3GPP TSG-RAN WG2 Meeting #84
R2-134506

San Francisco, USA, 11 – 15 November 2013

Agenda item:

10.1.2

Source:
NSN

Title:
TP on results for the UL data compression

Document for:

Discussion

1
Introduction

In RAN#58, a new SI was started that aims at further EUL enhancements for increasing uplink capacity, coverage and end user performance. One of the identified study areas is UL data compression.

In this paper, we present a TP with results and analysis for the header and data compression, in particular compression of the UL traffic that was gathered directly from the IuPS interface of the operational network.

2
Text proposal

5.2
UL data compression

--- NEXT SECTION ---

5.2.3.1.3
Details of RAN-level compression methods

5.2.3.1.3.1
Existing compression methods

Gzip is a popular tool used for compressing data. The format of the file generated by Gzip is provided in [15]. It, in turn, uses the DEFLATE compressed data format specified in [14]. The DEFLATE data format supports compression of data by two mechanisms. One mechanism, which can be thought of as pattern-matching, is by identifying repeated string of bytes in data and replacing such occurrences with pointers to previous instances. The other mechanism is entropy coding of symbols using Huffman algorithm. It is worth noting that the DEFLATE format limits the pattern-match, to point to instances at most 32K bytes in the past and match length to be of at most 258 bytes. When applied to data packets, the algorithm faces the limitation that the pattern-match pointers can only point to instances within the packet. Due to this it fails to make use of redundancy across packets.

LZMA (Lempel–Ziv–Markov chain algorithm) is another compression mechanism, which is already widely adopted in a number of operating systems and environments. This algorithm uses a dictionary compression scheme somewhat similar to the LZ77 algorithm, and features a high compression ratio (generally higher than bzip2), and a variable compression-dictionary size, while still maintaining decompression speed similar to other commonly used compression algorithms. When compared to the gzip/bzip2 algorithms, it features a possibility to detect non-compressible data, where upon it avoids a situation when “compressed” data becomes larger than the original one.
--- NEXT SECTION ---

5.2.3.2
Evaluation of solution

5.2.3.2.x
Evaluation of compression of mobile data

5.2.3.2.x.1
General methodology

To analyse mobile traffic data, all the measurements and data are taken directly from the IuPS interface, i.e., the one connecting RNC further to the core network. Since the IuPS interface does not only carry the user plane data, but also the core network signalling information, all the non-GTP packets are filtered out. Furthermore, since the GTP protocol itself can carry control information, only the so-called T-PDUs are considered, Every T-PDU is processed further in such a way that the transport layer and the IP/UDP/GTP headers are removed, thus leaving the user plane IP packet. Every decoded IP packet is written into a separate file, which then can individually analysed, compressed, from which is it possible to remove IP/TCP headers etc.

The payload compression mechanism is applied, as it comes from its name, to the payload part only. For this purpose, first all the transport headers are extracted from the packet leaving only the payload part. Then, the payload part is passed to the compressor. And finally, previously saved headers are added back to the compressed payload. It should also be noted that small packets, such as TCP ACK/NACKs are not passed to the compressor at all. To differentiate between compressed and non-compressed packets, we assume that there is 1 byte indicator added somewhere at the PDCP or the compressor level.

The header compression mechanism emulates functioning of the Robust Header Compression algorithm, as defined in [x]. The considered RoHC profile handles not only 40 bytes IP/TCP packets, which are compressed on average to 5 bytes, but also so-called 52 bytes IP/TCP packets with “options”, which are compressed on average to 8 bytes.

5.2.3.2.x.2
Performance metrics

Firstly, we present statistics regarding the input data and in particular CDF of built from all the packet sizes. That shows whether the input data comprises predominantly small packets, or large packets, or a mixture of both.

For the performance metrics, we calculate the per-packet compression level, from which we present further CDF of compression levels of all the packets and also how compression levels are distributed versus packet sizes.

5.2.3.2.x.3
Analysis of mobile data exchanged with “news” web sites

In this particular scenario, a number of sessions are recorded that contain data exchanged with the “CNN News” and “BBC news” web sites. The total duration of recorded data is 1.5 hour, during which 60 MB of data was gathered comprising 109,000 packets. While browsing those sites, video data was not requested to avoid situations when media information would start dominating any other data.

Figures below present packet CDFs for the overall data (left hand side) and specifically the UL direction only (right hand side). As can be seen, from the viewpoint of the overall traffic, approximately 60% of packets are quite small, around 40-60 bytes, which are TCP control data. As for the UL direction only, the amount of those packets is around 90%.

[image: image1.emf][image: image2.emf]
Next, as already briefly mentioned in the methodology section, we apply the per-packet compression to see how much data can be compressed. Similar to the figure above, we present the statistics in form of the CDF for the overall data (left hand side) and specifically for the UL direction (right hand side). As can be seen from the figures, and as somewhat anticipated based on the previous observations with regards to the packet sizes, there are approximately 20% and 10% percent of packets that can benefit from compression. At the same time, it is worth noting that some packets can be compressed quite well resulting in the compression level of around 10%.

[image: image3.emf][image: image4.emf]
It should be noted that the compression level gain from small packets is a bit larger than 100%. The first reason is that we consider an additional 1 byte indicator that tells whether a packet is compressed or not to handle small packets. Even though the selector just takes a few bytes, it is anyway visible in the statistics as increased packet size.

Two figures below provide a deeper insight regarding which packets can benefit from compression and which cannot. We plot every packet as a point, where X-axis reflects its size, and Y-axis shows the compression level. As can be seen from the figures for the both and the UL direction, compressing very small packets does not provide gains. Interestingly enough, a large packet does mean that it will be always efficiently compressed; instead, large packets carrying media information (such image data) do not provide any gain. At the same time there can be packets, and not necessarily too large, which can be compressed down to 10%. Furthermore, there are some UL packets of relatively small size, which can be compressed to 50% and even less.

[image: image5.emf][image: image6.emf]
As for the header compression techniques, such as RoHC, they can reduce noticeably amount of transmitted data by reducing the IP/TCP headers (40 or 52 bytes if TCP options are included). Two figures below present the compression level CDFs for the header compression technique applied to the same data. As can be seen quite eloquently, especially from the UL data, the header compression alone results in a noticeable saving, which is explained to the fact that there are a lot of small packets.
[image: image7.emf][image: image8.emf]
The table below presents an average compression level for LZMA and RoHC calculated over all the individual packet compression levels (with and without accounting for the actual packet sizes). As can be seen from these results, and especially from the UL direction, applying compression methods results in compression gains. At the same time, by applying header compression technique such as RoHC eliminates quite efficiently redundant header information.
	Direction
	Average compression level
(without packet size)
	Average compression level
(with packet size)

	
	LZMA
	RoHC
	LZMA
	RoHC

	DL and UL
	91,00%
	50,84%
	74,25%
	91,17%

	UL only
	98,93%
	20,85%
	80,19%
	67,80%

5.2.3.2.x.4
Analysis of mobile data exchanged with “Google” services

In this scenario, a number of sessions with the Google services, and in particular with Google maps, are recorded. Interactions with Google maps contain all the common actions, such as sending requests for particular locations, zooming in/out, scrolling, fetching further detailed information etc. The total duration of all the sessions is around 1 hour, for which 117 MB of data was recorded comprising 173,000 packets.

Figures below present packet size CDFs for all the data and the UL direction. The overall packet size distribution is quite close to what is presented for the “news” web sites, with a difference is that there are less very small packets, and large packets dominate in the DL direction. As for the UL direction, the situation is almost identical to the one observed already earlier for “news” web sites.

[image: image9.emf][image: image10.emf]
For the sake of brevity, we present below results for the data compression applied to the all the packets without showing separately UL direction. Partially the reason is that as can be seen from the figures below, there are almost no compression gains, but only losses. The major reason is that Google services use by default HTTPS even if a user is not logged in. Thus, there is a compression gain neither from small packets (as observed earlier), nor from the large packets since they carry encrypted data.

[image: image11.emf][image: image12.emf]
Even though it is not presented explicitly, there are still anticipated gains from the header compression techniques, such as RoHC. As there is a noticeable amount of small packets, especially in the UL direction, that overhead can be eliminated.
3
Conclusion

