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Introduction
This contribution is a follow-on to [1].  Simulation results are provided against potential Tx emission requirements to characterize the achievable output power when an NR-U waveform is applied to a PA designed for WiFi at 5 GHz.  This contribution provides an update to the results from [1] by reducing the front-end loss assumption from 4.4 dB to 3.5 dB, by including higher order modulation simulated with an EVM distortion budget for 64QAM and 256QAM, and by presenting the results of a study on the benefits of introducing a guard band in the inter-carrier scenario to assist in meeting emissions.
Discussion
The transmit waveform, PA and front-end loss calibration, and emission requirement assumptions are listed below.  Simulation results are then presented.
Interlaced waveform
A single 20, 40, 60, or 80 MHz channel was simulated.  For uplink PUSCH and PUCCH transmission with uniform spacing, the following PRB-based interlace design is supported for the case of 20 MHz carrier bandwidth
15 kHz SCS: M=10 interlaces with N=10 or 11 PRB’s per interlace
30 kHz SCS: M=5 interlaces with N=10 or 11 PRB’s per interlace
These definitions are extended for the wider channels.  Other options for non-uniform spacing have been considered in RAN1 but are outside of the scope of this contribution.  Sub-carrier spacing values of 15 kHz and 30 kHz are evaluated as are CP-OFDM and DFT-S-OFDM waveform types.  QPSK, 16QAM, 64QAM, and 256QAM modulation are also included.  Baseband WOLA shaping is modeled with 25% CP overlap, LO and IQ imbalance of -28 dBc, and CIM3 of -60 dBc are included, but no other baseband or transceiver artifacts such as CFR or DPD at the moment.  
PA and FE loss calibration
Since this study is intended for PC5 and the possibilities to reuse PA’s designed for WiFi, the PA in the simulation was calibrated against WiFi requirements according to [2] with an assumption of 3.5 dB additional front-end loss to reach the antenna port from the transmit module output.  Compared to the assumption in [1], the front-end loss is reduced by 0.9 dB due to a shorter trace loss assumption.  For this particular PA, the calibration offset against a WiFi reference is 2 dB.
Emission requirements
Emission requirements have not yet been agreed for NR-U.  However, the following were checked by simulation.    These simulations only include the PA but in some instances for the higher order modulations, also model effects of the transceiver.  For emission requirements dominated by non-linear response of the transceiver and PA such as ACLR and SEM, both the transceiver and PA are modeled by a single lumped model.  Specifically, the PA is used to model both transceiver and PA nonlinearities rather than treating them independently, but with the addition of spurious terms such as LO, IQ image, and counter-IM.  However, for EVM which is especially important for higher order modulation such as 64QAM and 256QAM where the power backoff (MPR) is larger, other impairments in the transmitter chain including phase noise and transmitter nonlinearity become significant so that modeling the entire chain with a PA is no longer appropriate.  For these cases, the EVM distortion is budgeted between the PA and the transceiver with improved performance relative to QPSK required.  The additional impairments at the levels shown below in the budget have also been included in the simulation.  Alternatively, the PA could have been simulated against its distortion budget to determine its required power backoff but in this case, all identified aspects in the budget were directly included in the simulation and backoff determined to meet the entire system EVM rather than only the portion allocated to the PA.
While agreement on these has not yet been achieved, the general requirements that were simulated against include the following
· ACLR:  25.5, 27, and 30 dB
· SEM:  NR general SEM according to Table 6.5.2.2-1 of TS 38.101-1, IEEE 802.11ax Tx mask (for 60 MHz, the 40 MHz mask was scaled while maintaining a 1 MHz transition region from passband to first attenuation region), ETSI EN 301 893 Tx mask 
· General spurious emissions:  -30 dBm/MHz at offsets greater than channel bandwidth + 5 MHz
· EVM:  According to Table 6.4.2.1-1 of TS 38.101
· QPSK = 17.5%, 16QAM = 12.5%, 64QAM = 8 %, 256QAM = 3.5%
· EVM distortion budget [3],[4] for 64QAM and 256QAM
	Non-linearity source
	256QAM
	64QAM

	
	%
	C/N
	%
	C/N

	PA
	1.50%
	36.5
	4.00%
	28.0

	Transmitter nonlinearity
	1.34%
	37.4
	3.37%
	29.5

	LO Phase noise
	1.78%
	35.0
	2.24%
	33.0

	IQ Image
	2.24%
	33.0
	5.62%
	25.0

	
	
	
	
	

	Transmitter total
	3.50%
	29.1
	8.00%
	21.9



Simulation results
[image: ]
A subset of the results is also plotted below for greater visibility.

It is observed from the table and figure above that the highest maximum transmit powers (smallest MPR) occur for QPSK modulation against general requirements while the lowest maximum transmit powers (largest MPR) occur for EVM-limited 256QAM modulation.  When 802.11ax and/or ETSI Tx masks are added, the available transmit power is reduced.  It is also clear that higher order modulations require additional backoff to meet EVM.  For 64QAM and 256QAM, EVM seems to be the limiting requirement rather than ACLR or any of the emission masks.  For the waveforms simulated (interlace-0 and fully allocated), there is no single waveform that is able to achieve 0 dB MPR for full 20 dBm PC5 output power.  However, there may exist intermediate “inner” waveforms able to reach full power for QPSK modulation and general emission requirements.  Note that the general requirements referred to in this paper include ACLR of 25.5 dB and general NR SEM.  Other alternatives for ACLR and general Tx requirements are also currently under discussion that would lead to a reduction of maximum output power (increase in MPR) compared to what is shown in this contribution.
Inter-carrier guard bands
The simulation results above assume a minimum guard band at the edge of the carrier according to NR Table 5.3.3-1 of TS 38.101, duplicated below for convenience.
Table 5.3.3-1: Minimum guardband for each UE channel bandwidth and SCS (kHz)
	SCS (kHz)
	5 MHz
	10 MHz
	15 MHz
	20 MHz
	25 MHz
	30 MHz
	40 MHz
	50 MHz
	60 MHz
	80 MHz
	90 MHz
	100 MHz

	15
	242.5
	312.5
	382.5
	452.5
	522.5
	592.5
	552.5
	692.5
	N/A
	N/A
	N/A
	N/A

	30
	505
	665
	645
	805
	785
	945
	905
	1045
	825
	925
	885
	845

	60
	N/A
	1010
	990
	1330
	1310
	1290
	1610
	1570
	1530
	1450
	1410
	1370



However, it may be possible to improve the system performance by trading off RB’s for power.  In other words, if a larger effective guard band is created by not scheduling RB’s at the edge of the channel for uplink, then the output power for the remaining RB’s can be increased while meeting the same emission requirements.  A simulation study was conducted to quantify the increase in achievable maximum output power as the guard band is increased.  Since guard bands are relevant only the emission requirements, QPSK was simulated with CP-OFDM, 15 kHz SCS, in a 20 MHz channel.  An interlace-0 waveform was used with 11 RB’s spanning RB’s {0, 10, 20, 30, … 100}.  The starting RB was swept from 0 to 5 with resulting guard band as shown below
	RBstart
	Last RB
	Lower edge guard band
	Upper edge guard band
	Smallest guard band = min(lower, upper)

	0
	100
	452.5
	1352.5
	452.5

	1
	101
	632.5
	1172.5
	632.5

	2
	102
	812.5
	992.5
	812.5

	3
	103
	992.5
	812.5
	812.5

	4
	104
	1172.5
	632.5
	632.5

	5
	105
	1352.5
	452.5
	452.5


 
The figure below shows the achievable maximum output power as a function of RBstart and guard band against various emission criteria.  It can be seen that there is no benefit to be realized by increasing the guard band for this waveform simulated.  

Figure 1.  The effect of introducing additional guard band for a single carrier interlace-0 transmission.
Note that the discussion here is limited to interlace-0 inter-carrier guard bands since only a single carrier is simulated.  In-carrier or intra-carrier guard bands are a different topic requiring a multi-carrier study.  
Conclusion
Additional simulation results are provided to illustrate the output power achievable with single carrier NR-U waveforms to meet emission requirements reusing a PA originally designed for WiFi applications.  The results show the impact of various emission requirements such as ACLR, SEM, and EVM on the achievable maximum output power to be possibly included in an MPR specification for a PC5 20 dBm power class.  The maximum output power found for the waveforms simulated was approximately 19.3 dBm, so short of the 20 dBm PC5 requirement.  Maximum output power was found to decrease (MPR increase) as the waveforms become more challenging with CP-OFDM, higher order modulation, etc., and as emission requirements become more stringent than the general SEM and 25.5 dB ACLR.  The maximum output power achievable while meeting EVM for 256QAM was found to be as low as 12.5 dBm for the waveforms simulated.
A simple study was also conducted on the effect of an additional guard band on the ability to meet emissions and deliver higher maximum output power.  For the interlace-0 waveform, it was found that an increase of guard band from the minimum of 452.5 kHz to 812.5 kHz, increasing the guard band by 2 RB’s, was not beneficial.  Therefore, at least for the waveform studied, there is no justification to increase the inter-carrier guard band above the minimum NR specified guard band.
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Mod 

Order

Min 

(EVM,ACLR,

SEM,Spur)

Min 

(*,802.11) Min (*,ETSI)

full CPOF 20 15000 2 17.3 16.9 16.9

full CPOF 20 15000 4 16.8 16.8 16.8

full CPOF 20 15000 6 15.3 15.3 15.3

full CPOF 20 15000 8 12.6 12.6 12.6

full DFTS 20 15000 2 19.2 18.7 18.8

full DFTS 20 15000 4 18.5 18.2 18.1

full DFTS 20 15000 6 17.3 17.3 17.3

full DFTS 20 15000 8 13.2 13.2 13.2

full CPOF 40 15000 2 17.3 16.8 16.8

full CPOF 40 15000 4 16.8 16.7 16.7

full CPOF 40 15000 6 15.3 15.3 15.3

full CPOF 40 15000 8 12.5 12.5 12.5

full DFTS 40 15000 2 19.1 18.2 18.2

full DFTS 40 15000 4 18.4 17.8 17.8

full DFTS 40 15000 6 17.2 17.2 17.2

full DFTS 40 15000 8 13.1 13.1 13.1

int0 CPOF 20 15000 2 17.2 17.0 16.4

int0 CPOF 20 15000 4 17.2 16.8 16.3

int0 CPOF 20 15000 6 16.0 16.0 16.0

int0 CPOF 20 15000 8 14.1 14.1 14.1

int0 DFTS 20 15000 2 18.5 18.5 18.0

int0 DFTS 20 15000 4 18.0 18.0 17.5

int0 DFTS 20 15000 6 17.2 17.2 17.2

int0 DFTS 20 15000 8 15.5 15.5 15.5

int0 CPOF 40 15000 2 17.1 17.1 16.6

int0 CPOF 40 15000 4 17.2 17.0 16.6

int0 CPOF 40 15000 6 16.1 16.1 16.1

int0 CPOF 40 15000 8 14.0 14.0 14.0

int0 DFTS 40 15000 2 18.4 18.4 18.0

int0 DFTS 40 15000 4 18.0 18.0 17.7

int0 DFTS 40 15000 6 17.1 17.1 17.1

int0 DFTS 40 15000 8 15.5 15.5 15.5

full CPOF 20 30000 2 17.4 17.1 17.2

full CPOF 20 30000 4 16.7 16.7 16.7

full CPOF 20 30000 6 14.9 14.9 14.9

full CPOF 20 30000 8 12.8 12.8 12.8

full DFTS 20 30000 2 19.3 18.9 18.9

full DFTS 20 30000 4 18.3 18.3 18.3

full DFTS 20 30000 6 16.9 16.9 16.9

full DFTS 20 30000 8 12.7 12.7 12.7

int0 CPOF 20 30000 2 17.2 17.1 16.7

int0 CPOF 20 30000 4 17.0 17.0 16.9

int0 CPOF 20 30000 6 15.6 15.6 15.6

int0 CPOF 20 30000 8 12.6 12.6 12.6

int0 DFTS 20 30000 2 18.4 18.4 18.1

int0 DFTS 20 30000 4 17.9 17.9 17.6

int0 DFTS 20 30000 6 16.0 16.0 16.0

int0 DFTS 20 30000 8 12.7 12.7 12.7

int0 DFTS 40 30000 4 18.0 18.0 17.6

full DFTS 40 30000 2 19.2 18.8 18.8

int0 DFTS 40 30000 2 18.4 18.4 18.0

full CPOF 40 30000 8 12.6 12.6 12.6

int0 CPOF 40 30000 8 13.1 13.1 13.1

full CPOF 40 30000 6 15.4 15.4 15.4

int0 CPOF 40 30000 6 15.8 15.8 15.8

full CPOF 40 30000 4 16.8 16.8 16.8

int0 CPOF 40 30000 4 17.2 17.0 16.6

full CPOF 40 30000 2 17.3 16.9 16.9

int0 CPOF 40 30000 2 17.2 17.2 16.7

int0 CPOF 60 30000 2 17.2 17.1 16.6

full CPOF 60 30000 2 17.3 16.7 16.8

int0 CPOF 60 30000 4 17.3 17.3 16.7

full CPOF 60 30000 4 16.8 16.7 16.8

int0 CPOF 60 30000 6 16.0 16.0 16.0

full CPOF 60 30000 6 15.4 15.4 15.4

int0 CPOF 60 30000 8 14.1 14.1 14.1

full CPOF 60 30000 8 12.7 12.7 12.7

int0 DFTS 60 30000 2 18.4 18.2 17.7

full DFTS 60 30000 2 19.1 18.4 18.4

int0 DFTS 60 30000 4 18.1 17.8 17.4

full DFTS 60 30000 4 18.5 17.8 17.8

int0 DFTS 60 30000 6 17.3 17.3 17.3

full DFTS 60 30000 6 17.3 17.3 17.3

int0 DFTS 60 30000 8 15.5 15.5 15.5

full DFTS 60 30000 8 12.5 12.5 12.5

int0 CPOF 80 30000 2 17.2 17.1 16.6

full CPOF 80 30000 2 17.3 16.7 16.7

int0 CPOF 80 30000 4 17.2 17.1 16.7

full CPOF 80 30000 4 16.8 16.7 16.8

int0 CPOF 80 30000 6 16.0 16.0 16.0

full CPOF 80 30000 6 15.3 15.3 15.3

int0 CPOF 80 30000 8 14.1 14.1 14.1

full CPOF 80 30000 8 12.5 12.5 12.5

int0 DFTS 80 30000 2 18.4 18.4 18.0

full DFTS 80 30000 2 19.1 18.4 18.2

int0 DFTS 80 30000 4 18.0 18.0 17.7

full DFTS 80 30000 4 18.4 17.8 17.8

int0 DFTS 80 30000 6 17.5 17.5 17.5

full DFTS 80 30000 6 17.2 17.2 17.2

int0 DFTS 80 30000 8 15.6 15.6 15.6

full DFTS 80 30000 8 12.4 12.4 12.4


