

	
3GPP TSG-SA3 Meeting #103-e 	S3-212061
e-meeting, 17th - 28th May 2021												

	CR-Form-v12.0

	CHANGE REQUEST

	

	
	33.220
	CR
	0211
	rev
	-
	Current version:
	17.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	X
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Security updates for algorithms and protocols in 33.220

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	eCryptPr
	
	Date:
	2021-05-10

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	- HTTP Digest (RFC 2617 [3]) mandates use of MD5. It has been obsoleted by RFC 7235 and RFC 7616 which mandates support of SHA-256. MD5 is a very weak algorithm, much weaker than SHA-1.
- Reference to TLS 1.0 [28] which is forbidden to support in 3GPP.
- RFC 3548 [12] has been obsoleted by RFC 4648. RFC 5246 [41] has been obsoleted by RFC 8446. RFC 2616 [33] has been obsoleted by RFC 7230. The updated documents contain updated security and privace guidance.
- No reference to TS 23.228 [8]
- Reference to voided [9]

	
	

	Summary of change:
	- HTTP Digest (RFC 2617 [3]) is voided and replaced with RFC 7235, and RFC 7616. Both SHA-256 and MD5 is mandatory to support.
- The obsolete documents [12], [28], [33], and [41] are voided and replaced with there replacements.
- [8] and [28] are voided.
- Text referencing [9] is removed.
- RFC 2616 is voided and replaced with RFC 7231.

	
	

	Consequences if not approved:
	- RFC 2617 currently mandates use of the very weak MD5 algorihtm. TS 33.220 is essential for VoLTE and VoNR and therefore an important part of 5G. 5G should use only use recommended best practice algorithms.
- Referencing obsolete RFCs makes 3GPP standards look old. There is also a security risk as obsolete RFCs often have obsolete security and privacy guidelines.
- Implementors might believe that support of TLS 1.0 is mandatory.

	
	

	Clauses affected:
	2, 4.5.2, 5.3.2, Annex B.4, Annex B.5, Annex H.3, Annex I.5.2, Annex M.1, Annex M.3.5, Annex M.6.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

*** BEGIN CHANGES ***
[bookmark: _Toc454462453]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TS 31.102: "Characteristics of the USIM application".
[2]	3GPP TS 33.102: "3G Security; Security architecture".
[3]	Void.IETF RFC 2617: "HTTP Authentication: Basic and Digest Access Authentication".
[4]	IETF RFC 3310: "Hypertext Transfer Protocol (HTTP) Digest Authentication Using Authentication and Key Agreement (AKA)".
[5]	3GPP TS 33.221: "Generic Authentication Architecture (GAA); Support for Subscriber Certificates".
[6]	Void
[7]	Void
[8]	Void.3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2 (Release 6)".
[9]	Void.
[10]	3GPP TS 31.103: "Characteristics of the IP Multimedia Services Identity Module (ISIM) application".
[11]	3GPP TS 23.003: "Numbering, addressing and identification".
[12]	Void.IETF RFC 3548: "The Base16, Base32, and Base64 Data Encodings".
[13]	3GPP TS 33.210: "3G Security; Network domain security; IP network layer security".
[14]	Void.
[15]	3GPP TS 31.101: "UICC-terminal interface; Physical and logical characteristics".
[16]	3GPP TS 33.203: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G security; Access security for IP-based services".
[17]	Void.
[18]	IETF RFC 2818: "HTTP over TLS".
[19]	3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".
[20]	Void.
[21]	Void.
[22]	IETF RFC 2104: "HMAC: Keyed-Hashing for Message Authentication".
[23]	ISO/IEC 10118-3:2004: "Information Technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions".
[24]	IETF RFC 3629: "UTF-8, a transformation format of ISO 10646".
[25]	3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".
[26]	3GPP TS 33.246: "3G Security; Security of Multimedia Broadcast/Multicast Service (MBMS)".
[27]	Void.
[28]	Void.IETF RFC 2246: "The TLS Protocol Version 1".
[29]	3GPP TS 24.109: "Bootstrapping interface (Ub) and network application function interface (Ua); Protocol details".
[30]	(void)
[31]	(void)
[32]	3GPP TS 29.109: "Generic Authentication Architecture (GAA); Zh and Zn Interfaces based on the Diameter protocol; Stage 3".
[33]	Void.IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".
[34]	3GPP TS 23.002: “Network architecture “.
[35]	3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security Architecture".
[36]	3GPP TS 33.402: "3GPP System Architecture Evolution (SAE); Security aspects of non-3GPP accesses".
[37]	"Unicode Standard Annex #15; Unicode Normalization Forms", Unicode 5.1.0, March 2008. http://www.unicode.org
[38]	3GPP TS 26.237: "IP Multimedia Subsystem (IMS) based Packet Switch Streaming (PSS) and Multimedia Broadcast/Multicast Service (MBMS) User Service; Protocols".
[39]	3GPP TS 33.224: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA) Push Layer".
[40]	3GPP TS 33.328: "IMS Media plane security".
[41]	Void.IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[42]	(void)
[43]	Void.
[44]	IETF RFC 5705: "Keying Material Exporters for Transport Layer Security (TLS)".
[45]	3GPP TS 33.223: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA) Push function".
[46]	3GPP TS 44.006 "Technical Specification Group GSM/EDGE Radio Access Network; Mobile Station - Base Station System (MS - BSS) interface; Data Link (DL) layer specification".
[47]	3GPP TS 43.020 "Technical Specification Group Services and system Aspects; Security related network functions".
[48]	IETF RFC 5929 "Channel Bindings for TLS".
[49]	3GPP TS 33.303: "Proximity-based Services; Security Aspects".
[50]	3GPP TS 33.179: "Security of Mission Critical Push-To-Talk (MCPTT)".
[51]	3GPP TS 33.203: "3G security; Access security for IP-based services".
[52]	3GPP TS 33.163: " Battery Efficient Security for very low Throughput Machine Type Communication (MTC) devices (BEST)".
[53]	3GPP TS 33.501: " Security architecture and procedures for 5G system".
[54]	3GPP TS 33.180: "Technical Specification Group Services and System Aspects; Security of the mission critical service".
[55]	3GPP TS 33.122: "Security Aspects of Common API Framework for 3GPP Northbound APIs".
[56]	3GPP TS 33.536: "Security Aspect of 3GPP Support for Advanced V2X Services".
[57]	Void
[58]	3GPP TS 33.535: "Authentication and Key Management for Applications (AKMA) based on 3GPP credentials in the 5G System (5GS)".
[Z1]	IETF RFC 8446 "The Transport Layer Security (TLS) Protocol Version 1.3".
[Z2]	IETF RFC 4648: "The Base16, Base32, and Base64 Data Encodings".
[Z3]	IETF RFC 7235: "Hypertext Transfer Protocol (HTTP/1.1): Authentication".
[Z4]	IETF RFC 7616: "HTTP Digest Access Authentication".
[Z5]	IETF RFC 7230: " Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[bookmark: _Toc359245373]*** NEXT CHANGE ***
[bookmark: _Toc454462493]4.5.2	Bootstrapping procedures
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure 4.3). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping negotiation indication from the NAF, or when the lifetime of the key in UE has expired (cf. subclause 4.5.3).
NOTE 1:	The main steps from the specifications of the AKA protocol in TS 33.102 [2] and the HTTP digest AKA protocol in RFC 3310 [4] are repeated in figure 3 for the convenience of the reader. In case of any potential conflict, the specifications in TS 33.102 [2] and RFC 3310 [4] take precedence.

Figure 4.3: The bootstrapping procedure
A UE shall always include the product token "3gpp-gba-tmpi" in the user agent request-header field when communicating over Ub. A BSF shall always include the product token "3gpp-gba-tmpi" in the server response-header field when communicating over Ub.
NOTE 1a:	According to the HTTP specification RFC 7230 [Z5]2616 [33], the product tokens may contain any text. They are ignored when unknown by a UE or a BSF.
1.	The UE sends an HTTP request towards the BSF. When a TMPI associated with the IMPI in use is available on the UE, the UE includes this TMPI in the "username" parameter, otherwise the UE includes the IMPI.
2.	The BSF recognises from the structure of the "username" parameter (cf. Annex B.4) whether a TMPI or an IMPI was sent. If a TMPI was sent the BSF looks up the corresponding IMPI in its local database. If the BSF does not find an IMPI corresponding to the received TMPI it returns an appropriate error message to the UE. The UE then deletes the TMPI and retries the request using the IMPI.
	The BSF retrieves the complete set of GBA user security settings and one Authentication Vector (AV, AV = RAND||AUTN||XRES||CK||IK) over the reference point Zh from the HSS.
	In the case that no HSS with Zh reference point is deployed, the BSF retrieves the Authentication Vector over the reference point Zh' from either an HLR or an HSS with Zh' reference point support.
	If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent).
NOTE 2:	In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.
3.	Then BSF forwards the RAND and AUTN to the UE in the 401 message (without the CK, IK and XRES). This is to demand the UE to authenticate itself.
4.	The UE checks AUTN to verify that the challenge is from an authorised network; the UE also calculates CK, IK and RES. This will result in session keys IK and CK in both BSF and UE.
5.	The UE sends another HTTP request, containing the Digest AKA response (calculated using RES), to the BSF.
6.	The BSF authenticates the UE by verifying the Digest AKA response.
NOTE 3:	The password in "AKAv1" HTTP Digest AKA is in binary format.
7.	The BSF generates key material Ks by concatenating CK and IK. The B-TID value shall be also generated in format of NAI by taking the base64 encoded (cf. RFC 4648 [Z2]3548 [12]) RAND value from step 3, and the BSF server name, i.e. base64encode(RAND)@BSF_servers_domain_name.
NOTE 3a:	If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.
	If the request included the product token "3gpp-gba-tmpi" in the user agent request-header field the BSF shall compute a new TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
8.	The BSF shall send a 200 OK message, including a B-TID, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks. The key material Ks is generated in UE by concatenating CK and IK.
9.	Both the UE and the BSF shall use the Ks to derive the key material Ks_NAF during the procedures as specified in clause 4.5.3. Ks_NAF shall be used for securing the reference point Ua.
	Ks_NAF is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters consist of the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. KDF shall be implemented in the ME.
NOTE 4:	If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.
To allow consistent key derivation based on NAF name in UE and BSF, at least one of the three following prerequisites shall be fulfilled:
(1)	The NAF is known in DNS under one domain name (FQDN) only, i.e. no two different domain names point to the IP address of the NAF. This has to be achieved by administrative means.
This prerequisite is not specific to 3GPP, as it is necessary also under other circumstances, e.g. for TLS V1.0 [28] without use of wildcard or multiple-name certificates.
(2)	Each DNS entry of the NAF points to a different IP address. The NAF responds to all these IP addresses. Each IP address is tied to the corresponding FQDN by NAF configuration. The NAF can see from the IP address, which FQDN to use for key derivation.
(3)	Ua uses a protocol which transfers the host name (FQDN of NAF as used by UE) to NAF (e.g. HTTP/1.1 with mandatory Host request header field). This requires the NAF to check the validity of the host name, to use this name in all communication with UE where appropriate, and to transfer this name to BSF to allow for correct derivation of Ks_NAF.
In case of a TLS tunnel this requires either multiple-identities certificates or the deployment of TLS Extensions as specified in Annex E of TS 33.310 [19] or other protocol means with similar purpose.
	The UE and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).
NOTE 5: 	The following case can occur. The UE contacts the NAF1 and generates keys for NAF1. Then the UE contacts NAF2 and generates NAF2 keys. Then NAF1 requests then keys from the BSF, but the old key keys could have been overwritten due to NAF2 having initiated a new GBA run. The UE initiates a new GBA-run (B-TID2) after handling NAF1 (B-TID1) and starting the request to the NAF1 over Ua. One possible reason is that B-TID1 lifetime was about to expire. It is very likely that the GBA-run takes much more time (HSS involvement) then the Zn/Ua request such that the B-TID1 request at the BSF should arrive in most cases earlier at the BSF. So this out-of-order case should be very rare. This error situation will be signalled back to the UE, such that the most recent B-TID2 will also be used for NAF1. This out-of order case is self-correcting, since if the B-TID1 is unknown in the BSF, then the Ua request will fail and the UE can send a new request using B-TID2.
If the response included the product token "3gpp-gba-tmpi" in the server response-header field the UE shall compute the TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
*** NEXT CHANGE ***
[bookmark: _Toc454462503]5.3.2	Bootstrapping procedure
The procedure specified in this clause differs from the procedure specified clause 4.5.2 in the local handling of keys and Authentication Vectors in the UE and the BSF. The messages exchanged over the Ub reference point are identical for both procedures.
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure 5.1). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping renegotiation indication from the NAF, or when the lifetime of the key in UE has expired (see clause 5.3.3).
NOTE:	The main steps from the specifications of the AKA protocol in TS 33.102 [2] and the HTTP digest AKA protocol in RFC 3310 [4] are repeated in figure 5.1 for the convenience of the reader. In case of any potential conflict, the specifications in TS 33.102 [2] and RFC 3310 [4] take precedence.

Figure 5.1: The bootstrapping procedure with UICC-based enhancements
A UE shall always include the product token "3gpp-gba-tmpi" in the user agent request-header field when communicating over Ub. A BSF shall always include the product token "3gpp-gba-tmpi" in the server response-header field when communicating over Ub.
NOTE a:	According to the HTTP specification RFC 7230 [Z5]2616 [33], the product tokens may contain any text. They are ignored when unknown by a UE or a BSF.
1.	The ME sends an HTTP request towards the BSF. When a TMPI associated with the IMPI in use is available on the UE, the UE includes this TMPI in the "username" parameter, otherwise the UE includes the IMPI.
2.	The BSF recognises from the structure of the "username" parameter (cf. Annex B.4) whether a TMPI or an IMPI was sent. If a TMPI was sent the BSF looks up the corresponding IMPI in its local database. If the BSF does not find an IMPI corresponding to the received TMPI it returns an appropriate error message to the UE. The UE then deletes the TMPI and retries the request using the IMPI.
	The BSF retrieves the complete set of GBA user security settings and one Authentication Vector
(AV, AV = RAND||AUTN||XRES||CK||IK) over the Zh reference point from the HSS.
The HSS shall also send an indication that the UICC supports SHA-256 to the BSF if the UICC supports SHA-256.
	If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent).
	The BSF can then decide to perform GBA_U, based on the user security settings (USSs). In this case, the BSF proceeds in the following way:
-	The BSF computes MAC*. If an indication that the UICC supports SHA-256 is received from the HSS, the MAC* is computed as MAC*= MACÅ Trunc(SHA-256(IK)); otherwise, MAC* = MACÅ Trunc(SHA-1(IK)).
NOTE 1:	Trunc denotes that from the output of SHA-256 or SHA1 [23], the 64 bits numbered as [0] to [63] are used within the * operation to MAC.
The BSF stores the XRES after flipping the least significant bit.
NOTE 2:	In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.
3.	Then BSF forwards the RAND and AUTN* (where AUTN* = SQN AK || AMF || MAC*) to the UE in the 401 message (without the CK, IK and XRES). This is to demand the UE to authenticate itself.
4.	The ME sends RAND and AUTN* to the UICC. The UICC calculates IK and MAC (by performing MAC= MAC* Trunc(SHA-256(IK)) if the UICC supports SHA-256, otherwise by performing MAC= MAC* Trunc(SHA-1(IK)). Then the UICC checks AUTN(i.e. SQN AK || AMF || MAC) to verify that the challenge is from an authorised network; the UICC also calculates CK and RES. This will result in session keys CK and IK in both BSF and UICC. The UICC then transfers RES (after flipping the least significant bit) to the ME and stores Ks, which is the concatenation of CK and IK, on the UICC.
The usage of SHA-256 for MAC* computation at BSF and MAC calculation at UICC is recommended.
NOTE 2a:	The usage of SHA-1 is only for backward compatibility.
NOTE 2b:	BSF and HSS need to be upgraded to use SHA-256 before a UICC supporting SHA-256 can be used.
5.	The ME sends another HTTP request, containing the Digest AKA response (calculated using RES), to the BSF.
6.	The BSF authenticates the UE by verifying the Digest AKA response.
NOTE 3:	The password in "AKAv1" HTTP Digest AKA is in binary format.
7.	The BSF generates the key Ks by concatenating CK and IK. The B-TID value shall be also generated in format of NAI by taking the base64 encoded [1Z2] RAND value from step 3, and the BSF server name, i.e. base64encode(RAND)@BSF_servers_domain_name.
NOTE 3a:	If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.
	If the request included the product token "3gpp-gba-tmpi" in the user agent request-header field the BSF shall compute a new TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
8.	The BSF shall send a 200 OK message, including the B-TID, to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks.
9.	Both the UICC and the BSF shall use the Ks to derive NAF-specific keys Ks_ext_NAF and Ks_int_NAF during the procedures as specified in clause 5.3.3, if applicable. Ks_ext_NAF and Ks_int_NAF are used for securing the Ua reference point.
	Ks_ext_NAF is computed in the UICC as Ks_ext_NAF = KDF(Ks, "gba-me", RAND, IMPI, NAF_Id), and Ks_int_NAF is computed in the UICC as Ks_int_NAF = KDF(Ks, "gba-u, RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters include the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. The key derivation parameters used for Ks_ext_NAF derivation must be different from those used for Ks_int_NAF derivation. This is done by adding a static string "gba-me" in Ks_ext_NAF and "gba-u" in Ks_int_NAF as an input parameter to the key derivation function.
NOTE 4:	If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.
To allow consistent key derivation based on NAF name in UE and BSF, at least one of the prerequisites which are specified in clause 4.5.2 shall be met.
	The UICC and the BSF store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).
If the response included the product token "3gpp-gba-tmpi" in the server response-header field the UE shall compute the TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
*** NEXT CHANGE ***
[bookmark: _Toc454462517]B.4	Derivation of TMPI
Derivation of TMPI follows the same procedure as NAF specific key derivation in GBA and GBA_U (see clause B.3). As the TMPI is stored in ME, for GBA_U the procedure for derivation of Ks_ext_NAF is followed.
NOTE:	This procedure was chosen to avoid any changes to existing UICCs in case of GBA_U.
The BSF_Id defined in this clause consists of the full DNS name of the BSF as used for B-TID generation (see clause 4.5.2), concatenated with the Ua security protocol identifier for TMPI as specified in Annex H.
In GBA and GBA_U, the input parameters for the key derivation function to derive the TMPI shall be the following:
-	FC = 0x01,
-	P0 = "gba-me" (i.e. 0x67 0x62 0x61 0x2d 0x6d 0x65) (see clause B.3 for Ks_NAF and Ks_ext_NAF),
-	L0 = length of P0 is 6 octets (i.e., 0x00 0x06).
-	P1 = RAND,
-	L1 = length of RAND is 16 octets (i.e. 0x00 0x10),
-	P2 = IMPI encoded to an octet string using UTF-8 encoding (see clause B.2.1),
-	L2 = length of IMPI is variable (not greater that 65535),
-	P3 = the BSF_Id encoded to an octet string using UTF-8 encoding (see clause B.2.1), and
-	L3 = length of P3 is variable (not greater that 65535).
The Key to be used in derivation of TMPI shall be:
-	Ks (i.e. CK || IK concatenated) as specified in clauses 4 and 5.
The TMPI is then computed as TEMP@tmpi.bsf.3gppnetwork.org where TEMP is the base64-encoding [1Z2] of the 24 most significant octets of the output of KDF.
*** NEXT CHANGE ***
[bookmark: _Toc454462518]B.5	Derivation of passwd and Ks
Derivation of passwd and Ks for GBA_Digest shall follow the same procedure as NAF specific key derivation in GBA and GBA_U as specified in clause B.3.
The input parameters for the key derivation function to derive passwd and Ks shall be the following:
-	FC = 0x01,
-	P1 = TLS_MK_Extr,
-	L1 = length of TLS_MK_Extr is 48 octets (i.e. 0x00 0x30),
In the derivation of passwd as specified in clause M.6.3, step 5,
-	P0 = "GBA_Digest_RESP"
(i.e. 0x47 0x42 0x41 0x5F 0x44 0x69 0x67 0x65 0x73 0x74 0x5F 0x52 0x45 0x53 0x50), and
-	L0 = length of P0 is 15 octets (i.e., 0x00 0x0F).
In the key derivation of Ks as specified in clause M.6.3, step 6,
-	P0 = "GBA_Digest_Ks"
(i.e. 0x47 0x42 0x41 0x5F 0x44 0x69 0x67 0x65 0x73 0x74 0x5F 0x4B 0x73),
-	L0 = length of P0 is 13 octets (i.e., 0x00 0x0D),
-	P2 = RESP, and
-	L2 = length of RESP is variable and depends on the algorithm used in HTTP Digest (e.g., 32 if SHA-256MD5 is used).
The Key to be used in key derivation function shall be:
-	H(A1) as specified in clause M.6.3, step 5.
NOTE:	In the present document this function is denoted as:
	passwd = KDF (H(A1), "GBA_Digest_RESP", TLS_MK_Extr), and
	Ks = KDF (H(A1), " GBA_Digest_Ks", TLS_MK_Extr, RESP).
*** NEXT CHANGE ***
[bookmark: _Toc454462530]H.3	Ua security protocol identifiers for 3GPP specified protocols
The following Ua security protocol identifiers are specified by 3GPP:
	(0x01,0x00,0x00,0x00,0x00)		Ua security protocol according to TS 33.221 [5].
	(0x01,0x00,0x00,0x00,0x01)		Ua security protocols according to TS 33.246 [26].
NOTE 1:	TS 33.246 [26] provides key separation between the keys that are used within HTTP digest and MIKEY protocols.
(0x01,0x00,0x00,0x00,0x02) 	Ua security protocol HTTP digest authentication according to TS 24.109 [29], unless HTTP digest authentication is used in the context of another Ua security protocol, which is already covered elsewhere in this Annex.
(0x01,0x00,0x00,0x00,0x03)	Ua security protocols used with HTTP-based security procedures for MBMS user services according to TS 26.237 [38].
(0x01,0x00,0x00,0x00,0x04)	Ua security protocols used with SIP-based security procedures for MBMS user services according to TS 26.237 [38].
(0x01,0x00,0x00,0x00,0x05)	Ua security protocols used with Generic Push Layer according to TS 33.224 [39], unless Generic Push Layer is used in the context of another Ua security protocol, which is already covered elsewhere in this Annex.
(0x01,0x00,0x00,0x00,0x06)	Ua security protocol for IMS UE to KMS http based message exchanges according to "IMS media plane security", TS 33.328 [40]
	(0x01,0x00,0x00, 0x01,0x00) 		Generation of TMPI according to Annex B.4.
NOTE 2:	This protocol identifier is not strictly a Ua protocol identifier, but its use in key derivation function is exactly equal.to a Ua protocol identifier.
(0x01,0x00,0x01,yy,zz)	Ua security protocol for "Shared key-based UE authentication with certificate-based NAF authentication", according to TS 33.222 [25] section 5.3, or "Shared key-based mutual authentication between UE and NAF", according to TS 33.222 [25] section 5.4. Here, "yy,zz" is the protection mechanism CipherSuite code according to the defined values for TLS CipherSuites in the IANA TLS Cipher Suite Registry which is referenced in RFC 8446 [Z1]TLS V1.2 [41].
	NOTE 3: 	The "Certificate based mutual authentication between UE and NAF” according to TS 33.222 [25] section 5.5 does not require a Ua protocol identifier.

NOTE 4:	As an example: The TLS 1.2 CipherSuite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 has code = { 0xC0,0x2B }, thus the according protocol identifier shall be (0x01,0x00,0x01, 0xC0,0x2B).
(0x01,0x00,0x02,yy,zz) 	Ua security protocol for "Shared key-based UE authentication with certificate-based NAF authentication", according to TS 33.222 [25] Annex D. Here, "yy,zz" is the protection mechanism CipherSuite code according to the defined values for TLS CipherSuites in the IANA TLS Cipher Suite Registry which is referenced in RFC 8446 [Z1]TLS V1.2 [41]. This Ua security protocol identifier is used for the case outlined in TS 33.222 [5] Annex D, where e.g. HTML FORM based authentication is used within a TLS tunnel.
	NOTE 4: 	The third octet (0x02) distinguish this case from other protocols tunneled inside the TLS tunnel.

*** NEXT CHANGE ***
[bookmark: _Toc454462564]I.5.2	Bootstrapping procedures
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform a bootstrapping authentication (see figure I.3). Otherwise, the UE shall perform a bootstrapping authentication only when it has received bootstrapping initiation required message or a bootstrapping negotiation indication from the NAF, or when the lifetime of the key in UE has expired (cf. subclause I.5.3).

Figure I.3: The bootstrapping procedure
1.	The UE sets up a confidentiality-protected TLS tunnel with the BSF. In the set up of the TLS tunnel, the UE shall authenticate the BSF by means of a certificate provided by the BSF. All further communication between ME and BSF is sent through this TLS tunnel. The UE now sends an initial HTTPS request.
2.	The BSF requests authentication vectors and GUSS from the HSS over Zh. The HSS returns the complete set of GBA user security settings (GUSS) and one 2G authentication vectors (AV = RAND, SRES, Kc) over the Zh reference point. The BSF discovers that the UE is equipped with 2G SIM by looking at the type of authentication vectors.
If the BSF implements the timestamp option and has a local copy of the GUSS for the subscriber that has been fetched from the HSS during a previous bootstrapping procedure, and this GUSS includes a timestamp, the BSF may include the GUSS timestamp in the request message. Upon receiving that timestamp, if the HSS implements the timestamp option, the HSS may compare it with the timestamp of the GUSS stored in the HSS. In this case, if and only if the HSS has done the comparison and the timestamps are equal, then the HSS shall send "GUSS TIMESTAMP EQUAL" indication to the BSF. In any other case, the HSS shall send the GUSS (if available) to the BSF. If the BSF receives "GUSS TIMESTAMP EQUAL" indication, it shall keep the local copy of the GUSS. In any other case, the BSF shall delete the local copy of the GUSS, and store the received GUSS (if sent).
	In the case that no HSS with Zh reference point support is deployed, the BSF requests the authentication vector from either an HSS with Zh' reference point support or an HLR over the Zh' reference point. The HLR or HSS with Zh' reference point support returns one 2G authentication vectors (AV = RAND, SRES, Kc) over the Zh' reference point. The BSF discovers that the UE is equipped with 2G SIM by looking at the type of authentication vectors.
	The BSF converts one 2G authentication vector (RAND, Kc, SRES) to the parameter RES.
	RES = KDF (key, "3gpp-gba-res", SRES), truncated to 128 bits
	where key = Kc || Kc || RAND and KDF is the key derivation function specified in Annex B of TS 33.220.
The BSF shall also select a 128-bit random number "Ks-input" and set
server specific data = Ks-input
in the aka-nonce of HTTP Digest AKA, cf. [4].
NOTE 1:	"Truncated to 128 bits" means that from the 256 bits output of KDF, the 128 bits numbered as [0] to [127] are used.
NOTE 2:	In a multiple HSS environment, the BSF may have to obtain the address of the HSS where the subscription of the user is stored by querying the SLF, prior to step 2.
3.	The BSF shall forward RAND and server specific data in the 401 message to the UE (without RES). This is to demand the UE to authenticate itself.
4.	The UE extracts RAND from the message and calculates the corresponding Kc and SRES values. It then calculates the parameter RES from these values as specified in step 2.
5.	The UE sends another HTTP request, containing the Digest AKA response (calculated using RES as the password) and a cnonce (cf. 7235 [Z3] and RFC 7616 [Z4][3]), to the BSF.
6.	The BSF authenticates the UE by verifying the Digest AKA response. If the authentication fails the BSF shall not re-use the authentication vector in any further communication.
NOTE 3:	The password in "AKAv1" HTTP Digest AKA is in binary format.
7.	The BSF shall generate key material Ks by computing Ks = KDF (key, Ks-input, "3gpp-gba-ks", SRES).
The B-TID value shall be also generated in format of NAI by taking the base64 encoded [1Z2] RAND value from step 3, and the BSF server name, i.e. base64encoded(RAND)@BSF_servers_domain_name.
NOTE 3a:	If the HSS/AuC uses a good random number generator, then the chance of a B-TID collision is practically zero. If such a collision occurs, then the key retrieved by the NAF can have a mismatch with the UE generated NAF key. This will result in a Ua authentication failure which will cause the NAF to once again request the UE to bootstrap which will create a new Ks and a new B-TID.
8.	The BSF shall send a 200 OK message, including a B-TID and an authentication-info header (cf. 7235 [Z3] and RFC 7616 [Z4][3]), to the UE to indicate the success of the authentication. In addition, in the 200 OK message, the BSF shall supply the lifetime of the key Ks.
9.	The UE shall abort the procedure if the server authentication according to 7235 [Z3] and RFC 7616 [Z4] [3] fails. If it is successful the UE shall generate the key material Ks in the same way as the BSF.
10.	Both the UE and the BSF shall use the Ks to derive the key material Ks_NAF for use with the procedures specified in clause I.5.3. Ks_NAF shall be used for securing the reference point Ua.
Ks_NAF is computed as Ks_NAF = KDF (Ks, "gba-me", RAND, IMPI, NAF_Id), where KDF is the key derivation function as specified in Annex B, and the key derivation parameters consist of the user's IMPI, the NAF_Id and RAND. The NAF_Id is constructed as follows: NAF_Id = FQDN of the NAF || Ua security protocol identifier. The Ua security protocol identifier is specified in Annex H. KDF shall be implemented in the ME.
NOTE 4:	If a NAF hosts two or more applications which use the same FQDN and Ua security protocol identifier, they will share the same NAF specific keys. This causes a risk of so called two-time pad which may lead to the situation that the security of these applications is compromised. This can be avoided by running bootstrapping separately to each application or by application specific means, which are however out of the scope of the current specification.
To allow consistent key derivation based on NAF name in UE and BSF, at least one of the three following prerequisites shall be fulfilled:
 (1)	The NAF is known in DNS under one domain name (FQDN) only, i.e. no two different domain names point to the IP address of the NAF. This has to be achieved by administrative means.
(2)	Each DNS entry of the NAF points to a different IP address. The NAF responds to all these IP addresses. Each IP address is tied to the corresponding FQDN by NAF configuration. The NAF can see from the IP address, which FQDN to use for key derivation.
(3)	Ua uses a protocol which transfers the host name (FQDN of NAF as used by UE) to NAF (e.g. HTTP/1.1 with mandatory Host request header field). This requires the NAF to check the validity of the host name, to use this name in all communication with UE where appropriate, and to transfer this name to BSF to allow for correct derivation of Ks_NAF.
In case of a TLS tunnel over Ua this requires either multiple-identities certificates for the NAF or the deployment of RFC 3546 [9] over Ua or other protocol means with similar purpose over Ua.
	The UE and the BSF shall store the key Ks with the associated B-TID for further use, until the lifetime of Ks has expired, or until the key Ks is updated or until the deletion conditions are satisfied (see 4.4.11).
*** NEXT CHANGE ***
[bookmark: _Toc454462588]M.1	General
This annex specifies the use of SIP Digest credentials, as defined in TS 33.203 [16], for GBA. The procedure specified in this annex is called GBA_Digest. GBA_Digest allows access to applications in a more secure way than would be possible with the use of password-based HTTP Digest as specified in RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3] without enhancements. It may be useful for environments where a UICC, or a SIM card, is not available to subscribers. The use of GBA_ Digest is restricted to such environments.
Clauses 4 and 5 of the present document do not apply to this Annex unless explicitly stated.
NOTE:	The use of the term 'UE' in this Annex is in line with the use of the term 'UE' in TS 33.203 [16], Annex N (on SIP Digest), but differs from that in other 3GPP specifications in that it assumes that a UICC is not available to subscribers in the UE.
NOTE 2:	The use of MD5 in HTTP Digest is not recommended and only supported for interop with Rel-16 and older releases.
*** NEXT CHANGE ***
[bookmark: _Toc454462595]M.3.5	UE
The required functionalities from the UE are:
-	the support of HTTP Digest protocol according to RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3] with the additional profiling specified in this Annex;
-	the support of TLS;
-	the capability to use SIP Digest credentials in bootstrapping;
-	the capability for a Ua application on the terminal to indicate to the GBA Function on the terminal whether SIP Digest credentials are allowed for use in bootstrapping;
-	the capability to derive new key material to be used with the protocol over the Ua interface as defined in clause M.6.3;
-	support of at least one Ua application protocol (For an example see TS 33.221 [5]);
 - 	the capability to send an indication to the BSF over the Ub interface that the UE intends to run GBA_Digest.
*** NEXT CHANGE ***
[bookmark: _Toc454462618]M.6.3	Bootstrapping procedures
When a UE wants to interact with a NAF, and it knows that the bootstrapping procedure is needed, it shall first perform such a procedure. Otherwise, the UE shall perform a bootstrapping procedure only when it has received a bootstrapping initiation required message or a bootstrapping negotiation indication from the NAF, or when the lifetime of the key in UE has expired (cf. clause M.6.4).
The bootstrapping procedure using SIP Digest credentials is run over the Ub interface (extended for the purposes of GBA_Digest) as described below:

Figure M.2 GBA_Digest bootstrapping procedure
NOTE 1:	Figure M.2 only shows an example flow for visualization and not all details are included.
A UE shall always include the product token "3gpp-gba-tmpi" in the user agent request-header field when sending HTTP messages over Ub. A BSF shall always include the product token "3gpp-gba-tmpi" in the server response-header field when sending HTTP messages over Ub.
NOTE 1a:	According to the HTTP specification RFC 7230 [Z5]2616 [33], the product tokens may contain any text. They are ignored when unknown by a UE or a BSF.
Step 0:
The UE and the BSF shall establish a TLS tunnel with server authentication using a server certificate. The use of TLS message integrity is mandatory, while the use of TLS encryption is optional. All further messages between the BSF and UE shall be sent through this tunnel.
NOTE 2:	TLS encryption can be useful for protecting the user identity privacy when the TMPI mechanism defined in the present document is not used.
Step 1:
In this HTTP request message from the UE to the BSF, the UE shall include an Authorization header containing a user identity in the "username" parameter and a token indicating the use of GBA_Digest. When a TMPI associated with the IMPI in use is available on the UE, this user identity shall be this TMPI, otherwise it shall be the IMPI. The realm in the Authorization header shall be the realm as defined for SIP Digest in TS 33.203 [16].
Step 2:
The BSF recognises from the structure of the "username" parameter (cf. Annex B.4) whether a TMPI or an IMPI was sent. If a TMPI was sent the BSF shall look up the corresponding IMPI in its local database. If the BSF does not find an IMPI corresponding to the received TMPI it shall return an appropriate error message to the UE. The UE shall then delete the TMPI and retry the request using the IMPI.The BSF shall request a SIP Digest Authentication Vector (SD-AV) from the HSS. The SD-AV is defined in TS 33.203 [16], Annex N. The username field in the Multimedia Auth Request shall contain the IMPI.
Step 3:
The HSS shall retrieve the SD-AV corresponding to the IMPI and send it to the BSF in a Multimedia Auth Answer. The handling of GUSS between BSF and HSS shall be as described in clause 4.5.2, step 2.
The qop value shall be set to "auth-int ".
NOTE 3:	The additional protection afforded by qop set to "auth-int" may seem unnecessary considering the fact that the messages exchanged between UE and BSF are protected by a TLS tunnel. However, the use of "auth-int" is consistent with the other modes of GBA (GBA_ME, GBA_U and 2G GBA) and also provides a second layer of integrity protection in case the TLS server authentication is ever compromised (e.g. due to replacement of insecurely stored root certificates on the UE or a Certification Authority being compromised).
Step 4:
In the HTTP 401 Unauthorized response from the BSF to the UE, the BSF shall include a WWW-Authenticate header with parameters as specified in RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3].
The parameters realm, qop, and algorithm were provided in the SD-AV in step 3 and the nonce=base64encode (16 byte random value) is generated according to RFC 3548 [1Z2] by the BSF.

Step 5:
When responding to a challenge from the BSF, the UE shall generate a cnonce randomly, and calculate the response RESP. The RESP shall be put into the Authorization header and sent back to the BSF in the GET request.
RESP shall be computed as a Digest-response according to RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3] (HTTP Digest) from the most recent GBA_Digest challenge and a password 'passwd' that is generated as follows:
passwd = KDF (H(A1), "GBA_Digest_RESP", TLS_MK_Extr)
where H(A1) is the hash of the following three parameters: the user name and password used by the user in IMS for SIP Digest according to TS 33.203 [16], Annex N, and the realm, cf. also RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3]. "GBA_Digest_RESP" is a character string. TLS_MK_Extr is extracted from the TLS master key according to RFC 5705 [44] or RFC 8446 with the optional context value being omitted, the label set to "EXPORTER_GBA_Digest", and the length set equal to the length of the TLS master secret (48 bytes). KDF is the key derivation function as specified in clause B.2.
NOTE 4:	A cautionary note on notation: According to RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3], the computation of RESP from the password 'passwd' defined above entails again a parameter called H(A1). This parameter will differ from the value of H(A1) that is input to the above formula because the passwords from which these two H(A1) values are derived differ. But no new notation is deemed necessary here as the notation H(A1), when H(A1) is derived from 'passwd', is not explicitely used in the text of the present document.
Step 6:
Upon receiving a GET request carrying the authentication response RESP, the BSF shall check that the expected RESP (calculated by the BSF in the same way as by the UE in step 5) matches the received RESP. If the check is successful then the user has been authenticated.
The BSF shall then derive Ks as follows, (see clause B.5 for the formation of the input):
Ks = KDF (H(A1), "GBA_Digest_Ks", TLS_MK_Extr, RESP)
where H(A1), RESP, and TLS_MK_Extr are defined as in step 5, and "GBA_Digest_Ks" is a character string.
The BSF shall generate the bootstrapping transaction identifier (B-TID) for the IMPI and store the tuple
 <B-TID, IMPI, Ks, nonce>. The B-TID shall be constructed in the format of a NAI by taking the nonce from step 4, and the BSF server name, i.e. nonce@BSF_server_domain_name.
NOTE 5:	The B-TID construction above is almost identical to the one used in clause 4. The difference is that in clause 4 the username part is constructed from the (base64 encoded) RAND value.
The BSF shall compute a new TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
NOTE 6:	The formulations in the preceding paragraph, and the corresponding paragraph below relating to the computation of the TMPI in the UE, differ from the ones in clause 4.5.2 as GBA_Digest-aware UEs and BSFs always include the product tokens as described at the start of this clause. So, the condition in clause 4.5.2 is not needed.
The BSF shall send a 200 OK response to the UE to indicate the success of the authentication.
In this message from the BSF to the UE, the BSF shall include the bootstrapping transaction identifier (B-TID) and the key lifetime.
An Authentication-Info header according to RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3] shall be included into the 200 OK response.
The UE shall abort the procedure if the server authentication according to RFC 7235 [Z3] and RFC 7616 [Z4]2617 [3] fails. Otherwise, the UE shall derive Ks in the same way as the BSF did above.
The UE shall compute the TMPI as specified in Annex B.4 and store it together with the IMPI, overwriting a previous TMPI related to this IMPI, if any.
After successful bootstrapping procedure the UE and the BSF shall store the key Ks, the nonce, the B-TID, and an indication of the underlying security quality, i.e. GBA_Digest, for further use, until the key Ks is updated or until the deletion conditions in clause M.5.11 are satisfied. The key Ks shall then be used in the BSF and in the UE to derive NAF specific key(s) Ks_NAF to secure Ua reference points in the following way:
	Ks_NAF shall be computed as Ks_NAF = KDF (Ks, "gba-digest", nonce, IMPI, NAF_Id), where KDF is the key derivation function as specified in clause B.2, and the input parameters consist of the user's IMPI, the NAF_Id and 'nonce'. 'nonce' is the nonce that was used for computing the RESP that was input to the derivation of Ks. The NAF_Id shall be constructed as in clause 4.5.2. The "gba-digest" parameter is a static character string.
NOTE 6: 	The above derivation of Ks_NAF is analagous to the derivation in clause 4.5.2, step 9, and the same KDF can be utilized.
The KDF shall be implemented in the terminal.
*** END OF CHANGES ***
image1.wmf

1. Request

(user identity)

8. 200 OK

B

-

TID, Key lifetime

3. 401 Unauthorized

WWW

-

Authenticate:

Digest (RAND, AUTN

delivered)

UE

HSS /

HLR

BSF

2

.

Zh interface:

BSF retrieves AV

and user profile.

2. Zh’ interface:

BSF retrieves AV

4. Client runs AKA

algorithms, verif

ies

AUTN, and session

keys derives RES

5. Request

Authorization:

Digest (RES is used)

6. Server checks

the

given RES, if it is

correct.

7. K

s=CK||IK

9.

Ks=CK||IK

oleObject1.bin
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

1. Request (user identity)

and user profile.

2. Zh’ interface:

BSF retrieves AV

HSS / HLR

2. Zh interface:

8. 200 OK

B-TID, Key lifetime

Ks=CK||IK

9.

7. Ks=CK||IK

correct.

5. Request

3. 401 Unauthorized

WWW -Authenticate:

Digest (RAND, AUTN delivered)

given RES, if it is

6. Server checks the

Digest (RES is used)

Authorization:

keys derives RES

AUTN, and session

algorithms, verifies

4. Client runs AKA

BSF retrieves AV

BSF

UE

image2.wmf

1. Request

(u

ser identity)

8

. 200 OK

B

-

TID, Key lifetime

3. 401 Unauthorized

WWW

-

Authenticate:

Digest (RAND, AUTN*

delivered)

UE

HSS

BSF

2.

Zh interface:

BSF retrieve

s AV

and user profile.

4 UE runs AKA

algorithms, verifies

AUTN*, and derives

session

keys and RES

5. Request

Authorization:

Digest (RES is used)

6. Server checks

the

given Digest, if it is

correct.

7.

Ks

=CK||IK

9.

Ks

=CK||IK

shall not leave

the

UICC

oleObject2.bin
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

Ks=CK||IK shall not leave the UICC

7. Ks=CK||IK

B-TID, Key lifetime

3. 401 Unauthorized

WWW -Authenticate:

Digest (RAND, AUTN* delivered)

9.

1. Request (user identity)

correct.

5. Request

given Digest, if it is

6. Server checks the

Digest (RES is used)

Authorization:

keys and RES

AUTN*, and derives session

algorithms, verifies

4 UE runs AKA

and user profile.

BSF retrieves AV

2. Zh interface:

BSF

HSS

UE

. 200 OK

8

image3.wmf

1. Request

(user identity)

UE

HSS

/ HLR

BSF

2. Zh interface: BSF

retrieves 2G AV and

GUSS

2. Zh’ interface:

BSF

retrieves 2G AV

3. 401 Unauthorized

WWW

-

Authenticate:

Digest (RAND, Ks

-

input delivered)

4. Client runs conversion and

SIM algorithms, and derives

RES.

5. Request Authorization:

Digest (RES is used)

6. Server checks the

received Digest.

7. Ks de

rived from

Kc, SRES, Ks

-

input

9. Ks derived from

Kc, SRES, Ks

-

input

8. 200 OK

Identifier

0. Establish TLS tunnel

oleObject3.bin
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

2. Zh interface: BSF retrieves 2G AV and GUSS

2. Zh’ interface: BSF retrieves 2G AV

HSS

/ HLR

4. Client runs conversion and SIM algorithms, and derives RES.

8. 200 OK

Identifier

0. Establish TLS tunnel

1. Request

(user identity)

9. Ks derived from

Kc, SRES, Ks-input

7. Ks derived from

Kc, SRES, Ks-input

6. Server checks the received Digest.

5. Request Authorization:

Digest (RES is used)

3. 401 Unauthorized

WWW-Authenticate:

Digest (RAND, Ks-input delivered)

BSF

UE

image4.wmf
BSF

UE

Initial GET request

(

IMPI

)

401

Unauthorized

(

nonce

)

HSS

GET request

(

RESP

,

cnonce

)

AV Request

AV Response

generation of response using

sip digest credential

authenti

cation

 and generation of

bootstrapping key material

such as Ks

,

B

-

TID

200

OK

B

-

TID

generation of bootstrapping

key material

Microsoft_Visio_2003-2010_Drawing.vsd
�

BSF

UE

Initial GET request
(IMPI)

401 Unauthorized
(nonce)

HSS

GET request
(RESP, cnonce)

AV Request

AV Response

generation of response using sip digest credential

authentication and generation of bootstrapping key material
such as Ks, B-TID

200 OK
B-TID

generation of bootstrapping key material

