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A.3.2	Calibration procedure
The relative power values of the measurement points will be transformed to absolute radiated power values (in dBm) by performing a range path loss calibration measurement. The system needs to be calibrated by using a reference calibration antenna with known gain values. In the range path loss calibration measurement, the reference antenna is measured in the same place as the DUT, i.e. the centre of the QZ, and the attenuation of the complete transmission path () from the DUT to the measurement receiver/BS simulator is calibrated out.
[image: A picture containing graphical user interface
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Figure A.3.2-1: Example FR1 TRP TRS calibration setup

The calibration measurement is repeated for each measurement path (two orthogonal polarizations and each signal path). The range path loss calibration measurement is performed in a two-step process including total path loss measurement and cable calibration.
Step 1: Cable calibration: the measurement of path loss LDE , by connecting the cable from D to E to the two ports of VNA, and measure the cable path loss.
Step 2: Total path loss measurement: the measurement of total path loss LBC;
1.	Place the reference calibration antenna (e.g. reference dipole) in the centre of the test zone aligned with θ polarization of the measurement antenna, connected to a VNA port E, with the other VNA port C connected to the input of the Switch box – in Figure A.3.2-1.
2.	Configure the proper output power of VNA.
3.	Measure the response LCE of each path from each θ polarization of the measurement antenna to the reference antenna in the centre of QZ.
4.	Repeat the steps 1 to 3 with the reference antenna aligned with the ϕ polarization of the measurement antenna.
Then, the , Where LDE is cable loss from D to E.  is the gain or efficiency of the calibration antenna at the frequency of interest. In TRP and TRS measurements point C is connected to the calibrated input/output port of measurement receiver.
This range path loss calibration procedure is common to both SA and EN-DC measurements.
This procedure shall be repeated on a regular basis, i.e., at least one per year, and any time the conducted and/or radiated signal paths have been affected, e.g., change in propagation conditions, replacement of cables, change in measurement antennas/probes, etc. It is recommended to perform this procedure rather frequently, e.g., monthly, to assess system stability.
<<< Skip Unchanged Sections >>>
A.3.7	Ripple test for Quiet Zone 
[bookmark: _Toc97741371][bookmark: _Toc47717856][bookmark: _Toc106114451][bookmark: _Toc114134411]A.3.7.1	General
The ripple test procedure is defined in this clause. Frequencies to be used for ripple test:

[bookmark: _Hlk96081654]Table A.3.7.1-1: Frequencies for FR1 ripple test
	NR FR1 Bands
	Range
	Test frequency (MHz)

	n71
	Low
	617MHz 

	n12, n17, n29, n14, n28
	
	722MHz

	n5, n8, n18, n20
	
	836.5MHz

	n50, n51, n74
	Mid
	1575.42MHz

	n3, n2, n25, n39
	
	1880MHz

	n1, n34, n65
	
	2132.5MHz

	n7, n30, n41, n40, n38, n90
	
	2450MHz

	n77, n78
	High
	3600MHz

	n79
	
	[4700MHz] 



[bookmark: _Toc97741372][bookmark: _Toc106114452][bookmark: _Toc114134412]A.3.7.2	Ripple test procedure
Unwanted reflections and support structure blockage cause a volumetric ripple to the field magnitude measured by or created by the measurement antenna as shown in Figure A.3.7.2-1, affecting every possible test point within a desired test volume. By rotating an omnidirectional antenna through the test volume as illustrated by the red line, this volumetric ripple may be probed to obtain an estimate of the measurement uncertainty due to this volumetric error. Note, however, that the volumetric ripple caused by multipath reflections is related to the wavelength and the relative path lengths of the direct and reflected paths to the measurement antenna, and is not inherently a function of the test volume. As illustrated in Figure A.3.7.2-1(left), when the wavelength is relatively large compared to the test volume, it may not be possible to probe the entire range of errors that may actually exist within the test volume. Doing so would require probing an area larger than the test volume in order to accurately estimate the error within the test volume. Even when the test volume is several wavelengths in size, a given evaluation of the ripple may not completely caliper the worst-case error conditions within the test volume (Figure A.3.7.2-1 (right)).
[image: ]
Figure A.3.7.2-1: Volumetric ripple and 20cm Phi axis cut
Conversely, field non-uniformities in the test volume caused by amplitude taper of the measurement antenna and shadowing of portions of the test volume by support structure are geometric in nature and relate directly to the size of the test volume and the related factors of the measurement antenna and support structure. This test procedure attempts to capture the impact of these effects to within the practical limits of the available test volume and test equipment expected in the lab.
The quiet zone ripple test covers two cylindrical test volumes, one for handsets and smaller devices, with or without head and/or hand phantoms, and a larger volume for testing up to notebook PC sized devices.  The smaller cylinder is 30 cm in diameter, concentric to the phi axis, and 30 cm tall along the phi axis, centered on the intersection of the theta and phi axes.  The larger cylinder is 50 cm in diameter, concentric to the phi axis, with the base of the cylinder coincident with that of the smaller cylinder and a height of 36 cm along the phi axis.  The test consists of a set of individual ripple tests about the phi- and theta-axes utilizing both electric dipoles and magnetic loop dipoles to generate uniform omnidirectional dipole-like patterns about the axis of rotation. Data is measured on the co-polarized measurement antenna element for each corresponding test. 
For the phi-axis ripple test, each reference antenna is oriented with its axis parallel to the phi axis at a total of three positions, offset 15 cm perpendicular to the phi axis with 0 cm and ±15 cm offsets parallel to the phi axis. At each position, the phi axis is rotated 360° to record the ripple. Each position is labeled by its radial and axial offset from the center position, (R, Z). See Figure A.3.7.2-2 for additional information.

[image: ]
Figure A.3.7.2-2: Phi-axis test geometry
For the notebook sized test volume, three additional test positions are added to the phi-axis test in order to cover the larger test cylinder.  These positions are offset 25 cm perpendicular to the phi axis with -15, 0, and +21 cm offsets parallel to the phi axis, as shown in Figure A.3.7.2-3.
[image: ]
Figure A.3.7.2-3: Phi-axis test geometry for the notebook sized test volume
For the theta-axis ripple test, each reference antenna is oriented with its axis parallel to the theta axis at a total of eight positions on the surface of the cylinder defined above. Defining Cartesian coordinates (X, Y, Z) with the Z-axis along the phi-axis, the Y-axis along the theta-axis, and the measurement antenna moving in the XZ plane relative to the reference antenna used for the ripple test, the test positions are given as (±15 cm, 0, ±15 cm) and (0, ±15 cm, ±15 cm), relative to the center of the test volume as shown in Figure A.3.7.2-4.  At each position, the theta axis is rotated over as much of 360° as supported by the system to record the ripple (e.g. ±165°).  For systems that can only move theta in the range of 0-180° or less, the phi axis may be rotated 180° and a second cut measured to meet or exceed the ±165° range.  Each position is labeled by its (X, Y, Z) offset from the center position.

[image: ]
Figure A.3.7.2-4: Theta-axis test geometry
For the notebook sized test volume, eight additional test positions are added to the theta-axis test in order to cover the larger test cylinder.  These positions are given as (±25 cm, 0, -15 cm), (±25 cm, 0, +21 cm), (0, ±25 cm, 0, -15 cm), and (0, ±25 cm, +21 cm), as shown in Figure A.3.7.2-5.
[image: ]
Figure A.3.7.2-5: Theta-axis test geometry for the notebook sized test volume
For each polarization and band, repeat the following steps:
For the phi-axis ripple test:
1. Place the measurement antenna and any associated theta-axis positioner at theta = 90° such that the measurement antenna is boresight with the center of the quiet zone.  The measurement antenna should be at the same separation distance to be used for actual pattern measurements. This distance must be at least the minimum measurement distance away from the center of the quiet zone as defined in clause A.3.4.  Select the polarization of the measurement antenna to correspond to the polarization (theta or phi) to be tested.
2. Mount the reference antenna to the phi-axis positioner using a low permittivity dielectric support. Use the sleeve dipole for the theta polarization and the loop for the phi polarization. At each of the specified offset positions, ensure that the axis of the reference antenna is parallel to the phi axis of rotation.
3. Attach a signal source to a coaxial cable feeding the measurement antenna and set the frequency to the appropriate channel. Set the amplitude to a level appropriate for the measurement receiver. Connect a measurement receiver to the reference antenna. The received signal during the ripple test measurement should be at least 40 dB above the noise floor or noise errors greater than 0.1 dB will result. Ensure that all coaxial cables are dressed to minimize effects upon the measurement results.
4. Rotate the reference antenna about the phi axis and record the signal received by the measurement antenna at resolution sufficient to ensure smoothly varying curves for a total of 360°.
5. Record the measurement results in a format suitable for calculating the ripple test metric.
6. Record test parameters including: (a) the distance between the measurement and reference antennas, (b) cable losses and other losses associated with the measurement setup, (c) the power of the signal source at the reference antenna connector, and (d) the noise level of the receiver with no signal applied.
7. Repeat steps 1 through 6 above for each reference antenna (polarization and band) for each of the required test positions.  In order to accommodate reference positioning in the lower portion of the quiet zone, support materials with a dielectric constant less than 1.2 may be removed to a maximum distance of 25 cm outside the quiet zone for the tests that require additional clearance.

For the theta-axis ripple test:
1. Place the measurement antenna such that it is boresight with the center of the quiet zone.  The measurement antenna should be at the same separation distance to be used for actual pattern measurements. This distance must be at least the minimum measurement distance away from the center of the quiet zone as defined in clause A.3.4.  Select the polarization of the measurement antenna to correspond to the polarization (theta or phi) to be tested.
2. Mount the reference antenna in the quiet zone using a low permittivity dielectric support and such that rotating the theta positioner will cause the measurement antenna to rotate relative to the reference antenna. Use the sleeve dipole for the phi polarization and the loop for the theta polarization. At each of the specified offset positions, ensure that the axis of the reference antenna is parallel to the theta axis of rotation.
3. Attach a signal source to a coaxial cable feeding the measurement antenna and set the frequency to the appropriate channel. Set the amplitude to a level appropriate for the measurement receiver. Connect a measurement receiver to the reference antenna. The received signal during the ripple test measurement should be at least 40 dB above the noise floor or noise errors greater than 0.1 dB will result. Ensure that all coaxial cables are dressed to minimize effects upon the measurement results.
4. Rotate the reference antenna about the theta axis and record the signal received by the measurement antenna at resolution sufficient to ensure smoothly varying curves for a total of at least ±165° or the equivalent (e.g. 0-360°).  For systems that are unable to rotate a full ±165°, the reference antenna may be mounted to the phi axis and two separate theta cuts from 0 to165° may be taken, after rotating the phi axis 180° between the first and second cut.
5. Record the measurement results in a format suitable for calculating the ripple test metric.
6. Record test parameters including: (a) the distance between the measurement and reference antennas, (b) cable losses and other losses associated with the measurement setup, (c) the power of the signal source at the reference antenna connector, and (d) the noise level of the receiver with no signal applied.
7. Repeat steps 1 through 6 above for each reference antenna (polarization and band) for each of the required test positions.  In order to accommodate reference positioning in the lower portion of the quiet zone, support materials with a dielectric constant less than 1.2 may be removed to a maximum distance of 25 cm outside the quiet zone for the tests that require additional clearance.
The ripple test shall be repeated when the RF/propagation conditions inside the chamber have changed, e.g., the chamber has been disassembled and reassembled, portions of the absorber been replaced, measurement antennas/probes been replaced, positioning system been replaced, etc. 
<<< Skip Unchanged Sections >>>
[bookmark: _Toc516760286][bookmark: _Toc68601416][bookmark: _Toc97741396][bookmark: _Toc106114477][bookmark: _Toc114134437][bookmark: _Toc130573994][bookmark: _Toc155186558][bookmark: _Toc163587614]A.4.2.8	Quality of quiet zone
The uncertainty contribution due to unwanted reflections and obstructions within the anechoic chamber, including imperfect absorber treatments and the impact of positioning equipment support structure, is determined from data acquired using the ripple test methodology in clause 7.4A.3.7. This data consists of single-axis pattern cuts that represent the sum of direct and reflected rays from a highly symmetrical omnidirectional radiation pattern measured at various points throughout the test volume. The data must be measured in sufficient spatial or angular resolution to accurately capture the peaks and nulls of the pattern to within a small fraction of the overall ripple contribution. In general, the worst-case peak-to-null ripple will reflect the potential error in a peak EIRP or EIS measurement for an omnidirectional DUT pattern located anywhere within the test volume. Note however that nulls in the pattern can exhibit considerably larger errors due to reflected signals being stronger than the line-of-sight signal from the null.
When measuring the range path loss in Stage 1 using a dipole pattern, the associated measurement uncertainty may be determined from the peak-to-null ripple, after relative path loss compensation, of a single radial offset ripple test, where the range is configured as for range calibration (e.g. with any extraneous support structure removed) using a rectangular distribution.
For spherically integrated quantities such as TRP and TRS, the peak-to-null ripple would overestimate the measurement uncertainty due to the inherent averaging of the various peaks and nulls as the spherical pattern is integrated. In this case, the surface standard deviation (SSD) [9] is used to obtain a statistical representation of the expected impact of ripple on the integrated power from an isotropic radiator placed anywhere within the test volume. Due to the impracticality of maintaining a constant path loss reference between individual ripple test cuts, each resultant pattern is treated individually and then the worst case SSD result is chosen as the standard uncertainty of the quiet zone.
For the phi-axis ripple tests, the pattern can be considered an equatorial (theta = 90°) cut of the isotropic pattern where every point has equal weighting on an evenly spaced spherical surface.  Thus, the standard deviation of the single cut should be equivalent to the standard deviation of the entire spherical surface.  Defining  as the th ripple measurement point in linear power units , and  as the average of all   values in the associated ripple test, then the standard deviation of the corresponding cut is given by: 

On the theta-axis ripple test each ripple test cut can be considered as a great circle cut through an isotropic pattern with the symmetrical distortions that would be produced by revolving the pattern about the phi (0-180°) axis. Thus, it becomes apparent that ripple near the poles impacts a smaller total surface area on the sphere than that near theta = 90º and 270°. In this case, sin(theta) weighting is used to generate the spherical surface weighted standard deviation as:

Note that this equation simplifies to the previous equation when theta = 90°, so the two formulations are in fact the same, regardless of which orientation of the ripple test is used.
The standard uncertainty for the quiet zone ripple contribution to the TRP/TRS measurement is then given by the maximum SSD from all of the ripple test measurements.
<<< END OF CHANGES >>>
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