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1. Statusreport of the shared-key Internet-Draft

Thel-D “Use of Shared Keysinthe TLS Protocol” has been developed anew version[1] in
October 2003. It is attached to this discussion paper for information of SA3 group. So far
thereis no security holeidentified in IETF TLSWG mail discussion. There is IETF meeting
in week 46 and the progressisto bereported if ever possible.

This paper islikdy to proceed fast towards RFC status sinceit became TL S working group
draft (i.e., not apersond draft) during last summer.
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2. Shared key TLSusagein GAA
2.1 Thehandshaking procedure

The current shared key TLS draft isinformationa explaining how the session ID and master
key are derived. Figure 1 depicts the message chart of the shared key TLS in GAA
environment.
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Figure 1. Shared key TLS usagein GAA.

When UE wants to mutually authenti cate towards an application server (NAF) it first runs the
protocol A with BSF resulting to both having established common TID and bootstrapped
shared secret key material.

(1) UE derives a master key from the shared bootstrapped key material, and inserts it and TID
(asthe session ID) to the TL S session cache.

(2) UE sends ClientHello message with TID as the session ID to the NAF.
(3) NAF s TLS implementation queries for the TID from the “active” TLS session cache.

(4) If “active” TLS session cache does not find the TID from thelocal cache, it retrieves the
master key from BSF using protocol D.

(5) Master key isretrieved from BSF tolocal cache.
(6) “Active’ TLS session cache return master key to the NAF' s TLS implementation.
(7) ServerHelo, ChangeCipherSpec, and Finished messages are sent to UE.

(8) UE sends ChangeCipherSpec and Finished message to NAF to completethe TLS
handshake.

(9) Shared key based TLS tunndl is established.
Note: TID istheidentifier of abootstrapping procedure. It could be replace with a‘session

identifier’ which identifies the unique association of [TID, UE, NAF]. Discussion in section 5
gives further detail regarding to the name of NAF.



2.2 Negotiation of TL S handshaking

The sdl ection between shared key TLS and full TLS handshake is possibleif the server
implementationisbased on TLS 1.0 [2], i.e. it contains already the certificate handshaking
support. Or if the shared-key was corrupted so that server would like to require full
handshaking and also the client certificate would be used for authenti cation as specified in
TLS 1.0. Inthis case, the server would simply skip step 3-6, and sends its own certificate as
wdl as the (client) Certificate Request in step 7 of Figure 1. A TLS 1.0 compatible dient will
either continueif it supports a client certificate or abort the session. Notethisis standard TLS
behaviour.

Note that, this section suggests how the TLS 1.0 and shared-key TLS co-exist in one
implementation, specifically that TLS standard behaviour is not affected by introducing
shared-key TLS functionality. But it isnot our intention to propose the standard TLS
behaviour.

2.3 Similarity with the TL S 1.0 specification session resumption

TLS 1.0 baseline offers an optimized way of resuming TLS sessions. A server will generate a
Session ID, and hand it to client in a successfully established TLS session for future
connection. Server will storethe Session_ID, timestamp and the pre-master key agreed during
that successful session, into local database. Later on when client decides to re-connect to the
TLS server, it may send the session ID in ClientHello message. Next,

1. Server sidewill look up the database indexed with the received Session_ID,
retrieve the timestamp, and the pre-shared master key;

2. Based onthelocd policy and timestamp, the server will decide to resume the
session or not.

i. If yesinstep 2, the server will pick up the same ciphersuite. But with the
different random numbers for the new session, the both sides will derive
common session keys for new connection.

ii. If noinstep 2, the server will reect, and request normal handshaking.

The shared-key TLS acts the same manner with the resumption of basdineof TLS 1.0 as
described above.

3. Thebenefit of Shared-Key TLS compared to previous work assumption

Based on the current knowl edge using shared key TL S between UE and NAF seems to be the
most promising way forward. This approach uses native AKA mutual authentication, and thus
server certificates provided by externd infrastructures are not needed. Also this gives wide
protection against various MitM attacks. For example, it would not be possible for an attacker
to masquerade as the server towards an UE, sinceit would not be ableto find out the TLS
session key. It is analysed in more detail of the major benefits of shared/key TLS.

1. Dismiss many certificate related issues, e g. dependence on non-cdlular CAs issuing these
server certificates, the PKI required for certificate verification, server certificate delivery
to theterminal.

The previous work assumption for doing server authentication in TLS is by using server
certificates. Thisrequires server certificates to beissued by atrusted

authority. 1f 3GPP takes this approach, either mobile operators have to set up their own
PKI or they become dependent on commercia CAs.

2. MitM attack is resolved. Currently we don't have a solution for this issuein detail.



Major advantage provided by the shared key TLS draft is that it gives wide protection against
various MitM attacks (including the Tunneling attack) as the TL S session keys are based on
AKA. The authentication is achieved by |everaging the mutual authentication built into AKA,
which is done during protocol A.

3. Public-key calculation in server sideis unnecessary for pre-master key delivery. Resource
and computation time are saved.

There are 2 types of handshaking in TLS 1.0 baseline specification [2], full
handshaking and abbreviated handshaking. Both of them require server certificate to
be sent in Server Hello message. The public-key in certificate is then used by client to
encrypt the pre-master in next message ChangeCipherSpec. Server side then decrypts
the pre-master, so asto further derive TLS session keys. Finally the both sides send
MAC of previous messages in Finnished messages (step 7 and 8 in Figure 1), to
protect agai nst any malicious tampering of the handshaking.

In Shared-key TLS scenario, based on the TID value the server can retrieve the pre-
master from BSF or pre-stored in local database (step 3-6 in Figure 1). Therefore
logically thereis no need to ddliver server’'s certificate for pre-master key ddlivery.

4. Server authentication with higher efficiency

INTLS 1.0[2], the server needs to provide own certificate, where the server identity is
shown. Moreimportantly, the server must be abl e to decrypt the pre-master key and
use the derived TL S session key for MAC, thus proving its procession of the private
key and the server identity it claimed. In contrast, in shared-key TL S scenario, the
server can authenticate itself by the shared secret instead of certificate in handshaking
phase. Thisis done by MAC value for proving the possession of keys.

Note that, the association between server identity and the pre-master key is provided
by certificate and public-key calculation. In 3GPP network, this is achievable by GBA
infrastructure, since the BSF knows the NAFs identity and the derived keys for each
NAF (Ks_NAF). In fact the key sent from the BSF to the NAF should be NAF-
specific so as to guarantee the traffic towards to each NAF is not able to eavesdropped
by any other NAF. The GBA can e.g. derive shared pre-master key fromthe TLS
server identity. If a shared-key TL S server is capable of responding with the specific
key for it, it guarantees sufficiently that server is the expect party.

These different approaches reflect different business modd. In 3GPP salution, thereis
always the specific server in operator network (or enabled by operator’s network) that
is commonly known by 3GPP operator and end user; while TLS 1.0 serves for
Internet service, thus the server may be unknown to the end user.

5. No need to authenticate client in the HTTP layer, thus less round trip required

The previous working assumption relies client authenti cation in appli cation layer.
Since the session keys are generated from randoms and pre-master that isalso a
random, thereis no link between the TL S session keys and the client identity.

In shared-key TL S procedure, client can also prove its possession of shared-key, thus
convincethe server about client’ s validity. It is highlighted here, that the shared-key

are derived from bootstrapped keys and user identity (or perhaps TID), thusit brings
stronger bind between the TLS and client identity than previous working assumption.

6. The client key update can be acknowledged in handshaking phase, whichis earlier than
application layer in previous working assumption. This behaviour existsin the standard TLS,
when the Server does not want to resume a session, it sends the alert message stating that
session (and the key associated) is too old.

7. Thetermination point of TLS



As areguirement GBA infrastructure must guarantee that UE and BSF derive the
shared-key based on a server identity common for them, thus guarantee the shared key
is common for UE and NAF. Aslong as the NAF gets the proper session key from
BSF, the TLS connection can aways beinitiated. In other words, usage of shared-key
TL S does not have dependency on the end-point of the TLS, whether it’s re-used by
group of NAFs or uniquely for a NAF, both scenarios can utilize shared-key TLS
protocol. This was pointed out by Alcatel in their contribution S3-030576 already for
SA3#30 Povoa meeting.

In previous working assumption where server authenticates itself by certificate,
verification of the server identity isaproblem if the end point of TLS istransparent to
client. But in the shared-key TL S certificate is not involved, thus the identity
ambiguity in server certificate goes away.

Conclusion: Independent of the termination point of the shared-key TLSin GBA infrastructure, it is
comparatively better than the solution based on server certificate.

4. Implementation consideration to terminal and server

From discussion in section 2, we see the compatibility of shared-key TLSwith TLS 1.0. Itis
only an addition of TL S implementations with the following functions:

1. Server side needs to have a capability toinsert aTLS session ID and master secret
to the TLS session cache. Thisisan API required in both sides. Note a 3GPP
NAF i.e. the TLS server, to enable Uainterface authentication, it must be ableto
talk to BSF (protocol D in GBA) to retrieve secret shared by UE and BSF, aswell
as UE rdated information, regardiess of the TLS version. The structureis shown
inred part in Figure 2. Note, it isthe GBA infrastructure requires dependency
between the protocol state machines of NAF protocol over Uainterface and
pratocol D. In other words, the dependency neverthe ess exists, when the shared-

key TLSis used.
NAF
Porotocol D Bootstrapping function (API)
BSF < »| | - Retrive shared-secret Ks_NAF
from BSF
- Handling of TLS User ID and
Ks_NAF
TLS standard TLS
stack standard
database

Figure 2: NAF TLS implementation

Obviously any existing TLS impl ementation does not support the 3GPP specific
function (the read part). It isin 3GPP vendor’'s arena, thus it is not a problem to
include session ID and key function.

Note the standard TLS 1.0 has aready the cache implementation of session ID and
master keys, adding similar function should not be a problem here.

2. Similar scenario is required to client side, thus no web browser would support the
3GPP specific function.



5. How to handlethe name-basad virtual hosts

Virtud hosts are the server applications that are often co-exist on a server machine. Basically
it should not be a problem, as long as the UE and BSF derive the shared-key based on a server
identity common for them, it can guarantee the shared key are common for UE and NAF
(retrieved from BSF). Certainly it is preferable to use server discovery scheme, as the identity
of NAF, such as the DNS name.

The UE can contain the NAF namein the session identifier when contacting the NAF. While
the NAF contacting the BSF for requesting Ks_NAF, the BSF will aso get the information
what is the intended NAF identity encapsulated in the session identifier, so as to verify from
the sender of the key requestion. Thereis a companion contribution from Nokia, explaining
how to generate the session identifier in detail.

6. Conclusion

This contribution described away of using shared-key TL S between UE and NAF. It provides
an attractive way to use GBA based shared secret within GAA.

It is proposed to make a decision to give a priority for the GBA supported shared-key TLS
over the ather possible solution, i.e. the external CA supported server certificate authentication
and the PK1 required for certificate verification. Since the Rel-6 time pressureis increasing, it
is proposed to make a decision now based on stage 2 works availabl e

If the meeting endorses the shared-key TL S as the working assumption, then it is further
proposed to add this work into dependency list of IETF as done for R5 work.
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ANNEX: AP USING TLSWITH SHARED SECRETS

This section describes how GAA can use AP using shared key TLS. Inthis scenario, the BSF
and AP-NAF can be either co-located or separate network € ements. Figure 3 depicts the latter

case.
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Figure 3. AP-NAF using shared key TLS.

When the UE wants to access one of the application servers, which are attached to the
AP-NAF, on theright hand side of the figure, then the sequence of eventsis as follows:

1)

2)

3)

4)

the UE starts HTTP Digest AKA® (rfc3310) or HTTP Digest AKAv2' (outsidea TLS
tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors
(protocal C). After step 1), the UE and the BSF share a secret key and transaction | D
(TID), cf. TS SSC, section 4.3.1.

The UE sends an http request towards an application server. The http request is
intercepted by the AP-NAF. The AP-NAF ingtructs the UE to upgradethe HTTP
connectionto TLS/1.0 (see[2])

The UE establishes TL S tunnd with the AP-NAF to perform client authenti cation using
the shared key (see[2]). In the process, the AP fetches the agreed key from the BSF
(protocoal D), as describedin TS SSC, section 4.3.2.

The UE runs the appli cation protocol with the application server through the AP-NAF.

When UE wants to access the application servers on the left hand side of the figure, which are
not attached to the AP-NAF, and if shared key TLS is used between the UE and a NAF, the
sequence of eventsis similar to those above:

1)

2)

3)

4)

5)

the UE starts HTTP Digest AKA® (rfc3310) or HTTP Digest AKAv2' (outsidea TLS
tunnel) with the BSF. The BSF may contact the HSS to fetch authentication vectors
(protocal C). After step 1), the UE and the BSF share a secret key and transaction | D
(TID), cf. TS SSC, section 4.3.1.

The UE sends arequest (e.g. an http request) towards the application server (NAF). The
NAF instructs the UE to upgrade the HTTP connection TLS/1.0 (see[2)]).

The UE establishes TLS tunnd with the NAF to perform client authenti cation using the
shared key TLS (see[2)).

In the process, the NAF fetches the agreed key from the BSF (protocol D), as described in
TS SSC, section 4.3.2.

The UE runs the appli cation protocol with the NAF.

! with HTTP Digest AKA or HTTP Digest AKAv2 need to have the added functionality of protocol A: (1)
transport the identity of the user in the first HTTP request and (2) transport the TID in the last HTTP

response.
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1. Abstract

The TLS handshake requires the use of CPU-intensive public-key algorithns with
a consi derabl e overhead in resource-constrained environments or ones such as
mai nframes where users are charged for CPU tinme. This docunment describes a
means of enploying TLS using symetric keys or passwords shared in advance
anong comuni cating parties. As an additional benefit, this nechanism

provi des cryptographi c authentication of both client and server wi thout



requiring the transmi ssion of passwords or the use of certificates. No
nodi fications or alterations to the TLS protocol are required for this

process.

The key words "MJST", "MJST NOI", "REQUI RED', "SHALL", "SHALL NOT", " SHOULD',
"SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this docunment (in
upper case, as shown) are to be interpreted as described in [RFC 2119].

2. Problem anal ysis

TLS is frequently used with devices with little CPU power avail able, for
exanpl e mobil e and enbedded devices. |In these situations the initial TLS
handshake can take as long as half a mnute with a 1Kbit RSA key. In many
cases a fully general public-key-based handshake is unnecessary, since the
device is only syncing to a host PC or contacting a fixed base station, which
woul d allow a pre-shared symetric key to be used instead. An exanple of this
kind of use is using 3GPP cel lular nechanisns to establish keys used to secure

a TLS tunnel to a nobil e device.

In a slight variation of this case, CPU power is available but is too
expensive to devote to public-key operations. This situation is comon in
mai nframe environnents, where users are charged for CPUtine. As with nobile
devi ces, mainfrane-to-mainframe or client-to-mainframe comunications are

generally fixed in advance, allow ng shared symetric keys to be enpl oyed.

In order to solve these problens, we require a nmeans of elininating the
expensi ve public-key operations in the TLS handshake, while providing an
equi val ent level of security using shared symmetric keys. The solution is
fairly straightforward. GCbserve that after the initial handshake phase, TLS
is operating with a quantity of symetric keying material derived fromthe

i nformati on exchanged during the initial handshake. Using shared symmetric
keys involves explicitly deriving the TLS master secret fromthe shared key,
rather than sharing it inplicitly via the public-key-based key agreenent
process. TLS already contains such a nmechanismbuilt into the protocol in the
formof the session cacheing nechanism which allows a TLS session to be
resumed without requiring a full public-key-based re-handshake

The solution to the problemthen is obvious: W need to seed the TLS session
cache with the shared symretric key. \When the client connects, the session
cachei ng mechani smtakes over and the client and server "resunme" the phantom



session created by seeding the cache. This nmechani smrequires an absol ute
m ni mum of code changes to existing TLS inplenentations (it can be bolted onto
any existing TLS engi ne without needing to change the engine itself), and no

changes to the TLS protocol itself.

2.1 Design considerations

In order to work within the existing TLS protocol design, we require a neans
of identifying a particular session (the session ID in TLS term nol ogy), and
the keying naterial required to protect the session. The { ID key }

conmbi nation is anal ogous to the { user name, password } conbi nation
traditionally used to secure access to conputer systens.

In TLS, the session IDis a variable-length value of up to 32 bytes, but is
typically 32 or less frequently 16 bytes long. For our use we don't really
care about its form A (sonewhat unsound) practice would be to use the user
name as the session ID. A nore secure alternative would be to enploy a val ue
derived fromthe user nane in such a way that it can't be directly connected

toit, for exanple a MAC of the user nane.

Normal |y the exact format of the session IDis determined explicitly by the
server and renenbered by the client for use during session resunption

However, when "resum ng" a phantom session in the manner described here, both
the client and the server nust be able to inplicitly generate identica

session ID values in order to identify the phantom session to be resuned. To
create a canoni cal session ID value, we pad the variable-length value out to a
fixed length by appendi ng zero bytes.

The TLS master secret is a 48-byte value, which is unlikely to correspond to
the value of the shared symetric key or password, which would typically be a
128-bit key or a text password/ passphrase. In order to transformthis into
the type of keying material required by TLS, we need to apply the TLS
pseudor andom function (PRF) to produce the naster secret with which we seed
the session cache. The shared secret thus takes the place of the 48-byte
premaster secret usually used to derive the master secret. As with the
variabl e-length session I D, we need to canonicalise the variable-length

secret.

The obvious way to do this would be to by zero-pad it to the standard 48-byte
I ength usually used for the premaster secret, as for the session ID.



Unfortunately this straightforward approach doesn't work. Unlike the SSL PRF
whi ch uses the full secret for both the M5 and SHA-1 hal ves, the TLS PRF
isn'"t a pure bl ack-box design because it splits the secret into two hal ves
before using it. This would result in the second (SHA-1) half in npst cases
end up with only the zero padding bytes as its "secret". The reasoning behind
this splitting of the secret was that there m ght be sone interaction between

the two algorithnms that could cause security problens.

As a result, it's necessary to be aware of the PRF' s internal structure and
pre-process the input in a way that negates what the PRF does. Sone of the

possi bl e options to fix the probl em are:

1. Synthesise a new PRF fromHVAC to pre-PRF the input to the TLS PRF. Apart
fromjust being an awful approach, this violates the m niml code-change
requirement for TLS inplenentations that the shared-keys mechanismis
supposed to provide. Instead of sinply feeding data in via a standard
nmechani sm inplenmentors would now need to extend their TLS inplenentation
to introduce new crypto nechani smns.

2. Repeat the input (or some variant thereof) to fill the 48-byte secret
value. This is problematic in that it creates key equival ence cl asses,
for exanple "ABCD' == "ABCDABCD'

3. Unsplit the input, so that instead of arranaging it as 1 x 48 bytes it's
done as 2 x 24 bytes. This limts the overall key size, and is specific to
the PRF being used - a future PRF design may not split the input in this
manner, negating the un-splitting step

The least ugly solution is a variation of 2, prepending a single length byte
to the secret, then repeating it to fill 48 bytes, to fix the problem of key

equi val ence classes. This is the approach used here.

Currently the shared-key nmechani sm al ways uses the TLS PRF (even if it's used
with SSL, since this is purely a TLS nechanisn). If in the future a new PRF
is introduced, it will be necessary to provide sone neans of switching over to
the new PRF if both it and the current one are in active use. Presumably the
only reason to introduce a new, inconpatible PRF woul d be a successful attack
on the current one, in which case the point is noot. However, if for sone
reason it's necessary to keep both PRFs in active use at the sane time, then
some nmechani sm such as adding the session I D and shared key in the standard



manner using the TLS PRF and sone transformation of the session ID and the
shared key using the new PRF can be adopted. Since the details of a possible
PRF switch are inpossible to predict (it may entail a conplete protocol
overhaul for exanple), this docunent does not attenpt to guess at the details
beyond providing this inplenmentation hint.

Finally, we need a neans of injecting the resulting session |ID and naster
secret into the session cache. This is the only nodification required to
existing TLS inplenentati ons. Once the cache is seeded, all further details
are handl ed automatically by the TLS prot ocol

It should be noted that this nechanismis best suited for situations where a
smal |l number of clients/servers are comunicating. Wile seeding a session
cache with IDs and keys for 10,000 different users is certainly possible, this
is rather wasteful of server resources, not to nmention the acconpanyi ng key
managenment ni ghtmare involved in handling such a | arge nunber of shared

symetric keys

3. TLS using shared keys

[Note: The following is phrased fairly informally, since it's really an
application note rather than a standards-track RFC]

Bef ore any exchange takes place, the client and server session caches are
seeded with a session IDidentifying the user/session, and a naster secret
derived fromthe shared secret key or password/ passphrase. The exact form of
the data used to create the session IDis application specific (but see the
coment in the security considerations). The data used to create the session
IDis zero-padded to 16 bytes (128 bits) if necessary to neet the requirenents
given in section 2.1. In Cthis nmay be expressed as:

menset ( session_id, 0, 16 );

mencpy( session_id, input_data, mn( input_data_length, 16 ) );

The master secret used to seed the cache is conputed in the standard manner
using the TLS PRF

mast er _secret = PRF(shared_secret, "shared secret”, "")[0..47];

The shared secret or password/ passphrase takes the place of the premaster



secret that is normally used at this point, arranged as follows: First, the
shared secret/password has a single I ength byte prepended to it. The length +
secret value is then repeated as required to fill the standard 48 bytes. 1In C

this may be expressed as:

for( premaster_index = 0; prenaster_index < 48; )

{

int i;

premast er _secret[ premaster_index++ ] = shared_secret_| ength
for( i = 0; i < shared_secret_length & premaster_index < 48; i++ )
premast er _secret[ premaster_index++ | = shared_secret[ i ];

This formats the shared secret in a manner that allows it to be used directly
in place of the standard premaster secret derived fromthe public-key-based

key agreement process.

The 'seed' conponent of the cal culation (normally occupied by the client and
server nonces) is enpty in this case, however applications may choose to use
an application or systemspecific value to ensure that the sane shared secret
used with another application or systemyields a different master secret.
Wen the 'seed' conponent is non-enpty, it should not contain infornmation
conputed fromthe shared_secret value [SIGV]. Note that the use of the
client and server nonces w |l always produce different keys for each session,

even if the same master secret is enployed.

The final step involves injecting the session ID and nmaster secret into the
session cache. This is an inplenmentati on-specific issue beyond the scope of
this docunent. All further steps are handl ed automatically by the TLS
protocol, which will "resume" the phantom session created by the above steps
wi t hout going through the full public-key-based handshake.

Session cache entries are normally expired after a given anobunt of tine, or
overwitten on an LRU basis. |In order to prevent shared secret-based entries
fromvani shing after a certain anount of tinme, these cache entries will need
to be distinguished fromstandard cache entries and nmade nore persistent then
the latter, for exanple by giving thema longer expiry tinme when they are
added or periodically touching themto update their |ast-access tine. Again,
this is an inplenentation i ssue beyond the scope of this docunent.



3.1 Use of shared keys with SSLv3

If this key managenent mechanismis used with an inplenmentation that supports
SSLv3 al ongside TLS (as nost do), the TLS PRF nust be used for both SSLv3 and
TLS. This is required in order to allow the nmechanismto function for both
SSLv3 and TLS, since using different PRFs would require a different session ID
for each PRF used.

3.2 Test vectors

The following test vectors are derived fromthe transformation of the password

"test" into a naster_secret value to be added to the session cache

Shar ed secret:

74 65 73 74  ("test")

Shared secret expanded to 48-byte premaster secret size:

04 74 65 73 74 04 74 65
73 74 04 74 65 73 74 04

Mast er secret added to session cache

F5 CE 30 92 B8 09 70 D9
22 D5 Al 2C EB 7C 43 FA
9C 46 A8 83 EA 6E EF 98
EB AS 15 12 FD Bl B6 5A
5A 47 B8 C4 C5 63 5B 30
86 96 F4 FC FB D5 45 78

4. Security considerations

The session ID used to identify sessions is visible to observers. Wile using
a user nane as the session IDis the nost straightforward option, it may |ead
to problens with traffic analysis, with an attacker being able to track the
identities of comunicating parties. |In addition since the session IDis
reused over tine, traffic analysis may eventually allow an attacker to



identify parties even if an opaque session IDis used. [RFC 2246] contains a
simlar warning about the contents of session IDs with TLS in general. It
shoul d be noted though that even a worse-case non-opaque session IDresults in

no nore exposure than the use of client certificates during a handshake.

As with all schenes involving shared keys, special care should be taken to
protect the shared values and to limt their exposure over tinme. Docunents
covering other shared-key protocols such as Kerberos [RFC 1510] contain
various security suggestions in this regard.

Use of a fixed shared secret of linmted entropy (for exanple a password)

all ows an attacker to performan online password-guessing attack by trying to
resume a session with a master secret derived from each possi bl e password.
This results in a fatal decrypt_error alert (or sone equivalent such as
handshake_failure or bad_record_mac) which makes the session non-resumabl e
(that is, it clears the phantom session fromthe session cache).

I mpl ement ations should limt the enthusiasmw th which they re-seed the
session cache after such an event; standard precautions against online

passwor d- guessi ng attacks apply.

This mechanismis purely a shared-key session establishment nmechani sm and does
not provide perfect forward secrecy (PFS) by negotiating additional new keying
material for each session. Users requiring PFS can either use a shared-key
mechani smthat al so provides PFS such as SRP [SRP], or perform a rehandshake
using a standard PFS-providing nmechani smover the shared key-protected
channel . Note though that both of these nechanisns negate the two main

advant ages of the shared-key mechanism requiring both considerable re-

engi neering of an existing TLS inpl enentati on and considerable CPU tinme to
performthe PFS cryptographic operations.

Since it does not contain an innate cryptographic mechanismto provide PFS
the shared-key nechanismis vulnerable to an offline password-guessing attack
as follows: An attacker who records all of the handshake nessages and knows
the plaintext for at |east one encrypted nessage can performthe TLS key-
derivation using a selection of guessed passwords, performthe cryptographic
operations required to process the TLS handshake exchange, and then apply the
resulting cryptographic keys to the known-plaintext nessage. Such an attack
consunes considerable time and CPU resources, but is neverthel ess possible.

There are three possible defences against this type of attack, the first two



of which are standard def ences agai nst password-guessi ng attacks:

1. Don't use weak, easily-guess passwords or keys.

2. Performiterated pre-processing of the password/ key before adding it to the
session cache. This has the disadvantage that it negates the shared-key
advant age of | ow CPU consunption during the handshake phase, however the
preprocessing can be performed offline on a one-off basis and only the
preprocessed key stored by the two conmuni cating parties. An attacker can
however, also generate a dictionary of pre-processed keys offline, given
sufficient CPU and storage space. The use of a per-server diversifier
('seed' in the PRF process) makes use of a preconputed dictionary
impractical, and a secret diversifier nmakes a general offline attack
considerably nore difficult through to inpossible depending on the

ci rcunst ances.

3. Use a nechanismthat allows for the use of shared keys but al so provides
PFS, with the advantages and di sadvant ages described earlier.

Note that the two password-guessing attacks possi bl e agai nst the shared-key
mechani sm while superficially simlar, have quite different requirenents on
the attacker's side. An online attack nerely requires that the attacker know
the URL of the server that they wish to attack. An offline attack requires
that an attacker both know the URL of the server that they wish to attack and
be able to record conpl ete sessions between the client and the server in order
to provide the material required for the offline attack

The TLS specification requires that when a session is resuned, the resuned
session use the same cipher suite as the original one. Since with a shared-
secret session there is no actual session being resumed, it's not possible to
meet this requirenent. Two approaches are possible to resolve this:

1. Wien the session cache is seeded on the server, a cipher suite acceptable
to the server is specified for the resumed session. This conplies with the
requirenments, but requires that the server know that the client is capable
of supporting this particular suite. 1In closed environments (for exanple
syncing to a host PC or a fixed base station, or in a nainfrane
environment) this is likely to be the case.

2. The requirenents are relaxed to allow the client and server to negotiate a



ci pher suite in the usual manner. |In order to subvert this, an attacker
woul d have to be able to performa real-tine simnmultaneous break of both
HVAC- MD5 and HVAC-SHA1. In particular the attacker would need to be able

to subvert:

HVAC( secret, PRF( secret, MX»b+SHAl hash ) )

in the Finished nmessage, which expands to:

HVAC( secret, HVAC- MD5"HVAGC SHA1( secret, MD5+SHAL hash ) )

Because of the unlikeliness of this occurring (an attacker capable of doing
this can subvert any TLS session, with or w thout shared secrets), it
appears safe to relax the requirement for resuning with the sane cipher

sui te.
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