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1 Scope and objectives 
The scope of this document is an in-depth discussion around the integrity protection of the Session Initiation 
Protocol (SIP) [SIP]. This document discusses three optional solutions: Cryptographic Message Syntax (CMS) 
[CMS], IPsec ESP and algorithm considerations.  

An example of how good a simple compressor can compress CMS is also given. It shall be noted that this is only 
an example and it can be further optimized. The example gives about 43% extra overhead compared with the 
theoretical minimum i.e. 43 bytes vs. 30 bytes. 

The difference in overhead for CMS with compression and the overhead for IPSec (24 bytes) is therefore in the 
same order. When comparing these two it should be noted that the CMS integrity protection (in this contribution) 
uses a 160 bit MAC i.e. 20 bytes while IPSec uses a truncated SHA1 MAC i.e. 96 bit MAC or 12 bytes. 

Ericsson proposes that SA3 adopt the CMS protection mechanism as a working assumption for aSIP and 
incorporate that in the TS33.203 draft. 

2 Background 

SIP does not offer appropriate security mechanism for integrity protection. It has been proposed that SA3 should 
NOT develop any new mechanisms because some existing ones could be applied and because 3GPP specific 
solutions will hinder the access independence. Furthermore, mobile terminals must already support several 
security mechanisms and algorithms. The ever-increasing number of security features will become a burden for 
terminals if existing ones can not be reused. Ericsson has studied several optional solutions for this problem, 
including S/MIME, CMS and IPsec ESP. Further analysis of optional solutions has been needed.  

A working assumption on SIP integrity protection has been that AKA defined in R’99 shall be reused. This 
means that long-term secret key K used for SIP authentication is shared between USIM and home network. 
Shorter-term secret key used for integrity protection (IK) is created during the registration in the USIM and 
home network. In the roaming case, P-CSCF receives the needed integrity key from the home network. The 
problem to be solved has been how to use these shared keys to protect the integrity of SIP messages in effective 
and efficient way.  

3 CMS  
At the Phoenix meeting, Ericsson presented an illustration on how integrity protection using CMS would look 
like in SIP. The studied solution was based on the idea of additional SIP integrity headers, which carried a CMS 
packet within the SIP packet. CMS would have included a keyed hash (HMAC) calculated over the whole SIP 
message.  

The main problem with this solution was the overhead it caused for the SIP signalling. A rough estimate of the 
overhead was 124 bytes. An overhead of this size was perceived as too big.  This chapter demonstrates how the 
integrity protection overhead can be minimised using shorter SIP header fields and compression.  

The size of the SIP integrity header can be minimised by replacing relatively long strings like ‘Proxy-Integrity’ 



 

with shorter strings like ‘Proxy-Int’, or by removing information about the encoding method from the header 
(base64 encoding is normally used for CMS). The size of CMS packet is difficult to decrease because the 
Phoenix version of CMS was already highly optimised (Appendix 1).  

The example SIP message in Appendix 2 demonstrates a further optimised integrity header. The total SIP 
integrity overhead using this example is totally of 110 bytes before compression (<LF> characters not counted).  

Compression of SIP messages is probably needed even without SIP integrity headers. The effect of compression 
to the integrity protection overhead can be estimated in the following way:  

Using the message in the annex we have the following SIP integrity header [text in blue is HMAC]:  

Proxy-Int: CMS; (=15bytes) 

cmsp="MD0GCSqGSib3DQEJEDAwAgEAMCsGCCsGAQUFCAECMB8GCSqGSib3DQEHA
QQUJmoHldU0dHkbm2pcdObpetPa/eb=" (=67 bytes+27bytes+1byte)  

Now we just have to choose some appropriate compression algorithm in order to get concrete figures for our 
estimation. In the first case, we assume the use of static dictionaries and choose LZSS for algorithm. LZSS is a 
compression algorithm in the Lempel-Ziv family that can encode a reference to a string, which is maximum 18 
bytes long with 17 bits.  

The total length of the string above is 15+67+27+1bytes=110bytes=880bits. Let us skip the last character i.e. the 
“ and only treat 15+67+27 bytes = 109 bytes. The compression is based on the fact that strings have appeared 
previously in a message, sent and/or received. Text that is sent in clear text format is encoded with 9 bits per 
character. The HMAC usually can not be compressed and hence using LZSS this part will be slightly expanded. 
However the rest of the CMS string will be constant and can be compressed efficiently. Note that in the general 
case the first time the message is sent it might not be compressed much. However, using a static dictionary one 
could e.g. compress the cmsp=”MD0GCSqG… part etc.  

If we assume the string and LZSS algorithm as described above we can do the following calculation:  

The 15+67 = 82 bytes = 4*18+10 bytes can be compressed to 4*17 + 17 bits = 85 bits and the HMAC with 27 
bytes will be expanded to 27*9 = 243 bits. In total this means that we have encoded 82+27 bytes = 109 bytes = 
872 bits to 85 bits + 243 bits = 328bits, i.e. 41 bytes. This simple example shows a compression rate equal to 
872/328=2.7 or about 60%. 

In any case, theoretical minimum for compressed SIP integrity header is somewhere around 30 bytes (27 bytes 
for base64 encoded HMAC and a few bytes for the identifiers of the rest of the header which is always static). 
The effectiveness and efficiency of compression depends highly on used method.  

Ericsson performed some preliminary compression tests in order to get some hands on experience on SIP 
compression. Tests were run using 16 different SIP messages with and without SIP integrity header (cf. 
Appendix 2). ROGER compression scheme was used [ROGER]. ROGER has been developed especially for 
reducing the problem which are caused from using ASCII protocols over bandwidth limited channels. ROGER is 
a stateful compression scheme, which is able to use information about previously processed data for further-
compressing data under delivery. It is able to use static dictionaries for compression, which further improve the 
compression result. A static dictionary of SIP commands was used in these compression tests. Other similar 
compression schemes could have been used.  

Figure 1: Compression of SIP messages. Lines from top to bottom are: 1) 
SIP with integrity header, 2) SIP without integrity header, 3) SIP with 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SIP&CMS without compression SIP without compression

SIP&CMS with compression SIP with compression



 

integrity header compressed with ROGER, and 4) SIP without integrity 
header compressed with ROGER.   

Figure 1 shows the test results. In the first throughput (cf. stateless compression), compression could downsize 
the SIP integrity overhead from 112 bytes into 106 bytes. In the following throughputs, the integrity overhead 
was downsized into 43 bytes. This is over 60% down from the original overhead. The effect of the compression 
to the SIP message alone is even better, over 80% down from the original size. Compression results could be 
improved by further developing the used dictionaries.  

4 IPSec ESP  
The main benefits of an IPsec-based approach would be very small overhead and the use of a well-defined 
existing mechanism. The overhead with the ESP protocol and a truncated SHA1 MAC (12bytes) was 24 bytes, 
cf. [S3010199]. The purpose of this part of a contribution is to discuss the use of IPsec for protecting SIP 
signalling. While many of the aspects – such as overhead and suitability for split UE networks – has been 
discussed in depth, some open questions have been discussed at the last meetings regarding how IPsec fits to the 
typical use of port numbers in SIP. 

4.1. Typical SIP Port Behaviour 
If the transport is a connection-oriented protocol (TCP or SCTP), a connection is opened when needed. All the 
requests and responses are sent through that connection. So, if the transport is connection-oriented, then the 
response is always sent through the same connection from where the request was received. Therefore, for 
connection-oriented transports we treat the whole connection with the same port numbers. In UDP, each 
“connection” is a single packet, and can (to an extent) use different port numbers. 

In conclusion, the question we must ask when we consider the use of IPsec for the protection of SIP signalling 
during a registration is the following: how are the port numbers used in SIP (for both UDP and TCP), and what 
kind of IPsec policies are needed to protect these? 

Let us first discuss the case of contacting a server. In this case, the server-side port number is always well 
known: 

- Through the use of a port in the SIP URI. 

- Certain types of DNS queries can also return a specific port for SIP.  

- By default, the port is 5060. 

Typically, the client-side port number is ephemeral. Note that SIP handles responses in a non-typical way; 
responses are not sent to the source port number but rather to the explicitly given IP address and port (which may 
be different from the actual source). 

The standard does not dictate a particular implementation. It is common for a server to listen on port 5060 and 
send on a different port. It is common for a client to pick a dynamic port for sending (actually the OS does this) 
and then listen on port 5060. But none of this is mandatory. A dynamic port used by the client to send a message 
may be used just for that message, for the entire transaction, for the duration of a registration, or for the entire 
time that the client is "on". In general, running out of dynamic ports is not an issue. 

4.2. Using IPsec with SIP 
IPsec relies on protocol and port numbers to determine when to apply security. Some regularity must exist in the 
traffic flows in order for this to be possible; completely random use of port numbers would not allow separation 
of several clients behind one IP address. On the other hand, we wish to enable efficient P-CSCF implementations 
that can take advantage of multiprocessor systems and parallel processing. 

In the following we propose a way for P-CSCFs to take advantage of efficient implementation schemes while 
allowing security to be run towards UEs. 

1. We allow servers to use any port number for sending/receiving SIP packets. Typical OSes support such 
behaviour easily. 



 

2. On the UE side, we require the SIP clients to use the same port for both sending and receiving. Typical 
OSes support such behaviour easily. 

3. If there are multiple independent SIP clients in one UE – perhaps corresponding to several persons – 
they should use different ports of course. 

With these rules it is sufficient to fully identify the SIP flows belonging to different UEs and the clients running 
inside them. For instance, if the P-CSCF is at the address P and the UE is at address U with two running clients 
on ports P1 and P2, then all traffic that runs on UDP from U:P1 to P:* has to be secured with the SA belonging 
to the first user. 

5 Algorithm considerations  
Ericsson promotes the reuse of existing security algorithms for SIP integrity protection. 3GPP specific solutions 
are not appropriate for integrity protection mainly because they hinder interoperability. It is important that 
algorithms used to protect SIP signalling are globally known and acceptable. Otherwise technical solutions may 
result in fragmented communication networks which are not interoperable in practice. Furthermore, the 
algorithm should be chosen from the set of standardised algorithms that will be necessary to implement in 
software in the terminal anyhow (e.g. in WAP). The implementation on the network side is not a critical issue. 
For these reasons, the algorithm should fulfil at least three requirements: recognition as a generally accepted 
algorithm, availability in handsets and efficiency as a software implementation. SHA-1 is very good candidate 
for such an algorithm.  

Conclusions  
This document has discussed on the following issues:  

- Integrity protection using SIP integrity headers and CMS AuthenticatedData packets is efficient if 
compression is used. The overhead caused by the integrity header can be squeezed down close to 30 bytes 
(theoretical optimum). In practice, it has been demonstrated that overhead of 43 bytes can be reached by 
using ROGER compression scheme. At the same time, the size of SIP messages was decreased by 80%.  

- The benefits of IPsec ESP include a well-defined and ready format that requires no further standardisation. 
Not full freedom can be given to how port numbers are used, but a reasonable solution was presented in 
section 4.2 which allows even split UEs and threaded/paralleled P-CSCF implementations. 

- Algorithms used for integrity protection should be generally recognised in order to promote reusability and 
already available in handsets as efficient software implementations.  

Ericsson still proposes to define the integrity protection mechanisms at SIP level mainly because of the ease of 
implementation due to reuse reasons, and because the same scheme could perhaps be used also for later end-to-
end security in SIP. As an alternative to SIP level security IPSec-ESP with fixed policies is also acceptable. The 
difference in the bandwidth-efficiency of these mechanisms is not significant if compression is used.  

Ericsson proposes that the integrity protection algorithm should be chosen from the set of standardized 
algorithms that are necessary to be included in handsets as software implementations. One good candidate for 
such an algorithm is SHA-1.  
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Appendix 1: Example of CMS packet construction  
CMS AuthenticatedData format:  
 
Field or Sequence name  Content  Included / 

Excluded  
version  version  Included  
recipientInfos 
  
 

version  
keyIdentifier  
keyEncryptionAlgorithIdentifier  
encryptedKey 

Excluded  
Excluded 
Excluded 
Excluded 

macAlgorithmIdentifier macAlgorithmIdentifier Included  
encapContentInfo  eContentTypeIdentifier 

eContent 
Included 
Excluded  

hmac hmac Included  
 
BER-encoding:  
 
CMS DATA  BER-encoding  
SEQUENCE { OBJECT IDENTIFIER 
authenticatedData(1 2 840 113549 1 9 
16) 

00110000 00111101 00000110 00001001 00101010 
10000110 01001000 10000110 11110111 00001101 
00000001 00001001 00010000 

SEQUENCE { version (INTEGER 0) 00110000 00110000 00000010 00000001 00000000 

SEQUENCE { OBJECT IDENTIFIER 
macAlgorithm(1 3 6 1 5 5 8 1 2) 

00110000 00101011 00000110 00001000 00101011 
00000110 00000001 00000101 00000101 00001000 
00000001 00000010 

SEQUENCE { OBJECT IDENTIFIER data (1 
2 840 113549 1 7 1) 

00110000 00011111 00000110 00001001 00101010 
10000110 01001000 10000110 11110111 00001101 
00000001 00000111 00000001 

HMAC (OCTET STRING 2F 23 82 D2 F3 09 
5F B8 0C 58 EB 4E 9D BF 89 9A 81 E5 
75 4D) 

00000100 00010100 00101111 00100011 10000010 
11010010 11110011 00001001 01011111 10111000 
00001100 01011000 11101011 01001110 10011101 
10111111 10001001 10011010 10000001 11100101 
01110101 01001101 

 
Base64-encoding:  
 
BER-encoding  Base64-encoding  

00110000 00111101 00000110 00001001 00101010 
10000110 01001000 10000110 11110111 00001101 
00000001 00001001 00010000 00110000 00110000 
00000010 00000001 00000000 00110000 00101011 
00000110 00001000 00101011 00000110 00000001 
00000101 00000101 00001000 00000001 00000010 
00110000 00011111 00000110 00001001 00101010 
10000110 01001000 10000110 11110111 00001101 
00000001 00000111 00000001 00000100 00010100 
00101111 00100011 10000010 11010010 11110011 
00001001 01011111 10111000 00001100 01011000 
11101011 01001110 10011101 10111111 10001001 
10011010 10000001 11100101 01110101 01001101 

MD0GCSqGSib3DQEJEDAwAgEAMCsGCCsGAQ
UFCAECMB8GCSqGSib3DQEHAQQUJmoHldU0d
Hkbm2pcdObpetPa/eb= 

 



 

 

Appendix 2: Integrity protected SIP message using CMS 
(integrity header in bold)  

 
INVITE sip:al@jaguar SIP/2.0 
From: SIP:bo@e005004b57366:5061 
To: sip:al@jaguar 
Call-ID: e53cdd755e5decf@e005004b57366 
CSeq: 1 INVITE 
Subject: hello 
Via: SIP/2.0/UDP e005004b57366:5061 
Require: 100rel 
Content-Type: application/sdp 
Content-Length: 208 
Proxy-Int: CMS; 
cmsp="MD0GCSqGSib3DQEJEDAwAgEAMCsGCCsGAQUFCAECMB8GCSqGSib3DQEHAQQUJmoHldU0d
Hkbm2pcdObpetPa/eb=" 
 
v=0 
o=bo 3177299996 3177299997 IN IP4 131.160.30.49 
s=Internet Phone Call 
c=IN IP4 131.160.30.49 
t=3177299996 3177301796 
m=audio 5006 RTP/AVP 0 8 
a=rtpmap:0 PCMU/8000 
a=rtpmap:8 PCMA/8000 
a=ptime:20 
 


