[bookmark: _GoBack]3GPP SA3#94-LI	s3i240450
 9-12 July 2024, Amsterdam (NL)
	
Source:	NDRE
Title:	LI of encrypted sessions and 6G considerations
Document for:	Discussion
Agenda Item:	x.y
Work Item / Release:	-
Abstract of the contribution: This discussion paper originated from an analysis of how to define relevant IRIs for preforming (non-roaming) LI of TLS 1.3 encrypted session enabled by AKMA, thereby extending the current scope of 33.128 from TLS 1.2 only. During this analysis, some observations were made relevant for future (e.g. 6G) extensions to the LI architecture to cover also UDP sessions (e.g. protected by QUIC) and roaming scenarios, including new aspects of the trust model between PLMNs. This discussion is submitted to SA3LI hoping it will spawn further discussion and analysis.
1	Introduction
AKMA is a generic key management solution, leveraging keys produced by the USIM, and does not as such assume/require that any specific encryption protocol is used. Instead, AKMA defines in TS 33.535 the concept of Ua* protocol, serving as a generic reference to the encryption protocol actually used. Two obvious possibilities for this Ua* protocol are TLS 1.2 (RFC5246) and TLS 1.3 (RFC8446). TS 33.222 defines profiles of these protocols when used as Ua* protocol. The present document discusses the need for access to keys and other decryption parameters, when LI is required for traffic that is encrypted by these protocols.

There are two main cases for consideration:
1. LI at the NF terminating TLS (i.e. the AKMA AF, acting as TLS server). In this case, access to decrypted traffic is trivial and is outside the scope of the present document.
2. LI at some intermediate point, between the TLS client and the server, which is the main focus. This has two sub-cases:
a. Non-roaming, e.g. when it (for whatever reason) is desired or even required to provide LI at a UPF or similar, rather than at the AKMA AF.
b. Roaming, when the TLS server is in HPLMN and the LI functions need to be provided in VPLMN.

NOTE:	Case 2 could be relevant also when the AF resides at a PLMN-external entity ("OTT").

The decryption-related IRI need to be defined in TS 33.128 and is from Rel-17 onward defined for the case when TLS 1.2 is used. But since TLS 1.3 is likely to take over the roll as the most widely used Ua* protocol in the near future, it is also of great interest to define IRI for TLS 1.3. A first purpose of the present document is to discuss various ways of selecting these IRI while striving for data-minimization.

It can also be envisioned that LI of encrypted traffic running over UDP (protected by DTLS or the built-in security of QUIC) will become important. A second purpose is therefore to make an analysis of potential additional issues occurring in these cases.

As it turns out, TLS 1.3 also demonstrates some specific difficulties relating to performing LI in intermediate (i.e. non end-point) NFs, for example to enable VPLMN LI during roaming. Currently, AKMA LI in roaming is handled by a mechanism in TS 33.535 to simply disable AKMA services, which is not really an optimal solution. Going forward to 6G, a better approach, allowing AKMA while not preventing LI seems more viable. A third purpose of the present document is therefore to use the TLS 1.3 example to identify which LI-support features that are most likely required on the longer term. In fact, some interesting inter-PLMN trust model topics can be identified.

The paper is organized as follows. Clause 2 provides a reminder of the 33.127 LI architecture for AKMA in non-roaming and a seemingly natural extension to the roaming case. In clause 3, an analysis of TLS 1.3 is performed, identifying some specific problems related to mid-session intercept when intercept is performed at an intermediate NF (which in fact also applies to TLS 1.2) and clause 4 identifies TLS 1.3 relevant IRIs which are then provided in ASN.1 format in annex B (for comparison, the defined IRI for TLS 1.2 are summarized in in annex A.). Clause 5 contains a brief future outlook on handling LI for UDP-based session (using DTLS or the QUIC protocol) and clause 6 summarizes the analysis, including a general discussion on the trust model implied by AKMA which could be valuable to consider for future 6G work.

2.	Background
2.1	AKMA LI Architecture
The present clause is provided only as background and does not depend on whether TLS 1.2 or 1.3 is used; it can be skipped by readers familiar with the AKMA details already defined in TS 33.127.

UP (User Plane), IRI (Intercept Related Information), CC (Communication Content), and POI (Point of Intercept) are used in accordance with standard 3GPP terminology. For the purpose of the present document, it is noted that all TLS communication (including the TLS handshake) between a client and a server occurs over the UP, and the contents of that can therefore in principle be interpreted as CC, collected at a CC POI. At the same time, the handshake part of TLS, while carried over UP, contains IRI related to the TLS session itself, for example, the selected cipher suite. This means that some AKMA/TLS-specific IRI can be obtained either by a conventional IRI POI of the TLS server, or, from a CC POI present in the UP (e.g. at a UPF). Therefore, with some abuse of language, statements such as “…obtaining IRI from a CC POI…” might occur below.

The AKMA non-roaming LI-architecture is depicted below as well as an exemplary extension to the roaming case.
[image:]
Figure 1: AKMA LI architectures for non-roaming (defined in 33.127) and roaming (not yet defined).

In non-roaming, with the TLS server (corresponding to AKMA AF) inside the HPLMN, the current solution defined in 33.127 (so far limited to TLS 1.2) defines both IRI and CC POI at the TLS server (leftmost case). It mentions the possibility of leveraging a CC POI in the UPF, assisted by an IRI POI at the server, but does not provide details. The case of roaming with TLS server in VPLMN is, as far as AKMA and LI is concerned, essentially identical to the non-roaming case and is therefore omitted from discussion. As discussed in the introduction, the focus lies on non-roaming with a standalone CC POI at a UPF, and roaming, with CC and IRI POI in the VPLMN (most likely also at a UPF).
2.2	IRI for TLS 1.2
In TLS1.2, the so called “Security parameters” are conveniently summarized in clause 6.1 of RFC5246. While some of these are in fact unnecessary for LI purposes (for example, “cipher type” and “key length”, which can be uniquely determined from the value of the parameter “cipher suite”), it has nevertheless been convenient to just copy these as IRI parameters into 33.128. A few additional parameters have however also been added: “session ID” and “extensions”. Session ID could be useful when LI spans (in time) over several TLS sessions (possibly reusing security parameters across sessions). The extensions field of TLS 1.2 can also contain parameters of LI- and/or cryptographic relevance.

EXAMPLE:	Some examples of such parameters include: server name, whether the message authentication values (MAC) are to be truncated, which signature algorithms that are supported, TLS record size limits, etc.

Furthermore, there are also extensions defined in other IETF RFCs which are crucial to enable decryption, e.g. the "Extended Master Secret" and "Encrypt then MAC" extensions.

While some of the extensions are perhaps not crucial for LI, it was nevertheless decided to incorporate the full set of extensions to avoid the possibility of having insufficient information available at the CC POI that is tasked to decrypt the TLS traffic. The same could occur as additional extensions are later defined for TLS 1.3.

A special observation about the actual decryption keys is that while LI would be possible by only having access to the decryption keys (omitting e.g. authentication keys), a very simple approach is possible in TLS 1.2 by just transferring the “master key” from which all other keys are derived in a well-defined way. The set of IRIs relevant for TLS 1.3 are more extensive, as will be seen in the analysis below.

3	TLS 1.3
3.1	Common problems for TLS 1.2 and 1.3
Assuming for the moment that the needed IRI have been identified, there are some practical problems related to timing aspects to tackle in order to obtain a robust LI solution when LI is to be performed at an intermediate POI (not co-located with the server). First of all, the TLS encryption/decryption process is dependent on the sequence numbers at the endpoints. These start at zero when the session is initiated and then counts up by “+1” for each new generated TLS record (the fundamental TLS message units are called records). If LI is activated for an already established session, this means that the sequence number obtained at LI activation (e.g. as IRI from the TLS server) captured at time T0 may no longer be correct when provisioning of the “CC-decryption-POI” completes at a later time T1, since the client/server may have had time to generate more TLS records in the interval [T0, T1].

For mid-session activation of LI, the problems are more pronounced since one cannot assume that a sequence-number IRI is automatically available in the LI system. To support mid-session activation, some NF needs to have been preparing for this to occur. To this end, since TCP is to provide reliable transport, it has to be assumed that packets can be lost and that retransmission can occur. This implies that a naïve approach of just counting packets in preparation for future LI activation will not work. It is necessary to implement logic than can figure out if there are lost packets and which packets that just contain retransmissions of earlier TCP fragments, since a retransmission will not cause sequence numbers to increase. This seems to pose a non-trivial problem.

These problems are of course also bigger in roaming scenarios. In roaming, one also faces the more critical issue that requesting sequence number IRI from the TLS server, if located in the HPLMN, would disclose LI activation. One could of course demand that the server sends IRI for all sessions, even if they are not being intercepted, but this creates large amounts of signalling: in order to keep the LI functions in the VPLMN updated, the TLS server would probably need to intermittently send new sequence numbers. This seems rather unfeasible and indicates the need for an "S8HR LMISF-like" approach to handle mid-session intercept in the VPLMN, i.e. that the VPLMN locally maintains state information about established TLS sessions. However, as noted above, this LMISF function probably needs to be made more clever to maintain accurate sequence number estimations.

3.2	TLS 1.3 specific problems
3.2.1	TLS 1.3 overview
It is useful to start with an overview of the TLS 1.3 protocol, starting with the handshake. This is depicted in the figure below.
Client Server

ClientHello
+ early_data_indication
+ key_share*
+ psk_key_exchange_modes
+ pre_shared_key
 (Application Data*) -------->
 ServerHello
 + pre_shared_key
 + key_share*
 {EncryptedExtensions}
 + early_data*
 {Finished}
 <-------- [Application Data*]
(EndOfEarlyData)
{Finished} -------->
[Application Data] <-- … --> [Application Data]

	Symbol
	Meaning

	+
	noteworthy extensions sent in the previously noted message

	*
	optional or situation-dependent messages or extensions that are not always sent

	()
	messages protected using keys derived from a client_early_traffic_secret

	{ }
	messages protected using keys derived from a sender's handshake_traffic_secret.

	[]
	messages protected using keys derived from a sender's application_traffic_secret.

In the clauses below, a per-message walk-through of particular LI-related issues is provided, in the order they appear above. A detailed discussion about the keys mentioned above is postponed to clause 3.2.3 (with more in-depth details in clause 4.4).

3.2.2	Walk-through of TLS 1.3 handshake messages
3.2.2.1	Client (and Server) Hello, version negotiation

As seen "on the wire", the initial TLS 1.3 messages (ClientHello and ServerHello) look exactly like normal TLS 1.2 messages. Whether TLS 1.2 or 1.3 is actually to be selected requires inspecting the extension field in the ServerHello (which fortunately is not encrypted).
3.2.2.2	Early data indication

The client can send an indication that it wishes to start sending encrypted data already after the ClientHello. This is possible only if a pre-shared key (PSK) already is in place at the client and server (e.g. provided by AKMA) and is discussed in clauses 3.2.2.3 and 3.2.2.5.

3.2.2.3	Key share and PSK key exchange modes
TLS 1.3 supports two different PSK modes when the client and server shares a key, either
A. obtained in a previous session (called the “ticket” solution), or,
B. provided “out-of-band” (by non-TLS means such as AKMA).
An identifier, indicating which PSK to use is present (unencrypted) in the pre_shared_key extension of the ClientHello.
NOTE 1:	Format for AKMA-based TLS PSK identities is defined in TS 24.109.
The PSK key can either be used alone, or, in combination with an ephemeral Diffie-Hellman key, generated during the handshake (as part of the key_share extensions shown above). This Diffie-Hellman option is generally problematic since the corresponding secret values are only known at the endpoints which is particularly problematic in roaming situations with the server in the HPLMN: for a mid-session intercept, the only option is to request the secret from the server, which discloses LI activation.
NOTE 2:	An option would be that the TLS server (AKMA AF) always transfers the secret to some NF of the VPLMN. This would however create per-TLS-session signalling even when no LI needs to be activated.
The best option seems to be to simply enforce a policy such that the Diffie-Hellman option can be disabled, at least in roaming. In the sequel, it is thus assumed Diffie-Hellman is disabled.
When the PSK is obtained according to B (out-of-band by AKMA), there are no immediate problems except to ensure the AKMA key (and its associated PSK identity) is duly provisioned at the decryption POI (i.e. as soon as the AKMA key was created in the HPLMN).
NOTE 3:	Having per-AKMA-key signalling between HPLMN and VPLMN has considerably less overhead than per-TLS-session signalling, since a main point of AKMA is to enable reuse of the AKMA key across sessions.
There could still be issues if the PSK was obtained via option A, i.e. as a ticket from a previous session, during which LI was not already activated. The actual PSK to use is then derived from a so called resumption_master_secret established in the previous session, and a nonce included in a ticket issued by the server in the (same) previous session (sent by the server in a NewSessionTicket message, not shown above). Further, that ticket, including the associated PSK identifier was sent encrypted by another key (the so called server_application_traffic_secret) associated with traffic encryption of the previous session. In fact, a server could have sent several such tickets in any such previous session, and at any point in that previous session (after the client's Finished handshake message). For the roaming case, this implies that either
· the TLS server needs to have already provisioned all tickets from all previous sessions(s) (in readable form) at times when LI was not yet activated, or,
· some VPLMN POI-type functionality needs to have been present in-band and decrypted/extracted the needed parameters from the tickets sent in the previous sessions. Since the parameters were encrypted by the server_application_traffic_secret, this implies that "LI-capabilities" need to have been fully provisioned and active in the VPLMN already at all the previous sessions.
While one could still envision a "S8HR/LMISF-like" function in the VPLMN to extract the ticket-information, an extra complication here is that it needs to have been fully provision to also decrypt those tickets. This ticket mechanism therefore seems to create considerable issues for LI in roaming (even without considering mid-session intercepts). It is therefore felt necessary to, again, define an enforcement mechanism so that tickets are not issued or used during roaming, i.e. that only "raw" AKMA keys are used as PSKs. (Even in non-roaming, there are obvious technical difficulties with the tickets when the CC POI is located outside the TLS server.)
When a PSK is taken into use, the actual encryption keys are derived from the PSK using a hash algorithm associated with the PSK. The TLS 1.3 specification mentions the possibility that this hash function can configured/provisioned alongside the PSK, i.e. as part of AKMA. However, the AKMA TS:es do not seem to define such a mechanism and it is therefore in the sequel assumed that the hash is either the hash associated with the TLS cipher suite in use (or the default, SHA256).

3.2.2.4	Encrypted Extensions
TLS 1.3 activates encryption of the handshake itself, right after the ServerHello message. Specifically, encryption starts with an EncryptedExtensions message sent from the server, and all subsequent handshake messages, e.g. carrying certificates etc, are encrypted. The contents of the extensions are already identified as relevant for LI of TLS 1.2 sessions and the same applies to TLS 1.3 (see clause 4.3). The content of these messages can still be extracted (decrypted) as IRI by an IRI POI at the TLS server. In roaming however, as already identified, it is most likely not a viable solution that the server (in the HPLMN) transfers these IRI parameters to the VPLMN for all sessions it handles. A better option is to ensure a POI in the VPLMN always has the necessary information to decrypt these messages. Again, the key (pun intended) is to ensure this VPLMN POI can derive the decryption keys. See clause 3.2.3 for further discussion.

3.2.2.5	0-RTT early data
This is also a PSK-setting as discussed above. The client has an option to take a PSK into use to send encrypted “early” data, even before the TLS handshake is completed (in the first ApplicationData message from the client shown above). In this case, the IRI-relevant parameters (PSK identifier, cipher suite etc) used by the client are those that are associated with the PSK, the PSK being provisioned by AKMA or derived from a previous ticket. Since the ticket mechanism has already been identified to create serious issues, it is assumed that only the AKMA-provisioning is in scope.

According to the TLS 1.3 specification, the 0-RTT early data is protected by the "cipher suite associated with the PSK" (similar to what was mentioned above, i.e. that the PSK could also have a hash function associated with it). This cipher suite also needs to be the same as that negotiated in the handshake. This cipher suite needs to be known to be able to decrypt early data at a POI. When an AKMA key is provided to an AF, there are no provisions made in TS 33.535 for how to provide an "associated cipher suite". Therefore, the client needs to indicate the cipher suite in its ClientHello (in plaintext) and the server needs to allow (and the select) the same cipher suite (else the handshake will fail). Therefore, it can be assumed that a POI will be able to deduce which cipher suite to use to decrypt early data, and the crucial point is to ensure it has the key.

Under the assumptions above and the proposed restriction of usage of the ticket mechanism, the use of 0-RTT data does not appear to create additional problems.

3.2.3	TLS1.3 Key Hierarchy
Of general importance is of course the TLS 1.3 cryptographic keys which are absolutely necessary to decrypt CC (including early 0-RTT data) and IRI (including the encrypted extensions in the handshake). These keys are arranged in a hierarchy, where “lower” keys are derived from “higher” keys (and some additional information). This means that access to a specific key, K, at a specific level of this hierarchy can be obtained either by providing an IRI comprising the key K itself, or, an IRI comprising a higher level key, K’, which (together with other parameters) enables derivation K.

Providing keys as high as possible in this hierarchy would be beneficial since it minimizes the number of IRI/keys that needs to be provided. In the AKMA case, under the assumptions and restrictions made above, the root key of this hierarchy is an AKMA (KAF) key, which speaks in favour of always providing that for LI-purposes. A caveat might be the risk of over-collection: the same AKMA KAF could be used for multiple services (some of which might not even use TLS). This could therefore be an issue if the warrant is very narrow in its scoping. However, considering the complexity of the TLS 1.3 key hierarchy (see clause 4.4 for details) any attempt to only make "lower" keys available to LI seem to become rather complicated (not only in roaming, but also for mid-session intercept) so that the alternative would be to (again) simply disable AKMA, a considerably worse approach.
4	TLS 1.3 IRI
4.1	Introduction
As mentioned, TS 33.128 defines IRI for security related parameters for the case that the AKMA Ua* protocol is TLS 1.2, targeting the non-roaming case (see annex A). In this clause an analysis is made for the case of TLS 1.3 (summarized as concrete ASN.1 in annex B).
In the non-roaming case, the TLS 1.3-specific IRI comprise those IRI that can be extracted at the AKMA AF (TLS server) in the HPLMN, in analogy to the case for TLS 1.2.
To handle also the roaming case (in some future release), it follows from the analysis in the preceding clauses that the only IRI that can reasonably (and necessarily) be expected to be provisioned from the HPLMN is the AKMA keys (KAF or possibly KAAnF), used as the root PSK key for all TLS 1.3 keys. IRI for these AKMA keys are already defined in 33.128, independent on which protocol is used and can be reused for the TLS 1.3 case. In the roaming case, the complete set of IRI for LI-specific decryption of TLS 1.3 is therefore not to be viewed as IRI that are provisioned from the HPLMN, but rather as IRI associated with the internal state of the POI in the VPLMN, and which this POI has autonomously extracted from the TLS session, using the AKMA root key provided by the HPLMN.

4.2	Simplifications in TLS 1.3
The good news is that TLS1.3 makes some things easier, so these are handled first. There is no need to have a “cipher type” IRI since only ciphers of AEAD type are supported.

4.3	TLS extensions
Access to several of the IRI contained in the TLS-extensions is as discussed essential for robust decryption of CC. There are two options: one could either define explicit IRI for the essential extensions and provide them individually, or, one could provide the full set of extensions as a single IRI. The first approach simplifies handling at the CC POI since it is not necessary to parse the full set of extensions and extract the essential ones. On the other hand, some extensions, while not essential for decryption (e.g. the set of supported signature algorithms) could be useful for “fingerprinting” of clients if so desired. Also, providing the full set of extensions makes the solution future-proof, in case there is later added new extensions that would be required to decrypt the traffic.
During the handshake, the client provides a set of proposed extensions in the ClientHello, the server then analyses them and selects the extensions the server wants to use, sending them back to the client, distributed over the extensions field associated with ServerHello, and also in the EncryptedExtensions. Considering the client’s proposed extensions, they can as mentioned be a super-set of the extensions selected by the server, but extensions “rejected” by the server could still be of interest for LI.
In summary, the extension related IRI are proposed to be handled in the same way as for TLS 1.2.

4.4	Keys
In this clause, the key hierarchy of TLS 1.3 is analysed. The aim of this analysis is to deduce which keys and associated parameters that are necessary/suitable to be part of POI provisioning to enable LI of encrypted traffic at the POI. Since the present document has already identified the need for an LMISF-like function that extracts data from TLS handshakes in order to handle mid-session intercepts and roaming cases, the keys/parameters identified as relevant for provisioning, simultaneously serves to identify which information that functions needs to extract from TLS handshakes.

NOTE 1:	From one single "parent" key in the TLS hierarchy, one or more additional "child" keys are derived in dependence of the parent key and some additional parameters. If a certain child key is crucial for LI purposes, there arises a choice between: (a) directly provisioning the child key, or, (b) the parent key, plus the additional parameters to derive the child. Option (a) is more efficient for the POI (as it avoids key derivations at the POI) and also minimizes risk of over collection. Option (b), on the other hand, minimizes the number of keys to provision. (One might also consider provisioning "grand-parent" keys instead of parents, with similar pros/cons.)

Table 1 below summarizes the TLS 1.3 key hierarchy as described in RFC8446, clause 7.

· For each key, it is stated whether key is always present/used in TLS 1.3 (MANDATORY, M, or OPTIONAL, O). (When the key is not present, TLS 1.3 replaces the key by the constant value “00...0” for the purpose of deriving other keys.)
· The usage of the key is explained in the next column.
· The “parent” column describes the (nearest) higher-level key from which the key is derived.
· “Add params” describes which additional parameters (besides the parent key) that are needed to derive the key in question. Here “S” denotes a static (public) constant (whose value is defined in RFC8446), “HS” denotes a hash of one or more handshake message of the current session. Values labelled as S can be assumed to be known and do not need to be provisioned. The need to provisioning values labelled HS depends on whether the POI was present in the TLS handshake from start or not. In the roaming case, if the POI was not present from the start, it is problematic to provision these from the HPLMN as discussed earlier. To enable mid-session intercept these values needs to be extracted by functionality similar to the LMISF used for S8HR. To this end, values labelled as HS+ are mandatory to provision (or extract) whereas values labelled only HS are optional.
· The LI column states whether the key is MANDATORY (M), CONDITIONAL (C), or whether it is OPTIONAL (O) to be provisioned. Keys labelled CONDITIONAL could be provisioned in certain cases where they are known. If a key is required for LI, but not always explicitly provisioned, derivation of this key requires knowledge of the "parent" key and "add params" from which it was derived. This implies that the parent key needs to be labelled as M and (implicitly) assumes that the "add params" associated with the key are also provisioned (or otherwise known).

NOTE 2:	In TLS 1.2, the client and server each included random values in their respective Hello messages, and these random values were explicitly input to the key derivations to provide freshness. In TLS 1.3, these random values are still present, but their inclusion in the key derivations is indirect since the contents of the entire Hello messages are input to the key derivations (via a HS-value, as described above).

In the following, the keys are analysed none by one, explaining how one can draw conclusions whether a given key is an optional or mandatory IRI parameter. Some of the keys come in pairs, one for use at the server and one at the client. To enable more compact notation, the pair of such keys are group together using a "/".

EXAMPLE:	The two keys client_write_key and server_write_key are collectively denoted as	client/server_write_key

PSK (out of band provisioned): As mentioned, this is provisioned as part of generic AKMA IRI and is therefore OPTIONAL when considered as a Ua* (TLS) specific IRI. Indeed, the only keys derived from this PSK needs anyway to be provisioned as part of IRI for the current session (see discussion on client_early_traffic_secret and early_exporter_master_secret below). This IRI is therefore OPTIONAL both from implementation and provisioning viewpoint. This IRI is only useful if the associated hash function and cipher suite are also known or can be deduced from handshake.

PSK (ticket based): This key is as mentioned derived from a resumption_master_secret of a previous session. Since this key has interdependencies to previous sessions, this is problematic in particular in the roaming case where the proposal is to disable the ticket mechanism. Nevertheless provisioning this key could be feasible in non-roaming cases. This IRI is therefore OPTIONAL. Use of this IRI for LI requires knowledge of the associated hash function and cipher suite which are either provisioned too (or, can otherwise be extracted from the handshake).

early_secret: This is an intermediate key which has no usage except to derive binder_key, client_early_traffic_secret, and early_exporter_master_secret. The binder_key has no obvious LI usage (see below). To save processing at the CC POI, instead of providing the early_secret, it again appears better to just directly provide the client_early_traffic_secret and early_exporter_master_secret (which are essential IRI for LI). This IRI is therefore OPTIONAL (and perhaps even “unnecessary”).

binder_key: this key has no obvious LI usage since it only serves to bind the set of PSKs proposed by the client to the current session handshake. The fact that the binding is successful can be deduced from the fact that the session proceeds. This IRI is therefore OPTIONAL (and perhaps even “unnecessary”).

client_early_traffic_secret: this key is necessary for decryption for 0-RTT early data, thus making it MANDATORY.
early_exporter_master_secret: the usage of this key is application-dependent so it could have usage to encrypt some data associated with the application. The fact that the application traffic as such is (by assumption) subject to LI, implies that this key is likely necessary for LI and is therefore MANDATORY.
ECDHE: this is an ephemeral Diffie-Hellman value generated by client and server. It is used only as raw material for deriving other keys so there seems to be no reason to provide it as an IRI; directly providing the derived keys instead seems preferred. Further, in roaming the proposal in the present document is to disable the usage of this key. Therefore, the IRI is OPTIONAL.
handshake_secret: this key is derived from the combination of the ECDHE (if present) and the early secret. This is again an intermediate key with no direct encryption usage and is therefore OPTIONAL as an IRI.
server/client_handshake_traffic_secret: these keys have direct usage as encryption keys of handshake messages between the server and client, respectively. As such, they seem both necessary. While the server extensions are anyway provided as an explicit IRI, it is proposed that both the client’s and the server’s handshake_traffic_secret are MANDATORY.
master_secret: this is an intermediate key serving the purpose to derive other keys and there is no absolute need to provide it as an IRI if the derived keys are instead provided. One reason why this key still could be useful is that the client and server can update their respective client/server application traffic secrets at different points in time, and in such case, this key is the only common root key from which any of the subsequent application traffic secrets can be derived. However, gaining undue access to this key might lead to over-collection (access to decrypted traffic sent before LI was activated). However, this risk appears low since it would require the LEMF to have been able to collect encrypted traffic before LI was activated, which seems unlikely. Also, this key can be seen as the common key of the TLS 1.2 and 1.3 key hierarchies and the key is provided as IRI for TLS1.2. All things considered, it is proposed that this IRI is MANDATORY.
exporter_master_secret: this IRI is MANDATORY, by same reasoning as early_exporter_master_secret.
resumption_master_secret: this key is used to derive PSKs for future sessions which can be seen as resumptions of the present session. As stated previously, the resumption mechanism is problematic in roaming and is proposed to be disabled. Therefore, the key is not MANDATORY. On one hand, in a non-roaming case or a roaming case where the POI has been present in previous sessions, provisioning of (or access to) this key seems feasible. A potential issue is that if LI is deactivated before that future session, it means a risk of over-collection of those future sessions. However, for the same reason as in the case of the master_key, such over-collection can only occur if the LEMF has access also to the UP packets of those future sessions and the risk therefore appears small. The key is proposed to be CONDITIONAL, i.e. it is provisioned when the resumption mechanism is not disabled.
client/server_application_traffic_secret: this is the key used to protect application traffic by deriving client/server_write_keys (see below) from it. This key can be updated during the session by deriving an updated_client/server_application_traffic secret (see below), replacing the current one. This IRI is MANDATORY.
updated_client/server_application_traffic_secret: because this key is updated during the session, there is little point in providing it directly as an IRI so it is assumed to be derived at the POI from the previous application traffic secret above.
client/server_write_key: this key is assumed derived at the POI from the associated pre-key. As this key may change during the session (due to updating the client/server_application_traffic_secret), there is little point in providing it directly as an IRI.
client/server write_IV: these are strictly speaking not “keys” but are needed to decrypt. These values are derived from the same pre-key as the client/server_write_key so providing that key makes it unnecessary to provide the IV itself.

Table 1:	TLS 1.3 keys and related parameters with dependencies.

	Key
	Pres
	Usage
	Parent key
	Add param
	LI
	Comment

	PSK
(provisioned out-of-band)
	O
	master pre-key
	-, provisioned out-of-band
	-
	O
	Associated with a hash function and a cipher suite. In the
AKMA case, this correspond to an AKMA KAF key which
explicitly is provisioned as part of AKMA LI.

	PSK (ticket based)
	O
	master pre-key
	resumption master secret of previous session
	S + “ticket nonce”
	O
	Associated with a hash function and a cipher suite. For LI,
tickets are proposed to be disabled, at least in roaming.

	early_secret
	M
	pre-key only
	One of above PSK:s or the constant “0”
	-
	O
	

	binder_key
	M
	PSK verification
	early_secret
	S, HS
	O
	

	client_early_traffic_secret
	M
	early data protection
	early_secret
	S, HS
	M
	

	early_exporter_master_secret
	M
	application specific
	early_secret
	
	M
	Provides a key which can be used by the application
running over TLS.

	ECDHE
	O
	master pre-key
	-
	-
	O
	Ephemeral Diffie-Hellman value. For LI. DH is proposed
to be disabled, at least in roaming.

	handshake_secret
	M
	master key for session
	early_secret and/or ECDHE
	S
	O
	

	client/server_handshake_traffic_secret
	M
	protection of handshake
	handshake_secret
	S, HS
	M
	

	
	
	
	
	
	
	

	master_secret
	M
	master secret for session
	handshake_secret
	S
	M
	

	client/server_application traffic secret
	M
	application session protection
	master_secret
	S, HS
	M
	This refers to the client/server application traffic secret
currently in use. It can be updated by creating an updated
client/server application traffic secret (see below) after
which that updated key replaces the current one.

	exporter_master_secret
	M
	application specific
	master_secret
	S, HS
	M
	Provides a key which can be used by the application
running over TLS.

Table 1:	TLS 1.3 keys and related parameters with dependencies (cont'd).

	Key
	Pres
	Usage
	Pre-key
	Add param
	LI
	Comment

	resumption_master_secret
	M
	Generation of PSKs for future sessions
	master_secret
	S, HS
	C
	This is only used when resumption via tickets is enabled.
While tickets are proposed to be disabled in roaming, there
could be cases where the key is still available and could be
provisioned.

	updated_client/server_application_traffic_secret
	O
	application session protection
	client/server_application_traffic_secret
(previous value)
	S
	-
	This key is calculated "on the fly", can be derived locally
at the POI from the (known) parent key.

	client/server_write_key
	M
	actual traffic protection key, direct input to cipher suite in use
	either client_early traffic_secret, client/server_handshake_traffic_secret, or, the current client/server_application_traffic_secret
	S
	-
	This key is calculated "on the fly", can be derived locally
at the POI from the (known) parent key.

	client/server_write_iv
	M
	
	same as above
	S
	-
	These value are strictly not to be viewed as “keys”. The
values are necessary for decryption but can be derived
from the same parent key as the client/server write key.

Table 2 similarly details the additional parameters for key derivation (i.e. the 5th column in table 1). In most cases, the additional parameter is the hash of one or more messages exchanged during the handshake.

EXAMPLE:	When the additional parameter is stated in form H(M1..Mn), it signifies that the parameter is the hash of the concatenation of all exchanged messages, starting with M1 and up to (and including) message Mn, in that order.

For each parameter, the associated key, i.e. the key with which the parameter is combined with for key derivation purposes is listed.

NOTE 3:	This implies that a parameter is to be provisioned if, and only if, the associated key is also provisioned (if the associated key is not provisioned, the parameter has no use, and vice versa).

The final column of table 2 states which key(s) that are derived from it.

NOTE 4:	If the derived key is listed as MANDADTORY in the LI-column of table 1, then it is (in theory) possible to replace the derived key by instead provisioning both the parameter and the associated key, since the derived key can then be reconstructed.

Table 2:	TLS 1.3 key derivation parameters.

	Additional parameter
	Associated key
	Derived key(s)

	ticket nonce
	resumption_master_secret
	PSK

	H(ClientHello)
	early_secret
	binder_key, client_early_traffic_secret, early_exporter_master_secret

	H(ClientHello..ServerHello)
	handshake_secret
	client/server_handshake_traffic_secret

	H(ClientHello..ServerFinished)
	master_secret
	exporter_master_secret, resumption_master_secret, client/server_application_traffic_secret

5	Discussion on LI for protected UDP traffic
5.1	Background
The generic protection for UDP is provided by DTLS. DTLS 1.3 is very similar to TLS 1.3, the main exception being that sequence numbers are included in-band in messages (also in the handshake), which actually facilities issues such as mid-session intercept. The discussion below therefore focuses on the QUIC transport protocol.
With HTTP problems arise when there is need to send multiple HTTP requests to build a complete web page out of individual resources. What might happen is that one of the resources is slow in responding, thus blocking the progress of downloading other resources due to HTTP-level transaction blocking. This was sought to be addressed in HTTP/2 by allowing several requests to be multiplexed on the same TLS/TCP connection. Still, due to TCPs requirements on loss-free, in-order delivery to the application, the head-of-line blocking issues were rather just pushed down to the TCP level. This lead to the HTTP/3 protocol which uses the QUIC transport protocol over UDP instead of TLS over TCP. In QUIC, so called streams are multiplexed inside a single QUIC connection, having a unique connection ID. Reliability is handled by features built-in to QUIC like usage of sequence numbers, acknowledgements and retransmission. By using UDP, the SYN-ACK process of TCP can also be skipped, reducing latency.
5.2	QUIC security and encryption overview
QUIC has built in security based on TLS 1.3. Contrary to some descriptions, QUIC does not run "over" TLS 1.3. Doing that might obviously defeat the design purposes of the protocol. Rather, TLS re-uses the following features of TLS 1.3
· The TLS Handshake runs (reliably) over QUIC as special "CRYPTO" frames and the key hierarchy is more or less identical, though QUIC also derives some extra keys.
· QUIC does not reuse the record format of TLS, it just borrows TLS crypto functions, and uses its own format for the protected messages.
· A mechanism similar to TLS' Early data exists, and is called 0-RTT in QUIC.
· To handle reliable delivery, QUIC uses explicit sequence numbers (called Packet Number, PN) in the message headers. There are four separate PN spaces: Initial, Handshake, and Application. (Like TLS, these PN are inputs to the crypto transforms.)
· Unlike TLS, QUIC protects also certain fields of its own headers, in particular the PNs.
QUIC defines four so called encryption levels, ordered by the level of protection offered. These are:
Initial: This is used when no (secret) keys are yet available. The key(s) for the initial level are derived from a fixed nonce and the QUIC connection id, both being publicly known, and is used to protect the Client and Server Hello.
0-RTT: This is used for the client's 0-RTT Early data (immediately following ClientHello).
Handshake: Used to protect the TLS handshake. It is applied to the handshake messages starting with the EncryptedExtensions from the server and ending with the client's Finished message.
1-RTT: Used to protect application data (that can start to flow immediately after the EncryptedExtensions).
NOTE:	The different encryption levels apply also to acknowledgement messages associated with that level.
Except for the Initial level, base keys for each level are derived in the same way as in TLS 1.3, with the addition of a special mechanism to derive header encryption keys from the corresponding base secret of each level. (The headers are also integrity protected, but that is handled by associating them with "additional data", input to the AEAD algorithm which is applied to the QUIC payloads.)
EXAMPLE:	The 0-RTT level key is derived akin to TLS from a PSK, from which the 0-RTT header protection key is subsequently derived.
The table below summarizes key and PN usage for different QUIC packet types.

Table 3: QUIC key and PN usage
	Packet type
	QUIC base key
	Associated TLS key
	PN space

	Initial
	Initial key
	N/A
	Initial

	0-RTT
	0-RTT key
	PSK (and optional DH key)
	Application

	Handshake
	Handshake key
	handshake_secret
	Handshake

	Short header
	1-RTT
	master_secret
	Application

(There is in fact also a special "Retry" packet type that might be sent by the server. This is not encrypted but is integrity protected by a key derived from fixed parameters.)
5.3	LI considerations for QUIC
Without claiming to have done a very in-depth study, QUIC does not appear to create any severe difficulty for LI of encrypted traffic when compared to TLS 1.3. The following observations can be made.
· Resumption based on tickets and the Diffie-Hellman options cause similar problems as with TLS 1.3 and disabling these features (at least in roaming) seems desirable.
· The TLS 1.3 IRI appear relevant. Since there are three distinct PN (sequence number) spaces, IRI related to those need to be added.
· The QUIC connection id uniquely identify QUIC sessions also above the access/network level. For example, a QUIC connection moved from 5G to WiFi (possibly also changing client IP address) maintains the connection ID. Thus, connection ID seems a relevant additional IRI.
· Data encrypted at level "initial" seem to cause no concern since the keys can be derived from known information (which includes the connection id).
· Mid-session intercept appears slightly facilitated since packet numbers are carried in-band. Obviously, PNs need to be decrypted so access to the relevant key is still needed. Information such as selected cipher suite etc, is only visible during the handshake but there is no difference to TLS 1.3 in this regard.

6	Summary and conclusions
6.1	Summary of analysis
The first observation is that the AKMA keys alone (the AKMA anchor key KAAnF and the AF-specific KAF) are never sufficient to decrypt the TLS 1.3 traffic.
Further, there are two general concerns.
1. With a standalone POI (outside the TLS server), the Diffie-Hellman and tickets/resumption options poses problems. Some parameters of critical importance for enabling LI are then only known at the endpoints which can lead to race conditions when provisioning the POI, and this is accentuated in roaming.
2. If LI is activated with an AKMA-based TLS 1.3 session already taken into use, further problems arise.

For roaming in particular, it seems non-viable to obtain (by request) parameters such as sequence numbers from the TLS server, since it might then result in unwanted disclosure of activation of LI. The other option, that the HPLMN transfers parameters for all TLS sessions being established is questionable due to signalling load. A better option is then to introduce an "S8HR LMISF-like" solution, where a suitable NF, present in-path on all TLS handshakes, extracts parameters, even when LI is not yet activated. This POI could also then continuously keep track of the number of TLS 1.3 records exchanged, which would enable estimation of the TLS sequence numbers if/when LI is eventually activated. Still, such an approach seems only feasible if the Diffie-Hellman and ticket mechanism are disabled and remains non-trivial due to the need to detect packet loss and distinguish new TLS records from retransmitted ones.
Of course, there are also the generic options to: a) disable AKMA; b) allow AKMA/TLS 1.3, but only with cipher suites that do not provide encryption (which is technically possible but currently isn't supported).
From this one arrives at the following requirements/recommendations:
i. Specify IRI to carry TLS 1.3 parameters (useful roaming and non-roaming (see annex B for an initial proposal).
ii. Extend the current AKMA-feature of "raw disabling" of AKMA in roaming by a mechanism to enforce that certain TLS 1.3 options are (not) used in roaming, e.g.:
a. use only cipher suites with NULL encryption (according to RFC 9150), or, at least,
b. disable the Diffie-Hellman and ticket/resumption options at least in roaming, and consider the same possibility also in non-roaming to avoid race condition issues.
iii. For roaming, define an LMISF-like NF that can be deployed in the VPLMN and which can extract TLS parameters that are essential for later mid-session intercept. It remains to be verified that this approach is feasible due to the complexity of keeping state (sequence numbers) up-to-date.
6.2	A final remark on trust model
The current AKMA solution produces a single key, KAF, which is transferred from AAnF to the AF and from which the AF can derive further keys as required by the Ua* protocol in use. This means that not only all data encryption keys depend on this KAF, also the data authenticity/data integrity keys depend on this single key. According to the SA3LI requirements of TS 33.126, there is really no need from LI point of view to do more than enabling the LEA to gain access to the clear-text UP traffic. It therefore might seem useful to consider an extension of AKMA so that two keys are produced: one for encryption (KAFenc) and one for data authentication (KAFauth). In roaming, it would then only be necessary to provide the KAFenc key to the VPLMN. Indeed, at first glance, this might seem to offer an even more robust solution since it seems to make it infeasible for a potentially untrusted VPLMN to fake traffic and attribute it to a certain subscriber.
Unfortunately, this approach is in practice unlikely to fully address such advanced threats:
1. The only entity who can actually corroborate the authenticity of the traffic (besides the subscriber) is the HPLMN who might reside in a different jurisdiction.
2. Even if the HPLMN could be assumed willing to assist the judicial system in which the VPLMN resides by such evidence, the authenticity of the packets cannot be verified retroactively, unless the VPLMN or HPLMN saves a copy of all raw Ua* data packets (including the data authentication tags) in case they would later be used as evidence in a criminal investigation.
The main reason why these issues are present is that AKMA is a symmetric cryptographic technique: any entity that can verify authenticity of traffic can also generate authentic traffic.
There are however other options available that might be able to provide the HPLMN with some additional assurance before it exposes AKMA keys to the VPLMN. Currently, the AKMA AAnF in the HPLMN simply needs to trust that the UE is actually present in a certain VPLMN when a key request is received from an AF; there is no cryptographic verification of the UE's location on serving network level within AKMA. One could introduce an "authentication token", generated by the UE (based on the AKMA anchor key KAKMA and a VPLMN identifier) and which the UE includes when contacting the AF. The AF then forwards this token to the AAnF (alongside the key request), enabling the AAnF to cryptographicall verify that the UE is roaming into the VPLMN. Only the UE would be able to generate a valid token to this effect.

Annex A: Current TLS 1.2 IRI
-- ===
-- Specific UaStarParams for TLS 1.2 (RFC5246)
-- ===
TLSCipherType ::= ENUMERATED
{
 stream(1),
 block(2),
 aead(3)
}
TLSCompressionAlgorithm ::= ENUMERATED
{
 null(1),
 deflate(2)
}
TLSPRFAlgorithm ::= ENUMERATED
{
 rfc5246(1)
}
TLSCipherSuite ::= SEQUENCE (SIZE(2)) OF INTEGER (0..255)
TLS12UAStarParams ::= SEQUENCE
{
 preMasterSecret [1] OCTET STRING (SIZE(48)) OPTIONAL,
 masterSecret [2] OCTET STRING (SIZE(48)),
 pRFAlgorithm [3] TLSPRFAlgorithm,
 cipherSuite [4] TLSCipherSuite,
 cipherType [5] TLSCipherType,
 encKeyLength [6] INTEGER (0..255),
 blockLength [7] INTEGER (0..255),
 fixedIVLength [8] INTEGER (0..255),
 recordIVLength [9] INTEGER (0..255),
 macLength [10] INTEGER (0..255),
 macKeyLength [11] INTEGER (0..255),
 compressionAlgorithm [12] TLSCompressionAlgorithm,
 clientRandom [13] OCTET STRING (SIZE(32)),
 serverRandom [14] OCTET STRING (SIZE(32)),
 clientSequenceNumber [15] INTEGER,
 serverSequenceNumber [16] INTEGER,
 sessionID [17] OCTET STRING (SIZE(0..32)),
 tLSServerExtensions [18] OCTET STRING (SIZE(0..65535)),
 tLSClientExtensions [19] OCTET STRING (SIZE(0..65535)) OPTIONAL
}

Annex B: Proposed IRI Specifications for TLS 1.3
-- =======================================1====
-- Specific UaStarParams for TLS 1.3 (RFC8446)
-- ===
-- RFC8446, clause 7.1
TLSKDFAlgorithm ::= ENUMERATED
{
 rfc5869(1) -- HKDF
}
-- RFC8846, clause 4.2.11
TLSPSKHashAlgorithm ::= ENUMERATED
{
 sha256(1),
 sha384(2),
 sha512(3)
}
–- RFC8446, clause 4.4.2
TLSCertificateType :== ENUMERATED
{
 X509(1),
 RawPublicKey(2)
}
–- RFC8446, clause 4.4.2
TLSCertificateEntry :== SEQUENCE
{
 tLSCertificateType [1] TLSCertificateType,
 tLSCertificateData [2] OCTET STRING (SIZE(1..16777215)),
 extensions [3] OCTET STRING (SIZE(0..65535))
}
–- RFC8446, clause 4.4.2
TLSCertificate :== SEQUENCE
{
 tLSCertificateRequestContext [1] OCTET STRING (SIZE(0..255)),
 tLSCertificateList [2] SEQUENCE OF TLSCertificateEntry
}
-- RFC 8446, clause 4.6.1
TLSNewSessionTicket :== SEQUENCE
{
 ticketLifeTime [1] INTEGER (0..4294967295),
 ticketAgeAdd [2] INTEGER (0..4294967295),
 ticketNonce [3] OCTET STRING (SIZE(0..255)),
 ticket [4] OCTET STRING (SIZE(0..65535)),
 extensions [5] OCTET STRING (SIZE(0..65535))
}

-- RFC 8446, clause 4.2.9
TLSPSKKeyExchangeMode :== ENUMERATED
{
 pSKKE (1),
 pSKDHEKE (2)
}

-- RFC8446, clause 4.2.11
TLSPSKInfo :== SEQUENCE
{
 pSKIdentity [1] OCTET STRING (SIZE(1..65535)),
 pSKValue [2] OCTET STRING (SIZE(1..65535)),
 pSKKeyExchangeMode [3] TLSPSKKeyExchangeMode,
 hashAlgorithm [4] TLSPSKHashAlgorithm OPTIONAL,
 cipherSuite [5] TLSCipherSuite OPTIONAL,
}

-- Inline clause references below are to RFC8446
-- parameters named ...Plaintext... denotes encrypted handshake params
-- with their encryption removed
TLS13UAStarParams ::= SEQUENCE
{
 -- basic cryptographic context information
 selectedPSK [1] TLSPSKInfo OPTIONAL,
 kDFAlgorithm [2] TLSKDFAlgorithm, -- clause 7.1
 cipherSuite [3] TLSCipherSuite, -- clause B.4
 clientSequenceNumber [4] INTEGER, -- clause 5.3
 serverSequenceNumber [5] INTEGER, -- clause 5.3
 -- key information fields, clause 7.1
 earlySecret [6] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 clientEarlyTrafficSecret [7] OCTET STRING (SIZE(1..65535))
 earlyExporterMasterSecret [8] OCTET STRING (SIZE(1..65535)),
 handshakeSecret [9] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 clientHandshakeTrafficSecret [10] OCTET STRING (SIZE(1..65535)),
 serverHandshakeTrafficSecret [11] OCTET STRING (SIZE(1..65535)),
 masterSecret [12] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 clientApplicationTrafficSecret [13] OCTET STRING (SIZE(1..65535)),
 serverApplicationTrafficSecret [14] OCTET STRING (SIZE(1..65535)),
 exporterMasterSectret [15] OCTET STRING (SIZE(1..65535)),
 resumptionMasterSectret [16] OCTET STRING (SIZE(1..65535)),
 -- additional parameters for key derivation, clause 7.1
 -- provisioned if earlySecret is also provisioned
 clientHelloHash [17] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 -- provisioned if handshakeSecret is provisioned
 clientHelloToServerHelloHash [18] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 -- provisioned if masterSecret is provisioned
 clientHelloToServerFinishedHash [19] OCTET STRING (SIZE(1..65535)) OPTIONAL,
 -- handshake/extension values, clause 4.1.2 and 4.1.3
 clientRandom [20] OCTET STRING (SIZE(32)),
 serverRandom [21] OCTET STRING (SIZE(32)),
 legacySessionID [22] OCTET STRING (SIZE(0..32)) OPTIONAL,
 tLSClientHelloExtensions [23] OCTET STRING (SIZE(8..65535)) OPTIONAL,
 tLSServerHelloExtensions [24] OCTET STRING (SIZE(6..65535)),
 -- encrypted server extensions, clause 4.3.1 (provided in plaintext)
 tLSPlaintextEncryptedExtensions [25] OCTET STRING (SIZE(0..65535)),
 -- certificates, clause 4.4.2
 tLSPlaintextServerCertificate [26] TLSCertificate OPTIONAL,
 tLSPlaintextClientCertificate [27] TLSCertificate OPTIONAL,
 -- session tickets for resumption, clause 4.6.2
 listOfValidPlaintextTickets [28] SEQUENCE OF TLSNewSessionTicket OPTIONAL
}

image1.jpg

