3GPP TSG-SA3 (Security)
S3-101076
SA3 Ad Hoc; Riga, Latvia; 27 – 29 September, 2010
revision of S3-10xyzw
Source:
Nokia Corporation, Nokia Siemens Networks
Title:
Weakness of the authentication and key agreement protocol in solution 5
Document for:
Approval, Inclusion in living Tdoc
Agenda Item:
7.1
Abstract of the contribution
This contribution identifies a weakness of the authentication and key agreement protocol in solution 5: the protocol does not provide network-to-RN authentication under the assumption that the UICC-RN interface is vulnerable to eavesdropping. The protocol therefore permits network impersonation. It is therefore recommended not to adopt solution 5.
Solutions 4, 6, 7, 9, and the new solutions x and a (newly proposed to the SA3 ad hoc meeting in S3-101067,69 71,72,73,74) are not vulnerable to this attack. For solution 8 this depends on the missing details.
Introduction
Most of the proposed solutions for relay node security in the living Tdoc S3-100896 make use of well-established security protocols such as IKE/IPsec, TLS, or AKA. While it is true that the combination of well-understood protocols into a complex system such as the relay node security architecture carries the risk of introducing flaws into the system as a whole by incorrectly combining the building blocks one can at least rely on the known security properties of the well-established building blocks. 3GPP has taken care in the past to adopt new protocols only after thorough analysis. As a reminder: when 3GPP decided to adopt UMTS AKA as the authentication and key agreement protocol for 3G in 1999 it did so only after the results of two analyses by means of formal logic had become available. These results of these analyses are documented in TR 33.902.

Solution 5 in clause 7.6 of S3-100896 plays a special role among the solutions for RN security in that it proposes a new authentication and key agreement protocol combining EPS AKA with elements of a public-key-based protocol. (The only similarity is with solution 8 which proposes a new authentication and key agreement protocol combining EPS AKA with elements of a symmetric-key-based protocol.) An analysis of its security properties has not been made publicly available. This contribution highlights a missing security feature of the new protocol.

Most other solutions in clause 7 of S3-100896 do not suffer from this weakness as they provide mutual authentication based on a secret key anchored in the RN platform and / or make use of a secure channel between RN and UICC.

The analysis of the security properties of the protocol in solution 5 is provided as a pseudo CR to clause 7.6.2.2.2. We also point out a minor inconsistency in the description of the protocol in 7.6.2.2.1, cf. text highlighted in turquoise.

Start of pseudo CR:
--

7.6.2
Security Procedures
7.6.2.1
General

Using either IPsec exactly as for eNBs as described in clause 11 of TS 33.401[2] or enhanced AS security to protect the S1-AP/X2-AP interface between the RN and DeNB will prevent attacks 1, 3 and 4b. The overhead caused by the IPsec would be negligble as there is little signalling compared to user plane traffic.

The user plane data is proteced by the AS level security. The EPS AKA procedure is run to authenticate the UICC in the RN and the network. The AKA run also provides the keying material for the AS level security. Additional IEs are included in the some NAS messages in order to provide authentication between the RN and network based on credentials stored on the RN.. This would prevent threats 2, 4c and 4d.. Threat 5 is mitigated by using keys for the E-UTRAN that result from both the AKA and authentication based on credentials on the relay node.

7.6.2.2
Enhanced AKA authentication

7.6.2.2.1
High level description

In this solution, the device authentication is proposed to work in conjunction with the standard EPS AKA access authentication. The solution assumes that the device has been provisioned with a device_root_key that can be used to send encrypted traffic to the device and that is uniquely associated to the device_identity. The device_identity is assumed to be the IMEI of the device. The device_root_key is a public key of the device certificate. The associated private key(s) of the device are stored securely in the device. In the following descriptions, the device_credentials are either the device certificate or a pointer to it (e.g., device_identity). In the latter case, the pointer allows the network to identify the public key.

The device_credentials allow an network entity to form the device_challenge (see below) and to check the revocation status of the device (e.g., check whether the device credentials have been compromised). It is further assumed that a secure part of the device stores the sensitive device keys such as the private key associated with the certificate. Furthermore, it is assumed that the secure part of the relay node performs all cryptographic operations that make use of these sensitive keys.

Whenever the network wishes to perform device authentication, it creates a device_challenge and sends it to the device in a relevant NAS message. The device computes the device_response and returns it to the network in a response NAS message. The device uses the data in device_challenge and device_response to calculate KASME_D. KASME_D is the equivalent key to KASME defined in E-UTRAN (see TS 33.401[2]) except that it is bound to the device (more specifically, the device_root_key) as well to the KASME resulting from EPS AKA authentication. If the network receives a valid device_response, the network also calculates KASME_D.

The calculation of device_challenge, device_response and KASME_D are as follows:

device_challenge = Edevice_root_key (device_temp_key), network_nonce
where EK(data) means data encrypted with key K, and network_nonce is a suitable size random number (e.g., 128 bits) chosen by the network. The encryption algorithm is asymmetric (and the device_root_key is the public key associated with the device certificate). The device_temp_key is a suitably sized (e.g., 256 or 128 bits) random number chosen by the network.

Note: It is assumed that both the device and the network may keep device_temp_key between authentictaions for optimization purposes. If so, the first parameter is optional.

device_response is calculated as

device_response = device_nonce, device_res
where device_nonce is a suitably sized random number (e.g., 128 bits) chosen by the device; and

device_res = KDF (device_temp_key, network_nonce || device_nonce)
where KDF is a suitable pseudo-random function.
Finally, the calculation of KASME_D is as follows:

KASME_D = KDF (device_temp_key, KASME || network nonce || device_nonce)
where KASME is the one freshly generated as part of the EPS AKA authentication. Note that the device authentication process here is running in the same NAS messages as those used for the AKA procedure.

 KASME_D is treated same as the KASME in E-UTRAN, except that KASME_D is bound to the Relay Node device authentication and the EPS security context resulting from KASME_D is always stored in the Relay Node and not on a UICC.

Editor’s note: Details on rekeying are needed
7.6.2.2.2
Security Analysis

From the DeNB and rest of the network’s perspective, the Relay Node has been sucessfully authenticated and hence it is acceptable to authorise the DeNB to enable relay functionality, e.g. to send user keys to the Relay and allow it to send/receive user data.

The Relay Node is effectively a slave of the DeNB and network, and it can only serve users for whom the network provides keys. Because of this, there are no security concerns for the Relay Node regarding sending data to a network which has provided the keys used to communicate with that user.
Observations on network-to-RN authentication:

EPS AKA provides serving network authentication. It is assumed here that this is a desirable feature also for any authentication and key agreement protocol used between RN and network in a relay node security architecture.

Such a protocol should therefore prevent the RN attaching to a rogue network. For a rogue network, it has to be assumed that the attacker has control over the network entity to which the RN is attaching. Furthermore, in the threat scenarios in clause 2, it is assumed that the attacker may have control over an unprotected interface between RN and UICC, cf. e.g. the text for threat 2 “…taking a real UICC from a real RN and replacing it with a fake UICC for which the attacker has the root key” or threat 5 “Attacks on the interface between the RN and the UICC”. Under these assumptions, the protocol in solution 5 does not even have the weaker network authentication properties of UMTS AKA (as described in clause 5.1.2 of TS 33.102), as can be inferred from the following observations.

The protocol described in clause 7.6.2.2.1 has no provisions for protecting the UICC-RN interface. This means that it may be assumed that an attacker having access to this interface can transfer keys to the RN over this interface without the RN having the possibility to verify the origin of these keys. Or as a minimum, it may be assumed that eavesdropping on the UICC-RN interface is possible.

The formula in clause 7.6.2.2.1 for the new intermediate EPS key, from which all keys for AS and NAS protection are ultimately derived, is:

KASME_D = KDF (device_temp_key, KASME || network nonce || device_nonce)
Network_nonce and device_nonce are public information. By our assumptions, the attacker controlling a (rogue) network entity to which the RN is attaching can know KASME by eavesdropping on CK, IK sent on the interface between UICC and RN . So, the only value the attacker needs to know in addition for being able to compute KASME_D is device_temp_key. This parameter device_temp_key is sent to the RN as as part of the device_challenge encrypted as
Edevice_root_key (device_temp_key), i.e. without any replay protection. Hence, as the device_root_key is the public key of the RN and thus known to the attacker, the attacker can choose a device_temp_key of his own and send it to the RN in a device_challenge. Then the attacker can compute KASME_D and impersonate a genuine network. The attacker has two possibilities for obtaining the EPS AKA challenge RAND || AUTN to be sent to the RN from the rogue network: if the attacker can only eavesdrop on the UICC-RN interface the attacker obtains a valid RAND || AUTN from a genuine network in a response to an unprotected RN attach request; if the attacker can fully control the UICC-RN interface he can choose any challenge RAND || AUTN and transfer any keys CK, IK to the RN over the UICC-RN interface under his control.

The description of solution 5 also allows for the possibility that the same device_temp_key is used over several authentication procedures. Nothing is said about which side is allowed to update the device_temp_key. It would be normally so that the network side is in control of such updates. Then the attack in the previous paragraph fully applies. If the RN could somehow decide that the device_temp_key should be continued to be used (but how to signal this to the MME?) the attack would only work if the device_temp_key became known to the attacker. But if the device_temp_key was to be used only for a few authentications then the attack would become applicable again as soon as a new device_temp_key was due. And if the device_temp_key was to be used for many authentications then the attack would be prevented only if the initial device_temp_key was established by a genuine network and this temporary key remained secret over an extended period of time. These assumptions seem not plausible and should not have to be made on a newly defined 3GPP authentication and key agreement protocol.

The root cause of this weakness seems to be that the public key-based part of the protocol from clause 7.6.2.2.1 provides only RN-to-network authentication while EPS AKA, which does provide mutual authentication, is executed on the UICC, which is not securely bound to the RN platform. In more detail: the device_challenge lacks freshness and origin authentication. The EPS AKA challenge RAND || AUTN has both, freshness and origin authentication, through the use of the sequence number and the MAC. However, this does not help to mitigate the observed weakness because SQN and MAC in EPS AKA can only be checked by the UICC on behalf of the RN and the RN has no secure connection to the UICC.

Editor’s note: More analysis of the security of the protocol is needed

7.6.2.2.3
Attach flow

The flow shows the Attach procedures for a Relay Node using NAS messages used for EPS AKA enhanced to support the device authentication as described in this contribution. It is assumed that presenting the device identity upfront will not lead to any privacy issues for relay nodes. It is also assumed that the MME is responsible for forming the device_challenge and checking the revocation status of the Relay Node. This flow assumes that the RN has been already provisioned by the operator and has device_credentials that the MME will accept (more discussion of this issue is contained in the management of the RN section) but does not have an E-UTRAN security context that the MME is willing to use. The description of the flows only note where the new IEs are sent.

[image: image1.png]
1.
Relay sends Attach Request including device_credentials
2.
MME fetches RN subscription and authentication information from HSS
3.
MME sends Authentication Request including device_challenge
4.
Relay responds with Authentication Response including device_response. Relay and MME can also calculate KASME_D at this point
5.
MME sends NAS Security Mode Command to start using the security context based on KASME_D
6.
Relay responds with NAS Security Mode Complete
7.
MME sends Attach Complete
7.6.2.2.4
Changes to NAS messages

The following changes will be needed to NAS messages to support this solution for Relay Nodes.

Attach Request:

IE to carry device_credentials
Authentication Request
IE(s) to carry device_challenge = [Edevice_root_key (device_temp_key)], network_nonce
Authentication Response

IE(s) for device_response = device_nonce, device_res
End of pseudo CR
