[bookmark: _Ref452454252]3GPP TSG-RAN WG3 Meeting #123bis	R3-241843
Changsha, China, 15 – 19 April, 2024


Agenda item:	11.2
Source:	Nokia, Telecom Italia
Title:	(TP for TR 38.743) AI/ML Network Slicing for Rel-19 
Document for:	Text Proposal
1	Introduction
One of the objectives of the new study item “Study on enhancements for Artificial Intelligence (AI)/Machine Learning (ML) for NG-RAN” (RP-240323) is to further investigate AI/ML functionality in the RAN through two new use cases, studied under existing NG-RAN interfaces and architecture. AI/ML Slicing is one of the use cases to be studied in Rel-19. Below, we provide our views related to the use case description associated to AI/ML slicing as well as our views with respect to the solutions and standardization impacts. We also provide a TP for TR 38.743 in annex of this paper.
2	Background on network slicing 
2.1	Overall background

Network Slicing is a concept that enables differentiated treatment of communication services depending on each customer’s requirements. With slicing, it is possible for Mobile Network Operators (MNO) to consider customers as belonging to different tenant types with each having different service requirements that govern in terms of what slice types each tenant is eligible to use based on Service Level Agreement (SLA) and subscriptions. This enables to run different services that have different requirements with respect to latency, reliability, throughput or mobility patterns. Network slices may be used for serving different customers separately based on a Service Level Agreement (SLA). Different network slices may have different SLAs, which is a contract between a provider of a service and a customer (tenant). An SLA defines services the provider offers and the level of performance of the offered services and may include different parameters relating to service such as a bit rate, latency, a packet error rate as well as resource management. UE traffic for different slices is handled by different PDU sessions set up towards the UE. The different network slices in the network can be realised through scheduling and through different L1/L2 configurations. In NG-RAN, different slices may provide differentiated treatment of traffic. The network can support a large number of slices (hundreds).

Observation 1: In NG-RAN the different slices support differentiated treatment of traffic, and a UE may support multiple slices simultaneously. 

According to TS 38.300, NG-RAN supports policy enforcement between slices according to the SLA in place. An NG-RAN node may decide the best policy to apply in order to satisfy the SLA for each of its supported slices. 

NG-RAN provides both shared slice resources and slices with resource isolation. Resource isolation can be supported through RRM policies and other mechanisms that would avoid that shortage of shared resources in a slice would compromise the SLA of other slices. 

Observation 2: NG-RAN may apply the best RRM policy in order to meet a given SLA.

NG-RAN, by network implementation, also supports QoS differentiation within a slice e.g., by enforcing a UE-Slice-Maximum Bit Rate leading to rate limitation of non-GBR bearers.

Observation 3: NG-RAN supports QoS differentiation within a network slice.

A UE can support up to 8 slices simultaneously.

Observation 4: A UE can support up to 8 slices simultaneously. 

2.2	Performance verification for slices
In Rel.18, UE Performance feedback is introduced as a mechanism to provide a measured UE Performance from a target node to a source node, in terms of an Average UE Throughput in UL or DL direction, Average Packet Delay and Average Packet Loss DL, of a handed over UE. However, the reported UE performance is measured to be the total average UE Performance. In practice, a UE may support multiple slices. Each slice is associated with one or more PDU session that provides the path for user data transfer. Each PDU session may support a number of QoS flows, which may receive different treatment within the slice. However, reporting the average UE Performance does not provide sufficient information on the impact of the handover on the performance on different PDU sessions (slices) or QoS flows.

Proposal 1: Enhance measured UE Performance reporting to also provide finer granularity of reporting per PDU session or per QoS flow. 
2.3	Resource management for slices 

The traffic load per network slice in a cell will in many scenarios fluctuate over time, implying that the initial radio resources allocated to a network slice may not always satisfy the traffic needs. This may lead to a network slice being either overloaded or underutilized. Overloading may cause congestion in the control plane and the user plane traffic of a network slice, leading to degraded network slice performance and potentially violating SLAs. Conversely, over-allocation of resources to a lightly loaded network slice may compromise resource efficiency. To address these challenges, several optimization actions may be initiated by a gNB: 

·   Inter-slice load balancing: This process involves offloading some UEs from congested network slices in a cell to other less congested network slices within the same cell. This can be achieved by local reallocation of slice resources within the cell. This strategy aims to distribute the load across network slices in scenarios where this is possible, thereby preventing any single slice from becoming overloaded (and it done by implementation internally at the network node).
· Inter-cell load balancing: This process involves offloading of some UEs to less congested network slices of neighbouring cells if all network slices in a cell are overloaded. The gNB achieves this load balancing by e.g. inter-frequency handover. This strategy aims to distribute the load across cells supporting the same network slice, thereby preventing any single slice from becoming overloaded. 


However, existing network slice load optimization strategies based on current or past network slice load, may fall short due to rapid fluctuations in traffic load and radio resource status. This is especially true in high-mobility scenarios with numerous connections, leading to frequent handovers between network slices of neighbouring cells. Such scenarios can result in network slice overload and potential SLA violations. Moreover, when offloading UEs from a congested network slice to a target network slice, the target network slice may become overloaded with incoming traffic and hence difficult to determine whether the service performance after the offloading action meets the desired SLA requirements (e.g., bit rate, latency, packet error rate and/or service level).
To address these challenges, AI/ML models can be deployed to predict network slice load in a cell, thereby enhancing service performance. These AI/ML models leverage data from UEs, serving gNB, and neighbouring gNBs, including measurements, feedback, and historical data. The resulting predictions can improve service performance and user experience in a network slice. 

Proposal 2: Enhance predicted radio resources information to include predicted load per cell per slice.

We provide a practical scenario to illustrate the benefits of network slice load prediction together with the impact of corresponding network slice optimization actions initiated by the gNB, as illustrated in Figure 1. The gNB may initiate one or more network slice optimization actions as required.
 
Upon instantiation of the network slices, namely, network slices 1, 2 and 3, the OAM allocates 30%, 50% and 20% radio resources to each network slice respectively. Suppose the AI/ML model for network slicing predicts that at time T + n, the traffic load on network slice 1 will be high (red), network slice 3 will be medium (yellow) and network slice 2 will be low (green). In response to this prediction, gNB may initiate load balancing action among the network slices or among cells. This action may involve offloading UEs from network slice 1 to network slice 2, thereby reducing the load on network slice 1 and increasing the load on network slice 2 before time T + n.




[bookmark: _Ref162905976]Figure 1 Network slice load prediction and the impact of corresponding network slice optimization actions initiated by a gNB

Proposal 3: Enable neighbouring nodes to exchange predicted radio resources per slice granularity. 

2.4	Energy consumption of slices

TS 22.261 provides service requirements on energy saving related aspect to enable verticals and operators to save energy. Specifically, the following energy-related requirements are described for Energy Related Information as Service Criteria (TS 22.261 clause 6.15a.2.2):
· Subject to user consent, operator policy and regulatory requirements, the 5G system shall be able to provide means to operate part or the whole network according to energy consumption requirements, which may be based on subscription policies or requested by an authorized 3rd party
· Subject to user consent and operator policy, 5G system shall be able to provide means to modify a communication service based on energy related information criteria based on subscription policies.
TS 22.261 clause 6.15a.4.2 also describes requirement for Monitoring and Measurement aiming at improving network energy saving at slice level: “Subject to operator's policy, the 5G network shall support energy consumption monitoring at per network slice and per subscriber granularity”. Although SA1 doesn’t require external real-time visibility of the energy consumption per network slice, their requirement provides an additional motivation to enable the gNB to perform energy saving actions at slice level. 
Proposal 4: RAN3 to study AI/ML-based solutions for slicing optimization enabling the network to take into account energy-related information per network slice in line with SA1’s requirements.

Depending on the traffic and the applicable QoS, the traffic-handling requirements may be less or more stringent. Consequently, a slice may become more energy demanding because the reserved time and frequency resources are fully used. For example, depending on the QoS (higher QoS, with more stringent traffic-handling requirements) provided by the slice, the energy consumed may be higher than for other slices providing a different QoS (lower QoS, with less stringent traffic-handling requirements). This may be especially true if time/frequency resources allocated to the slice are getting more fully loaded since a node may need to transmit at higher power in order to accommodate the additional traffic. RAN internally therefore has some means to optimize an energy consumption associated to a slice. 

Similarly to the node level measured Energy Cost introduced in Rel-18 which measures a node-level energy consumption, an Energy Cost reflecting an energy consumption of a slice in a node can be defined. Some examples could be an Energy Cost per slice per node, Energy Cost per slice per cell or Energy Cost per slice per UE. 

Proposal 5: To meet the Energy Efficiency requirements in TS 22.261 we propose to optimize the energy consumption of slice operation within the RAN reflected by the Energy Cost metric by enabling the RAN to take a number of actions, such as moving of UEs between frequency layers or reallocation of slice resources for one or more UEs.

3.	Solutions and standards impacts for Rel-19 AI/ML support for slicing
3.1	Locations for AI/ML Training and AI/ML Inference

In order to stay aligned with AI/ML support introduced for the Rel-18 use cases, we propose to focus on the following two solutions for the slicing use case to be studied in Rel-19:
· AI/ML Model Training is located in the OAM and AI/ML Model Inference is located in the NG-RAN node
· AI/ML Model Training and AI/ML Model Inference are both located in the NG-RAN node

In case of CU/DU split architecture, similarly to AI/ML support for Rel-18 use cases, two solutions can be considered:
· AI/ML Model Training is located in the OAM and AI/ML Model Inference is located in the gNB-CU
· AI/ML Model Training and AI/ML Model Inference are both located in the gNB-CU

Proposal 6: Consider two solutions for AI/ML Network Slicing 
· AI/ML Model Training is located in the OAM and AI/ML Model Inference is located in the gNB (gNB-CU in case of split architecture)
· AI/ML Model Training and AI/ML Model Inference are both located in the gNB (gNB-CU in case of split architecture)

In case of AI/ML model trained in the OAM, the gNB is also allowed to continue training the model.
3.2	AI/ML Model Training in OAM
We here provide an overview of a solution where a gNB makes decisions related to AI/ML slicing using an AI/ML model trained from OAM.






Figure 2 AI/ML Model Training in OAM, AI/ML Model Inference in the NG-RAN
Step 0: NG-RAN node 2 is assumed to have an AI/ML model optionally, which can provide NG-RAN node 1 with input information.
Step 1: NG-RAN node 1 configures the measurement information on the UE side and sends configuration message to UE to perform measurement procedure and reporting.
Step 2: The UE collects the indicated measurement(s), e.g., UE measurements related to RSRP, RSRQ, SINR of serving cell and neighbouring cells.
Step 3: The UE sends the measurement report message(s) to NG-RAN node 1.
Step 4: NG-RAN node 1 further sends UE measurement reports together with other input data for Model Training to OAM. 
Step 5: NG-RAN node 2 (assumed to have an AI/ML model optionally) also sends input data for Model Training to OAM.
Step 6: Model Training at OAM. Required measurements and input data from other NG-RAN nodes are leveraged to train AI/ML models for network slicing.
Step 7: OAM deploys/updates AI/ML model into the NG-RAN node(s). The NG-RAN node can also continue model training based on the received AI/ML model from OAM.
Note: This step is out of RAN3 Rel-19 scope.
Step 8: UE sends UE measurement report(s) to NG-RAN node 1.
Step 9: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model inference of AI/ML-based network slicing. 

Step 10: Based on local inputs of NG-RAN node 1 and received inputs from NG-RAN node 2, NG-RAN node 1 generates model inference output(s) (e.g., predicted radio resource status information per cell per slice, predicted Energy Cost per slice per cell, etc.)
Step 11: NG-RAN node 1 sends Model Performance Feedback to OAM if applicable.
Note: This step is out of RAN3 scope.
Step 12: NG-RAN node 1 executes Network Slicing actions according to the model inference output. 
Step 13: NG-RAN node 1 provides feedback to OAM.
Step 14: NG-RAN node 2 provides feedback to OAM.
3.3	AI/ML Model Training in NG-RAN
We here provide an overview of a solution where a gNB trains an AI/ML Model and is responsible for AI/ML Network Slicing decisions.



Figure 3 AI/ML Model Training and AI/ML Model Inference in the NG-RAN
Step 0: NG-RAN node 2 is assumed to have an AI/ML model optionally, which can provide NG-RAN node 1 with input information.
Step 1: NG-RAN node 1 configures the measurement information on the UE side and sends configuration message to UE to perform measurement procedure and reporting.
Step 2: The UE collects the indicated measurement(s), e.g., UE measurements related to RSRP, RSRQ, SINR of serving cell and neighbouring cells.
Step 3: The UE sends the measurement report(s) to NG-RAN node 1 including the required measurement result.
Step 4: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model training of AI/ML-based Network Slicing. 
Step 5: NG-RAN node 1 trains AI/ML model for AI/ML-based Network Slicing based on collected data. 
Step 6: UE sends a UE measurement report(s) to NG-RAN node 1. 
Step 7: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model inference of AI/ML-based Network Slicing. 
Step 8: Based on local inputs of NG-RAN node 1 and received inputs from NG-RAN node 2, NG-RAN node 1 generates model inference output (e.g., predicted radio resource status information per cell per slice, predicted Energy Cost per slice per cell, etc.)
Step 9: NG-RAN node 1 executes AI/ML Network Slicing actions according to the model inference output. 
Step 10: NG-RAN node 2 provides feedback to NG-RAN node 1.

3.4	Input Data, Output Data and Feedback information to an AI/ML Model for Network Slicing

The solutions indicated in Section 3.2 and Section 3.3 above may be summarized as follows:

Input from local node
· Measured Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell


Input from neighbouring nodes
· Measured Radio Resource Status Information per cell per slice
· Predicted Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell

Input from UE
· UE measurement report (e.g., RSRP/RSRQ/SINR etc. from UEs), including cell level and beam level UE measurements

Output
· Predicted radio resource status information per cell per slice
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell
· Moving UEs between frequency layers to minimize Energy Cost of a slice
· Reallocation of slice resources for one or more UEs to minimize Energy Cost of a slice

Feedback
· Measured Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· UE Performance (total per UE, per PDU session, per QoS flow)

Proposal 7: RAN3 to base further study on the solution description provided here (Sections 3.2, 3.3 and 3.4).

Finally, we propose to agree the TP in the annex of this contribution discussing the AI/ML slicing use case, solutions and standards impacts.
Proposal 8: Agree the TP in the annex discussing the AI/ML slicing use case, solutions, and standards impacts.
4	Conclusion
In this contribution, we make the following observations and proposals:
Observation 1: In NG-RAN the different slices support differentiated treatment of traffic, and a UE may support multiple slices simultaneously.
Observation 2: NG-RAN may apply the best RRM policy in order to meet a given SLA.
Observation 3: NG-RAN supports QoS differentiation within a network slice.
Observation 4: A UE can support up to 8 slices simultaneously.
Proposal 1: Enhance measured UE Performance reporting to also provide finer granularity of reporting per PDU session or per QoS flow. 
Proposal 2: Enhance predicted radio resources information to include predicted load per cell per slice.
Proposal 3: Enable neighbouring nodes to exchange predicted radio resources per slice granularity.
Proposal 4: RAN3 to study AI/ML-based solutions for slicing optimization enabling the network to take into account energy-related information per network slice in line with SA1’s requirements.
Proposal 5: To meet the Energy Efficiency requirements in TS 22.261 we propose to optimize the energy consumption of slice operation within the RAN reflected by the Energy Cost metric by enabling the RAN to take a number of actions, such as moving of UEs between frequency layers or reallocation of slice resources for one or more UEs.
Proposal 6: Consider two solutions for AI/ML Network Slicing 
· AI/ML Model Training is located in the OAM and AI/ML Model Inference is located in the gNB (gNB-CU in case of split architecture)
· AI/ML Model Training and AI/ML Model Inference are both located in the gNB (gNB-CU in case of split architecture)

Proposal 7: RAN3 to base further study on the solution description provided here (Sections 3.2, 3.3 and 3.4).
Proposal 8: Agree the TP in the annex discussing the AI/ML slicing use case, solutions, and standards impacts.
Annex TP for TR 38.743
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[bookmark: _Toc162258894]4.1.1	Use case description
Editor Note: Capture the description of use case
Network Slicing is a concept that enables differentiated treatment of communication services depending on each customer’s requirements. With slicing, it is possible for Mobile Network Operators (MNO) to consider customers as belonging to different tenant types with each having different service requirements that govern in terms of what slice types each tenant is eligible to use based on Service Level Agreement (SLA) and subscriptions. This enables to run different services that have different requirements with respect to latency, reliability, throughput or mobility patterns. Network slices may be used for serving different customers separately based on a Service Level Agreement (SLA). Different network slices may have different SLAs, which is a contract between a provider of a service and a customer (tenant). An SLA defines services the provider offers and the level of performance of the offered services and may include different parameters relating to service such as a bit rate, latency, a packet error rate as well as resource management. UE traffic for different slices is handled by different PDU sessions set up towards the UE. The different network slices in the network can be realised through scheduling and through different L1/L2 configurations. In NG-RAN, different slices may provide differentiated treatment of traffic. The network can support a large number of slices (hundreds).
According to TS 38.300 [x1], NG-RAN supports policy enforcement between slices according to the SLA in place. An NG-RAN node may decide the best policy to apply in order to satisfy the SLA for each of its supported slices. 

RAN provides both shared slice resources and slices with resource isolation. Resource isolation can be supported through RRM policies and other mechanisms that would avoid that shortage of shared resources in a slice would compromise the SLA of other slices. 

NG-RAN, by network implementation, also supports QoS differentiation within a slice e.g., by enforcing a UE-Slice-Maximum Bit Rate leading to rate limitation of non-GBR bearers.

A UE can support up to 8 slices simultaneously.

Performance verification for slices
In Rel.18, UE Performance feedback is introduced as a mechanism to provide a measured UE Performance from a target node to a source node, in terms of an Average UE Throughput in UL or DL direction, Average Packet Delay and Average Packet Loss DL, of a handed over UE. However, the reported UE performance is measured to be the total average UE Performance. In practice, a UE may support multiple slices. Each slice is associated with one or more PDU session that provides the path for user data transfer. Each PDU session may support a number of QoS flows, which may receive different treatment within the slice. However, reporting the average UE Performance does not provide sufficient information on the impact of the handover on the performance on different PDU sessions (slices) or QoS flows .

Resource management for slices
The traffic load per network slice in a cell will in many scenarios fluctuate over time, implying that the initial radio resources allocated to a network slice may not always satisfy the traffic needs. This may lead to a network slice being either overloaded or underutilized. Overloading may cause congestion in the control plane and the user plane traffic of a network slice, leading to degraded network slice performance and potentially violating Service Level Agreements (SLAs). Conversely, over-allocation of resources to a lightly loaded network slice may compromise on resource efficiency and e.g. prevent sufficient resources to be allocated to other slices. To address these challenges, several optimization actions may be initiated by a gNB: 

·   Inter-slice load balancing: This process involves offloading some UEs from congested network slices in a cell to other less congested network slices within the same cell. This can be achieved by local reallocation of slice resources within the cell. This strategy aims to distribute the load across network slices in scenarios where this is possible, thereby preventing any single slice from becoming overloaded.
· Inter-cell load balancing: This process involves offloading of some UEs to less congested network slices of neighbouring cells if all network slices in a cell are overloaded. The gNB achieves this load balancing by e.g. inter-frequency handover . This strategy aims to distribute the load across cells supporting the same network slice, thereby preventing any single slice from becoming overloaded. 


However, existing network slice load optimization strategies based on current or past network slice load, may fall short due to rapid fluctuations in traffic load and radio resource status. This is especially true in high-mobility scenarios with numerous connections, leading to frequent handovers between network slices of neighbouring cells. Such scenarios can result in network slice overload and potential SLA violations. Moreover, when offloading Ues from a congested network slice to a target network slice, the target network slice may become overloaded with incoming traffic and hence difficult to determine whether the service performance after the offloading action meets the desired SLA requirements (e.g., bit rate, latency, packet error rate and/or service level).
To address these challenges, AI/ML models can be deployed to predict network slice load in a cell, thereby enhancing service performance. These AI/ML models leverage data from UEs, serving gNB, and neighbouring gNBs, including measurements, feedback, and historical data. The resulting predictions can improve service performance and user experience in a network slice. Resource management actions, e.g. load balancing or resource reallocation, performed based on predicted load could also be expected to ensure resource allocation which is more suitable for the future load than such actions performed based on information relative to past/current load.  

Energy consumption of slices:
TS 22.261 [x2] provides service requirements on energy saving related aspect to enable verticals and operators to save energy. Specifically, the following energy-related requirements are described for Energy Related Information as Service Criteria (TS 22.261 [x2] clause 6.15a.2.2):
· Subject to user consent, operator policy and regulatory requirements, the 5G system shall be able to provide means to operate part or the whole network according to energy consumption requirements, which may be based on subscription policies or requested by an authorized 3rd party
· Subject to user consent and operator policy, 5G system shall be able to provide means to modify a communication service based on energy related information criteria based on subscription policies.
TS 22.261 [x2] clause 6.15a.4.2 also describes requirement for Monitoring and Measurement aiming at improving network energy saving at slice level: “Subject to operator's policy, the 5G network shall support energy consumption monitoring at per network slice and per subscriber granularity”. Although SA1 doesn’t require external real-time visibility of the energy consumption per network slice, their requirement provides an additional motivation to enable the gNB to perform energy saving actions at slice level. 
Depending on the traffic and the applicable QoS, the traffic-handling requirements may be less or more stringent. Consequently, a slice may become more energy demanding because the reserved time and frequency resources are fully used. For example, depending on the QoS (higher QoS, with more stringent traffic-handling requirements) provided by the slice, the energy consumed may be higher than for other slices providing a different QoS (lower QoS, with less stringent traffic-handling requirements). This may be especially true if time/frequency resources allocated to the slice are getting more fully loaded since a node may need to transmit at higher power in order to accommodate the additional traffic. RAN internally therefore has some means to optimize an energy consumption associated to a slice. 

Similarly to the node level measured Energy Cost introduced in Rel-18 which measure a node-level energy consumption, an Energy Cost reflecting an energy consumption of a slice in a node can be defined. Some examples could be an Energy Cost per slice per node, Energy Cost per slice per cell or Energy Cost per slice per UE. 

[bookmark: _Toc162258895]4.1.2	Solutions and standard impacts
Editor Note: Capture the solutions for the use case, including potential standard impacts on existing Nodes, functions,
AI/ML model training in OAM:
We here provide an overview of a solution where a gNB makes decisions related to AI/ML slicing using an AI/ML model trained from OAM.






Figure 4.1 AI/ML Model Training in OAM, AI/ML Model Inference in the NG-RAN
Step 0: NG-RAN node 2 is assumed to have an AI/ML model optionally, which can provide NG-RAN node 1 with input information.
Step 1: NG-RAN node 1 configures the measurement information on the UE side and sends configuration message to UE to perform measurement procedure and reporting.
Step 2: The UE collects the indicated measurement(s), e.g., UE measurements related to RSRP, RSRQ, SINR of serving cell and neighbouring cells.
Step 3: The UE sends the measurement report message(s) to NG-RAN node 1.
Step 4: NG-RAN node 1 further sends UE measurement reports together with other input data for Model Training to OAM. 
Step 5: NG-RAN node 2 (assumed to have an AI/ML model optionally) also sends input data for Model Training to OAM.
Step 6: Model Training at OAM. Required measurements and input data from other NG-RAN nodes are leveraged to train AI/ML models for network slicing.
Step 7: OAM deploys/updates AI/ML model into the NG-RAN node(s). The NG-RAN node can also continue model training based on the received AI/ML model from OAM.
Note: This step is out of RAN3 Rel-19 scope.
Step 8: UE sends UE measurement report(s) to NG-RAN node 1.
Step 9: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model inference of AI/ML-based network slicing. 
Step 10: Based on local inputs of NG-RAN node 1 and received inputs from NG-RAN node 2, NG-RAN node 1 generates model inference output(s) (e.g., predicted radio resource status information per cell per slice, predicted Energy Cost per slice per cell, etc.)
Step 11: NG-RAN node 1 sends Model Performance Feedback to OAM if applicable.
Note: This step is out of RAN3 scope.
Step 12: NG-RAN node 1 executes Network Slicing actions according to the model inference output. 
Step 13: NG-RAN node 1 provides feedback to OAM.
Step 14: NG-RAN node 2 provides feedback to OAM.

AI/ML model training in NG-RAN:

We here provide an overview of a solution where a gNB trains an AI/ML Model and is responsible for AI/ML Network Slicing decisions.



Figure 4.2 AI/ML Model Training and AI/ML Model Inference in the NG-RAN
Step 0: NG-RAN node 2 is assumed to have an AI/ML model optionally, which can provide NG-RAN node 1 with input information.
Step 1: NG-RAN node 1 configures the measurement information on the UE side and sends configuration message to UE to perform measurement procedure and reporting.
Step 2: The UE collects the indicated measurement(s), e.g., UE measurements related to RSRP, RSRQ, SINR of serving cell and neighbouring cells.
Step 3: The UE sends the measurement report(s) to NG-RAN node 1 including the required measurement result.
Step 4: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model training of AI/ML-based Network Slicing. 
Step 5: NG-RAN node 1 trains AI/ML model for AI/ML-based Network Slicing based on collected data. 
Step 6: UE sends a UE measurement report(s) to NG-RAN node 1. 
Step 7: NG-RAN node 2 sends the required input data to NG-RAN node 1 for model inference of AI/ML-based Network Slicing. 
Step 8: Based on local inputs of NG-RAN node 1 and received inputs from NG-RAN node 2, NG-RAN node 1 generates model inference output (e.g., predicted radio resource status information per cell per slice, predicted Energy Cost per slice per cell, etc.)
Step 9: NG-RAN node 1 executes AI/ML Network Slicing actions according to the model inference output. 
Step 10: NG-RAN node 2 provides feedback to NG-RAN node 1.


Input Data, Output Data and Feedback information to an AI/ML Model for Network Slicing

The solutions above may be summarized as follows:
Input from local node
· Measured Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell


Input from neighbouring nodes
· Measured Radio Resource Status Information per cell per slice
· Predicted Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell

Input from UE
· UE measurement report (e.g., RSRP/RSRQ/SINR etc. from UEs), including cell level and beam level UE measurements

Output
· Predicted radio resource status information per cell per slice
· Predicted Energy Cost per slice per UE
· Predicted Energy Cost per slice per cell
· Moving UEs between frequency layers to minimize Energy Cost of a slice
· Reallocation of slice resources for one or more UEs to minimize Energy Cost of a slice

Feedback
· Measured Radio Resource Status Information per cell per slice
· Measured Energy Cost per slice per UE
· Measured Energy Cost per slice per cell
· UE Performance (total per UE, per PDU session, per QoS flow)


<<< end of changes >>>
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