Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG RAN WG2 #82
R2-131631
Fukuoka, Japan, May 2013
Agenda item:
10.1.3
Source:
QUALCOMM Incorporated

Title:
Compression Algorithms for UL Data Compression
Document for:
Discussion

1
Introduction

In RAN#58, a new SI was begun to study further EUL enhancements [1] with the objective of identifying technical solutions for increasing uplink capacity, coverage and end user performance. One of the identified solutions is to perform UL data compression between the UE and the RAN. In [2], we discussed the motivation for, and benefits of doing so.
In this document, we discuss various compression algorithms we have evaluated.
2
Discussion on Algorithms
In [2], we introduced the idea of compressing the uplink data between a UE and the RAN, and we showed that significant gain can be obtained by performing such compression for HTTP traffic.

In this document we describe a few compression algorithms that we have explored, along with the compression statistics for each.

Header Compression
IPHC [3] and RoHC [4] are well-studied mechanisms used to compress the TCP/IP headers of data packets. Generally, header compression is expected to provide a compression factor of 5x (i.e. TCP/IP header is reduced by a factor of 5). Since it has been well studied we do not implement this in our simulator, instead choosing to assume a fixed 5x compression factor.
Gzip

Gzip is a popular tool used for compressing data. The format of the file generated by Gzip is provided in [6]. It, in turn, uses the DEFLATE compressed data format specified in [5]. The DEFLATE data format supports compression of data by two mechanisms. One mechanism, which can be thought of as pattern-matching, is by identifying repeated string of bytes in data and replacing such occurences with pointers to previous instances. The other mechanism is entropy coding of symbols using Huffman algorithm. It is worth noting that the DEFLATE format limits the pattern-match discussed above, to point to instances at most 32K bytes in the past and match length to be of at most 258 bytes. When applied to data packets, the algorithm faces the limitation that the pattern-match pointers can only point to instances within the packet. Due to this it fails to make use of redundancy across packets.
Proposed Algorithm

Our proposed algorithm is similar to Gzip and based on the DEFLATE data format, with optimization of some of the header bits and block formats so as to improve compression efficiency. It uses the key ideas of pattern-matching and entropy coding. The key difference when compared to Gzip is that the algorithm maintains a fixed amount of memory at the compressor and de-compressor so that it may keep track of the contents of past data packets. This memory enables the pattern-matching algorithm to point to instances of repeat strings across packets. As noted above, the DEFLATE specification restricts pattern-match to point to instances at most 32K bytes in the past; hence the memory size we chose to evaluate performance for is 32Kbytes.
3
Analysis

We ran the various algorithms described in Section 2 on tcpdump logs collected for mobile devices within our corporate network during lunch time. We ensured that only traffic going to and coming from the internet was collected. The logs consist of 30 mins of TCP/IP packets collected from 813 devices.
Note that, by design, the compression of TCP/IP headers is left to IPHC / RoHC. Hence, in the below table, we focus on the compression statistics for the payload part of TCP/IP packets.
	% Reduction in Data Transmission
	UL Payload only

	Proposed Algorithm
	85.3%

	Gzip
	27.4%

Statistics indicate that compression that takes advantage of redundancy across packets (proposed algorithm) performs significantly better than per-packet compression (gzip).

Proposal 1: We propose to explore compression techniques to take advantage of redundancy across packets in order to compress HTTP requests.

The next table lists the compression statistics computed over entire IP packets. Here, we see that header compression alone can provide up to 47% reduction of net data transmission on UL. This is because about 59% of the bytes on uplink are from TCP/IP headers.

	% Reduction in Data Transmission
	UL

	Proposed Algorithm w Header Compression
	82.3%

	Gzip w Header Compression
	58.3%

	Header Compression
	47%

The compression statistics computed over entire IP packets, for the case where header compression is disabled are shown next.
	% Reduction in Data Transmission
	UL

	Proposed Algorithm w/o Header Compression
	35.1%

	Gzip w/o Header Compression
	11.3%

Comparing the gains with and without header compression, we notice a significant difference.

Proposal 2: We propose to enable TCP/IP header compression when data compression is enabled.

4
Conclusions
In this contribution, we have discussed various compression algorithms and provided statistics for each.
Our proposals can be summarized as below:
Proposal 1: We propose to explore compression techniques to take advantage of redundancy across packets in order to compress HTTP requests.

Proposal 2: We propose to enable TCP/IP header compression when data compression is enabled.

5
References
[1] RP-122019 - Study on Further EUL Enhancements
[2] R2-130988 – On UL Data Compression

[3] IP Header Compression (IPHC) (http://tools.ietf.org/html/rfc2507.html)

[4] RObust Header Compression (ROHC): A Profile for TCP/IP (ROHC-TCP) (http://tools.ietf.org/html/rfc4996)
[5] DEFLATE Compressed Data Format Specification version 1.3 (http://tools.ietf.org/html/rfc1951)
[6] GZIP file format specification version 4.3 (http://tools.ietf.org/html/rfc1952)
