

o

t

h

e

r

d

e

f

i

n

e

d

d

a

t

a

p

i

p

e

l

i

n

e

s

1

0

:

U

E

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

P

i

p

e

l

i

n

e

s

1

1

:

C

r

e

a

t

e

a

n

d

i

n

i

t

i

a

l

i

z

e

U

E

A

I

i

n

f

e

r

e

n

c

e

r

u

n

t

i

m

e

1

2

:

C

r

e

a

t

e

a

n

d

i

n

i

t

i

a

l

i

z

e

n

e

t

w

o

r

k

A

I

i

n

f

e

r

e

n

c

e

r

u

n

t

i

m

e

5

G

M

S

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

o

r

o

t

h

e

r

d

e

f

i

n

e

d

d

a

t

a

p

i

p

e

l

i

n

e

s

1

3

:

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

D

e

l

i

v

e

r

y

P

i

p

e

l

i

n

e

s

S

p

l

i

t

i

n

f

e

r

e

n

c

e

b

e

t

w

e

e

n

t

h

e

U

E

a

n

d

t

h

e

n

e

t

w

o

r

k

1

4

:

S

p

l

i

t

i

n

f

e

r

e

n

c

e

p

r

o

c

e

s

s

i

n

g

S

p

l

i

t

A

I

D

a

t

a

S

e

s

s

i

o

n

1

5

:

U

E

A

I

s

t

a

t

u

s

r

e

p

o

r

t

i

n

g

1

6

:

N

e

t

w

o

r

k

A

I

s

t

a

t

u

s

r

e

p

o

r

t

i

n

g

1

7

:

N

e

t

w

o

r

k

s

t

a

t

u

s

/

n

e

t

w

o

r

k

A

I

s

t

a

t

u

s

r

e

p

o

r

t

1

8

:

M

e

d

i

a

s

t

a

t

u

s

r

e

p

o

r

t

1

9

:

U

p

d

a

t

e

s

p

l

i

t

c

o

n

f

i

g

u

r

a

t

i

o

n

&

m

o

d

e

l

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

7

.

3

.

1

oleObject4.bin

image22.png

Al data/media delivery

session

Media-Aware| [Medial
‘Application Client

Handler

[Media Session| [Media Access|
Function

Sesision reporting and

3 Algnedia capabilties.

2

5: Negotiate spitting the Al inference prgcess

6: Acknowigdge the split and providing Al data access info.

4: Request Al

and functions disggvery
splitinference

[Media AF] [Media AS]

Al splitinference management

8: Request startn
Al data delivery

7 Acknowledge the split configuration

Spit Al data Session

10: UE Al Model Delivery Pipelines

13: Intermediate Data Delh

ivery Pipelines

/9: Request starting Al data delivery Sl
5GMS delivery pipelines or other defined data pipelines
11: Create and iniialize
fe—TLCrealeand inllalze |
UE Al inference runtime
12; Create and initigize

network Al inference runtime.

5GMS delivery pipelines or

other defined data pipelines

~ 7
14: Splitinference processi

ing

ind the network

4
15: Split point update

‘Splitinference between the UE ar

Some time-

-

update

Configure a new split point and

16: UE Al status reporting

splitinference

»

18 Nletwork statusinetwork Al status report

15 Media staus repor

20: Update split configuration &
model delivery pipelines

17 Nejwork Al status reporting

Media
|Application Provider

1: 41 media provisiorgng

.

image23.png

Media-aware Media Client Media AF Media AS Media
Application Application Provider

Active unicast downlink

3: Al Model
Ingest

) R S 4: Servis Announcement__ | _________ s

. 5: UE APIs .

6: Service
Accessi
Information

~

uoissag Bujuoisinoid

Y
uoissag jsabu|

session
A

7: Al Model
Session
Handling

8: Al Model/Data Delivery

® ®

9: Al Inference
“ T

image24.emf

I/S-CSCF

P-CSCF

IMS AS

DC Signaling Function (DCSF)

NEF

IMS HSS

IMS-AGW

Gm Iq

Mw

ISC

DC1

DC2

DC3

N71/Sh

N70

Ndcsf

Nimsas

N33

Mb

DC4

MDC2

MDC1

Remote IMS

Mb

DC Application

Repository (DCAR)

DC5

Ndcsf

Mb

MDC3

Nmf

Media Function (MF)

AI Inference

Engine

UE

AI Data

Access/Delivery

AI Data

Access/Delivery

AI Inference

Engine

DC Application Server(DC AS)

AI Model

Repository

Nnef

N72/Sc

Microsoft_Visio_Drawing3.vsdx

I/S-CSCF
P-CSCF
IMS AS

DC Signaling Function (DCSF)
NEF
IMS HSS
IMS-AGW
Gm
Iq
Mw
ISC
DC1
DC2
DC3
N71/Sh
N70
Ndcsf
Nimsas
N33
Mb
DC4
MDC2
MDC1
Remote IMS
Mb
DC Application Repository (DCAR)
DC5
Ndcsf
Mb
MDC3

Nmf
Media Function (MF)

AI Inference Engine
UE
AI Data Access/Delivery
AI Data Access/Delivery
AI Inference Engine
DC Application Server(DC AS)
AI Model Repository
Nnef
N72/Sc

image25.emf

UE-A P/S-CSCF

IMS

AS/DCSF

MF AIMR

Terminating

side/UE-B

0.Audio/video session and DC establishment

2a. AI Split Inference Request

4a. AI inference Resouce Allocate

6a. AI inference Resouce Allocate Resp

7a. AI Split Inference Response

Alt#1: Network Decide

Alt#2: UE Decide

AI Split Inference Negotiation

AI split inference

15b.AI inferencing

14b.Intermediate data delivery

13b.AI inferencing

16b.Inference output result

14a. AI inferencing

15a.Intermediate data delivery

16a.AI inferencing

13a. Input media data from peer user

Alt#1:

data source from peer user

Alt#2:

data source from local user

11. Download network AI/ML

subset for inferencing

AI Model Subset Delivery

4b. AI Model Information Response

5b. Select split AI model

6b. AI Split Inference Request

7b. AI inference Resouce Allocate

9b. AI inference Resouce Allocate Resp

10b. AI Split Inference Response

2b. AI Model Information Request

DC AS

3b. Select all AI models

3a. Select split AI model

12.Download UE AI/ML subset for inferencing

1a.Decide to request split inference

1b.Decide to get AI Models

5a. Media Resource Allocate

8b. Media Resource Allocate

Microsoft_Visio_Drawing4.vsdx

UE-A
P/S-CSCF
IMS AS/DCSF
MF
AIMR
Terminating side/UE-B
0.Audio/video session and DC establishment

2a. AI Split Inference Request

4a. AI inference Resouce Allocate

6a. AI inference Resouce Allocate Resp

7a. AI Split Inference Response
Alt#1: Network Decide

Alt#2: UE Decide

AI Split Inference Negotiation
AI split inference

15b.AI inferencing
14b.Intermediate data delivery
13b.AI inferencing
16b.Inference output result
14a. AI inferencing

15a.Intermediate data delivery
16a.AI inferencing

13a. Input media data from peer user
Alt#1: data source from peer user

Alt#2: data source from local user

11. Download network AI/ML subset for inferencing

AI Model Subset Delivery

4b. AI Model Information Response
5b. Select split AI model

6b. AI Split Inference Request

7b. AI inference Resouce Allocate

9b. AI inference Resouce Allocate Resp

10b. AI Split Inference Response

2b. AI Model Information Request

DC AS

3b. Select all AI models
3a. Select split AI model
12.Download UE AI/ML subset for inferencing
1a.Decide to request split inference
1b.Decide to get AI Models
5a. Media Resource Allocate
8b. Media Resource Allocate

image26.png

Machine Learning
Types

Supervised Learning

Semi-supervised Learning Unsupervised Learning

Reinforcement Learning

Classification

Regression Clustering

Decision making

image27.png

identity._.

image28.png

Original Neural Network

Pre-processing/
Parameter Reduction

b

Sparsification Qllapkizaton

Pruning . Entropy Coding
Local Scaling ‘ Uniform
LR-Decomposition ™7 Codebook . Binarization
Unification —>
Dependent Context Modeling

Batchnorm Folding
Arithmetic Coding

=% NN Data «!" NNR Units

NNR Bitstream

image29.png

Al Model Efficiency Toolkit
(AIMET)

Compression

Quantization

image30.emf

Video

Neural
Network Task
(part 1)

FC-VCM Encoder

Feature
Encoding

Bit-stream

FC-VCM Decoder

Feature

Decoding

Reconstructed
features

A

Neural
Network Task
(part 2)

FC-VCM Encoder FC-VCM Decoder

Feature

Encoding

Neural

Network Task

(part 1)

Feature

Decoding

Neural

Network Task

(part 2)

Video

Bit-stream

Reconstructed

features

image31.png

50

0

o

&

50

mAP (%)

o

0

2

10

02

mAP (%) vs BPP

—— e
—e—Festure anchor
—o—Video/Image anchor
—e—response

0s 06 08 1 12 14 16

8PP

image32.png

50

0

o

&

50

mAP (%)

o

0

2

10

02

mAP (%) vs BPP

0s

06

08 1
8PP

12

—e—Festure anchor
—o—Video/Image anchor

—e—response

14 16

image33.png

50

s

w0

3s

0

MAP (%)

2

15

10

1000

2000

mAP (%) vs Kbps

s000

5000

7000

000

000

—e—Festure anchor
—o—Video/Image anchor

—e—rResponse.

image34.png

MOTA (%)

MOTA (%) vs Kbps

&

50 o

w0

2

10

o 1000 2000 3000 000 sw00
Kbps.

—e—Festure anchor
—o—Video/Image anchor

—e—rResponse.

5000 7000

image35.png

MOTA (%)

3s

0

2

2

15

10

2000

000

MOTA (%) vs Kbps

—e—Festure anchor
—o—Video/Image anchor

—e—response

&0 000 10000 12000
Kbps

image1.emf

Video

Neural
Network Task
(part 1)

FC-VCM Encoder

Feature
Encoding

Bit-stream

FC-VCM Decoder

Feature

Decoding

Reconstructed
features

A

Neural
Network Task
(part 2)

FC-VCM Encoder FC-VCM Decoder

Feature

Encoding

Neural

Network Task

(part 1)

Feature

Decoding

Neural

Network Task

(part 2)

Video

Bit-stream

Reconstructed

features

image2.png

Hearing-speech impaired UE-A Normal UE-B
! . | audio communication | . |

 —

R, e
Al Inference T
capture sign language audio/text
Al Inference
< e ¢
audio

display sign language/text

image1.emf
S4-241178.zip

