

	
3GPP TSG SA4-e (AH) Video SWG post 122	S4aV230011
Online, 14th – 28th March 2023	
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.119-PD
	CR
	pseudo
	rev
	-
	Current version:
	5.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	[MeCAR] MPEG-I Video Decoding Interface for MeCAR

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	

	
	

	Work item code:
	MeCAR
	
	Date:
	13/03/2023

	
	
	
	
	

	Category:
	B
	
	Release:
	18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
[bookmark: _Toc128127170]10.3	MPEG-I Video Decoding Interface
10.3.1 Introduction
One of the most distinctive features of immersive media compared to 2D media is that only a tiny portion of the content is presented to the user. Such a portion is interactively selected at the time of consumption. For example, a user may not see the same point cloud object’s front and back sides simultaneously. Thus, for efficiency reasons and depending on the users’ viewpoint, only the front or back sides need to be delivered, decoded, and presented. Similarly, parts of the scene behind the observer may not need to be accessed.
At the 140th MPEG meeting, MPEG Systems (WG 3) reached the final milestone of the Video Decoding Interface for Immersive Media (VDI) standard (ISO/IEC 23090-13) by promoting the text to Final Draft International Standard (FDIS). The standard defines the basic framework and specific implementation of this framework for various video coding standards, including support for application programming interface (API) standards that are widely used in practice, e.g., Vulkan by Khronos.
The VDI standard allows for dynamic adaptation of video bitstreams to provide the decoded output pictures in such a way that the number of actual video decoders can be smaller than the number of the elementary video streams to be decoded. In other cases, virtual instances of video decoders can be associated with the portions of elementary streams required to be decoded. With this standard, the resource requirements of a platform running multiple virtual video decoder instances can be further optimized by considering the specific decoded video regions to be presented to the users rather than considering only the number of video elementary streams in use. The first edition of the VDI standard includes support for the following video coding standards: High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), and Essential Video Coding (EVC).
10.3.2 Use Cases
While built under the MPEG-I umbrella, VDI addresses several relevant use cases as shown in Figure 10.3.2-1.It includes XR experiences, 360 VR as well as multi.object AR scenes, but also video calls with multiple video streams or TV multi-stream functionalities.
[image: Website

Description automatically generated]
Figure 10.3.2-1 Example use cases for Video Decoding Interface
An example for a dynamic mesh decoding is shown in Figugre 10.3.2-2
[image:]
Figure 10.3.2-2 Example use cases for Video Decoding Interface
Multiple video decoders need to operate in parallel, including a geometry, texture, and attribute decoder. Another decoding instance may be provided for the texture track. In order to operate a decoding platform, there is a need for synced video decoder instances.
10.3.3 Background
Typical video decoding stacks for mobile devices are provided in Figure 10.3.3-1
[image: Diagram

Description automatically generated]
Figure 10.3.3-1 video decoding stacks for mobile devices
In this case, apps access codecs through OS APIs, which in itself rely on underlying hardware abstractions such as OpenMAX or Vulkan, to abstract the chipset and hardware functionalities.
A specific example need to support use cases shown in 10.3.2 is provided in Figure 10.3.3-2. An application may instruct a decoder to decode multiple video bitstreams concurrently and provides those for joint GPU processing to generate a viewport.
[image:]
Figure 10.3.3-2 Multi-decoder support
Preferably, such a configuration of a multi-decoder instance is simple enough for an application to create such workflows.
Video APIs as shown in figure 10.3.3-1 have shortcomings:
-	API cannot allocate a group of decoder instances on a SoC for a single application.
-	API cannot indicate the maximum number of HW video decoders available for a certain profile and level constraint.
-	SoC are underused to guarantee that an app will be able to run based on a minimal requirement, e.g. 1 HW and 1 CPU decoders.
-	Higher user experience or lower consumption could be achieved, if no CPU decoders are used.
-	Secure rendering pipelines for multi-decoder combination in GPU
These shortcomings result in challenges for app developers such as lack of interoperability for the processing of concurrent video streams, unavailability of sufficient amount of instances, or synchronized decoder output into swap-chain buffers for concurrent rendering.
ISO/IEC 23090-13 address this issue by extending existing APIs to support multiple video decoders as schown in Figure 10.3.3-3.
[image:]
Figure 10.3.3-3 Multiple decoder management
The manager in the multi-decoder manages the resources to provide time synchronized output buffers to the GPU. In a variant of this, all instructions and decoding are done in a secure hardware pipeline as shown in Figure 10.3.3-4.
[image:]
Figure 10.3.3-3 Multiple decoder management with secure HW pipeline
10.3.4 MPEG VDI - ISO/IEC 23090-13
MPEG-I Video decoding interface as specified in ISO/IEC 23090-13 addresses the challenges and requirements of XR applications, namely:
· 3D object => several components => 2D decoder instance per component
· Decoders for same object need to be synced and paced
· Synchronization at frame accuracy (different from A/V sync)
It provides the following functionalities
· Manage decoding resources efficiently and with certainty
· Enhance control interface for decoder platform
· Specify pre- and post-processing instructions for input and output
· Abstract API with mappings to
· OpenMAX
· WebCodecs
· Vulkan Video API
· Interested companies: Xiaomi, Samsung, app developers
The principle architecture is shown in Figure 10.3.4-1
[image: Diagram

Description automatically generated]
Figure 10.3.4-1 MPEG-I VDI Architecture
The VDI specification provides abstract API definition using IDL for the following functionalities:
· function to query the instantaneous aggregate capabilities of a decoder platform for a specific codec component
· setting up decoder instances belonging to a same group means that the VDE treats those instances collectively such that the decoding statuses of those instances progress in synchrony and not in competition against each other
· setting up a configuration for the output buffer
· extended parameter settings and query such as subframe outout, cropping, or timing.
Examples for video decoding instances are provided:
· Mapping on OpenMAX™ Integration Layer (OpenMAX IL)
· Mapping on Vulkan® Video
10.3.5 Relevancy for MECAR
MPEG-I VDI is clearly of relevance of MeCAR functionalites to address several use cases:
- decoding and processing multiple eye buffers, possibly also a depth buffer
- decoding and processing multiple layers
- decoding and processing multiple video streams associated to 3 D objects
- decoding and processing the streams of multiple objects (possibly each with multiple streams)
Hence, beyond the capabilities of video decoding as defined in clauses 4.3.2.2 and 6.6.3, the capabalities should refer to the capabilities as defined in ISO/IEC 23090-13 using terminology and the capability descriptions according to clause 5.4.1.1
The IDL declarations of the queryCurrentAggregateCapabilities() function along with the AggregateCapabilities and PerformancePoint structures and the capabilities flags are defined as follows:
 const unsigned long CAP_INSTANCES_FLAG = 0x1;
 const unsigned long CAP_BUFFER_MEMORY_FLAG = 0x2;
 const unsigned long CAP_BITRATE_FLAG = 0x4;
 const unsigned long CAP_MAX_SAMPLES_SECOND_FLAG = 0x8;
 const unsigned long CAP_MAX_PERFORMANCE_POINT_FLAG = 0xA;

 struct PerformancePoint {
 float picture_rate;
 unsigned long width;
 unsigned long height;
 unsigned long bit_depth;
 };

 struct AggregateCapabilities {
 unsigned long flags;
 unsigned long max_instances;
 unsigned long buffer_memory;
 unsigned long bitrate;
 unsigned long max_samples_second;
 PerformancePoint max_performance_point;
 };

 AggregateCapabilities queryCurrentAggregateCapabilities (
 in string component_name,
 in unsigned long flags
);

In addition, the MAF should support
· setting up decoder instances belonging to a same group
· setting up a configuration for the output buffer
· extended parameter settings and query such as subframe outout, cropping, or timing.

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

