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1. [bookmark: OLE_LINK13][bookmark: OLE_LINK14]Introduction
The SID on AI/ML for mobility in NR [1] was approved for Rel-19. 
	· The evaluation of the AI/ML aided mobility benefits should consider HO performance KPIs (e.g., Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction) etc.) and complexity tradeoffs [RAN2]
· NOTE: Simulation assumption and methodology can leverage TR 38.901, 38.843 and 36.839. And leave the detail discussion to RAN2 


This contribution provides our understanding on the simulation assumption and evaluation methodology.
2. Discussion
2.1 Simulation assumptions
2.1.1	system-level parameters
The baseline system-level simulation assumptions for AI/ML in beam management evaluations in [2] are outlined in Table A.1-1. As stated in the SID, the simulation assumption can leverage TR 38.843, and RAN2 may further discuss the details. From our perspective, RAN2 should further discuss and come to agreements on the following parameters: (a) Frequency Range; (b) UE speed; (c) UE distribution; (d) UE trajectory model
(a) Frequency Range
In Table A.1-1, it can be observed that the beam management use case only focuses on FR2. Whether simulation for FR1 needs to be considered is a matter for discussion. In our view, compared to FR2, there are fewer mobility issues in FR1, and most of the issues can be resolved through optimized network configurations. The benefits and necessity of introducing AI are not particularly clear. Therefore, it is recommended that the simulation analysis should initially focus on FR2 as a starting point, and potential AI-based mobility solutions should also be applicable to FR1.
Proposal 1: Consider FR2 as the starting point for the frequency range of simulation.
(b) UE speed
In Table A.1-1, for spatial domain beam prediction, the baseline UE speed is 3km/h, while for time domain prediction, the baseline is 30km/h. No baseline speed is provided for frequency domain prediction. For UEs with low speed, the wireless signal changes slowly, and they are less affected by different mobility mechanisms. Our initial simulation result shows that the handover failure rate at 30km/h is lower than 5%. If UE speed of 30km/h is considered as the baseline, AI-based mechanisms are not quite essential from our perspective. Therefore, the baseline UE speed should be set at a higher value, such as 60km/h.
	
	HOF rate
	Short ToS rate
	Ping-pong rate

	UE Speed = 30km/h
	4.7%
	23.4%
	1.6%

	UE Speed = 60km/h
	7.2%
	29.9%
	3.3%


Table 2.1-1 Handover performance for different UE speeds (TTT = 320ms, A3 offset = 3dB)
Proposal 2: Take UE speed of 60km/h as the baseline for mobility simulation.
(c) UE distribution
In spatial domain beam prediction, UE may be distributed as 80% indoor and 20% outdoor. However, it is not essential to consider indoor UEs for mobility simulation.
Proposal 3: Only consider outdoor UEs for mobility simulation.
(d) UE trajectory model
TR 38.843 introduced three options of moving trajectory model for temporal beam prediction:
- Option 1: Linear trajectory model with random direction changes.
- Option 2: Linear trajectory model with random and smooth direction changes.
- Option 3: Random direction straight-line trajectories. (without direction changes)
As the beam prediction only focuses on intra-cell movement, the trajectory will be terminated when the UE trajectory hits the cell boundary. For mobility simulation, the trajectory should be extended to the entire simulation area. I.e., the trajectory can be terminated when the UE trajectory hits the simulation border. Additionally, TR 36.839 captures two more options, i.e., Wrap-around model and Bouncing-circle model. In summary, there are three options:
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Figure 2.1-1 3 Options for boundary processing
- Option 1: Wrap-around model: when the UE hits the simulation border (the wrap-around contour), it will wrap around and enter the simulation area from a different point on the wrap-around contour. 
-	If wrap-around occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 2: Bouncing-circle model: when the UE hits the simulation border (the bouncing-circle), it will bounce back with a random angle.
-	If bouncing back occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 3: boundary-terminated model: when the UE hits the simulation border, the trajectory should be terminated.
-	If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
Proposal 4: RAN2 to discuss the boundary processing, the following options can be considered:
- Option 1: Wrap-around model: when the UE hits the simulation border (the wrap-around contour), it will wrap around and enter the simulation area from a different point on the wrap-around contour. 
-	If wrap-around occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 2: Bouncing-circle model: when the UE hits the simulation border (the bouncing-circle), it will bounce back with a random angle.
-	If bouncing back occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 3: boundary-terminated model: when the UE hits the simulation border, the trajectory should be terminated.
-	If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 

2.1.2 RLF related parameters
In order to conduct mobility performance evaluations (as outlined in section 2.2), it is essential to first align the Radio Link Failure (RLF) modeling. The RLF modeling-related parameters are detailed in the table below [3]. Additionally, Qout is monitored using a 200ms window, and Qin is monitored using a 100ms window.
Table 2.1-1: The parameters for determining the RLFs and the PDCCH failures.
	Items
	Description 

	Qout
	-8 dB

	Qin
	-6 dB

	T310
	1s (the default value in 36.331)

	N310
	1

	N311 
	1


We believe that the parameters can be reused in AI-based mobility simulation. Therefore, we propose:
Proposal 5: Reuse the RLF modeling-related parameters in TR 36.839 for mobility simulation:
	Parameter
	Value

	Qout
	-8 dB

	Qin
	-6 dB

	Qin sliding window length
	100ms

	Qout sliding window length
	200ms

	T310
	1s

	N310
	1

	N311 
	1



2.1.3 mobility specific parameters
The following tables capture the additional recommended HetNet mobility specific parameters in [3]:
Table 2.1-2: HetNet mobility specific parameters
	Items
	Description

	Pico cell placement
	At fixed location(s) e.g., at 0.5 ISD, 0.3 ISD on the boresight direction. Or randomly placed.

	Cell loading (NOTE 1) 
	100%, 50%

	UE speed 
	3 km/h, 120km/h, 30km/h, 60km/h 

	Channel model 
	Either one of the models, TU or ITU, could be used. (fast fading included)

	TimeToTrigger [ms]
	40, 80, 160, 480

	a3-offset [dB]
	-1, 0, 1, 2, 3 

	TMeasurement_Period, Intra, L1 filtering time in TS36.133 [2]
	200ms (other values could be added later)

	Layer3 Filter Parameter K
	 4, 1, 0

	measurement error modelling
	To obtain the 90% bound for +/- 2 dB, a normal distribution with deviation = 2 dB / (sqrt(2)*erfinv(0.9)) = 1.216 dB can be used (ref: TS36.133 [2]). The RSRP measurement error can be added before or after L1 filter as long as the error requirement mentioned above is met at the input of L3 filter.
For calibration purposes, there is no measurement error modelling with wideband CQI for radio link monitoring and HOF decision.

	Handover preparation (decision) delay
	50ms

	Handover execution time
	40ms


Table 2.1-3: Summary of Mobility related simulation parameters for the MSE
	HO Parameter
	Value

	Time To Trigger (TTT)
	Dynamic, 480 ms in normal Mobility

	TTT Scaling factors
	Sf_medium = 0.5, sf_high = 0.25

	N_CRMedium, limit to enter medium state for macro only scenario
	7

	N_CRHigh, limit to enter high state for macro only scenario
	13

	N_CRMedium, limit to enter medium state for HetNet scenario
	10

	N_CRHigh, limit to enter high state for HetNet scenario
	16

	T_CRmaxHyst, hysteresis back to normal state
	0s   (demonstrate the immediate impact of enhanced MSE)

	A3 Offset
	3 dB Macro and Pico

	Ping-Pong-Time
	1 s

	Measurements Rate
	0.2 s

	HO Execution Time (including Preparation)
	0.15 s

	RSRP error – zero mean Gaussian
	1 dB std

	Filtering Factor K
	4

	RLF: Qout Threshold
	- 8 dB

	RLF: Qin Threshold
	- 6 dB


We think that most of the parameters can be reused in AI-based mobility simulation. For the baseline value of Time to Trigger, we think that both a long TTT such as 480ms, and a short TTT such as 40ms should be considered to compare with the AI-based mobility performance. Because long TTT aims to avoid ping-pong and short ToS, but may result in more handover failure problems. While short TTT aims to avoid handover failure problems, but may result in more ping-pong and short ToS. The potential gain for AI-based mobility is to reduce HOF, ping-pong and short ToS at the same time or to achieve better balance for these metrics, therefore, only when AI-based mobility shows gains compared to both long TTT and short TTT configurations can it be considered to have gains.
Proposal 6: Take the mobility-specific simulation parameters of HetNet in TR 36.839 as the baseline and introduce two sets of TTT, e.g., 480 ms and 40 ms.
	Parameter
	Value

	L1 measurement period
	40ms

	Filtering Factor K
	4

	A3 Offset
	3 dB 

	TimeToTrigger
	480 ms (baseline), 40 (baseline)

	Ping-Pong-Time/short time of stay
	1 s

	Handover preparation (decision) delay
	50ms

	Handover execution time
	40ms



2.2 Evaluation Methodology
In the TR 38.843, the common KPIs can be categorized as three types:
- Performance
-	Intermediate KPIs
-	System level performance 
-	Generalization performance
- Overhead
-	Overhead of AI/ML-related signalling, e.g., data collection
-	storage overhead
- Complexity
-	Inference complexity
-	Training complexity
The KPI categorization can be reused in AI mobility.
2.2.1	Performance KPIs
In the SID, the mobility related performance KPIs are listed as Ping-pong HO, HOF/RLF, Time of stay, Handover interruption, prediction accuracy, and measurement reduction, etc.
As to the definition, the following KPIs are caputured in TR 36.839 and can be reused:
· Ping-pong rate is defined as (number of ping-pongs)/(total number of successful handovers excl. handover failures).
· A Short ToS rate is defined as the number of Short ToS occurrences divided by the number of successful handovers. I.e., Short ToS rate = (number of Short ToS occurrences)/(total number of successful handovers).
· The RLF performance metric is defined as: the average number of RLF occurrences per UE per second.
· The HOF rate is defined as: Handover failure rate = (number of handover failures) / (Total number of handover attempts).
For the Handover interruption, modeling the detailed RACH procedure and the corresponding interruption during handover presents a complex challenge for simulation. Assuming that each handover procedure may introduce close interruption, one simple apporach is to introduce an equivalent KPI, such as handover frequency, which can be defined as number of HO occurrences per UE per second.
In the justification, the user experience of future services, such as XR, is taken into consideration, so a new KPI is needed to reflect the actural user service experience during the simulation time. For example, CDF of UE serving cell RSRP/SINR during the simulation time could be used to approximately reflect the throughput. 
From our understanding, the Ping-pong rate, short ToS rate, HOF rate, RLF frequency, Handover interruption are common system-level performance KPI that should be evaluated for all use cases. Prediction accuracy is an intermediate KPI and is specific to each use case. Measurement reduction is a system-level performance KPI but is only applicable for RRM prediction.
Therefore, we propose:
Proposal 7: For the mobility related performance KPI:
· Ping-pong HO rate, short ToS rate, HOF rate, RLF frequency, handover interruption are common system-level performance KPI that can be evaluated for all use cases;
· Measurement reduction is only applicable for RRM prediction;
· Prediction accuracy is an intermediate KPI, and is specific to each use case.

Proposal 8a: Reuse the definition of the following KPIs in 36.839:
· Ping-pong rate is defined as (number of ping-pongs)/(total number of successful handovers excl. handover failures).
· A Short ToS rate is defined as the number of Short ToS occurrences divided by the number of successful handovers. I.e., Short ToS rate = (number of Short ToS occurrences)/(total number of successful handovers).
· The RLF performance metric is defined as: the average number of RLF occurrences per UE per second.
· The HOF rate is defined as: Handover failure rate = (number of handover failures) / (Total number of handover attempts).

Proposal 8b: The KPI handover interruption can be reflected as HO occurrences per UE per second.
Proposal 8c: Introduce CDF of UE serving cell RSRP/SINR as one performance KPI to reflect the overall user experience.
The following is part of the summary of the generalization performance:
	Summary of evaluations and results for generalization
Different location of AI/ML model (e.g., NW side model, or UE side model) may have different generalization requirements:  
For NW side model, 
-	for Tx-Rx beam pair prediction, the significant generalization performance degradation with unseen various UE parameters (i.e., different UE codebooks, and/or different UE antenna array dimensions) can be improved to achieve less than 5% degradation (2 sources) and 16%~26% degradation (1 source) in terms of Top-1 beam prediction accuracy with the model training with mixed data compared to generalization performance Case 1.
For UE side model, 
-	the significant generalization performance degradation with unseen various gNB setting (i.e., different gNB antenna array dimensions, and/or DL Tx beam codebook) or unseen various Set B of beam(pairs) can be improved to achieve
However, the AI/ML (without considering model switching) has significant performance degradation with some other unseen scenarios, including:
-	For DL Tx beam prediction, 
-	deployment scenarios: UMi/UMa (at least with the assumption of different ISD, antenna height, down tilt and NLOS probability)
-	various gNB setting: different gNB antenna array dimensions, and DL Tx beam codebook
-	For beam pair prediction
-	various UE parameters: different UE codebooks, and different UE antenna array dimensions
-	deployment scenarios: with the assumption of different ISD, antenna height, down tilt and NLOS probability
-	various gNB setting: different gNB antenna array dimensions, and DL Tx beam codebook


It can be observed that the performance of NW-sided model may have significant degradation with different UE parameters. Similarly, the performance of UE-sided model may experience significant degradation with different network configurations. Furthermore, the model may encounter generalization issue in various deployment scenarios.
Proposal 9a: The generalization performance of the NW-sided model should consider various UE parameters.
Proposal 9b: The generalization performance of the UE-sided model should consider various gNB settings.
Proposal 9c: For both UE- and NW-sided models, the generalization performance should consider various deployment scenarios.

2.2.2	Overhead and Complexity
During the SI phase of AI for air, the complexity analysis mainly focuses on the model inference complexity, i.e., FLOPs during model inference, while the overhead analysis mainly concentrates on the storage overhead, i.e., model size.
	Figure 6.3.2-1 and Table 6.3.2-1 illustrate model parameter (M) and computational complexity in FLOPs (M) for BM-Case 1 and BM-Case 2, Tx beam prediction and beam pair prediction respectively, according to the reported assumption in BM_Table 1 and BM_Table 2.
Note: Optimization of AI/ML model (e.g., in terms of model/computational complexity) was not discussed in the study. 

Figure 6.3.2-1: Complexity of AI/ML models from evaluation results 
in terms of FLOPs and number of parameters for BM cases

Table 6.3.2-1: AI/ML model complexity/computation complexity 
used in the evaluations for AI/ML in beam management
	
	Model complexity in number of model parameters
	Model complexity in number of model size
	Computational complexity (FLOPs)

	BM-Case 1 DL Tx beam
	More than 1k to 4.9M majority reported less than 1M or about 1M
	50Kbytes to 20Mbytes majority reported less than 0.1Mbytes ~ 0.6Mbytes
	~2.7K to 222M 
majority reported less than 1M or 10s M 

	BM-Case 1 DL beam pair
	72k to 4.9M 
majority reported less than 0.1s M ~ 1M
	0.17Mbytes to 21Mbytes majority reported less than 1Mbytes ~ 4Mbytes
	15K to 224M 
majority reported less than 1M ~ 4 M

	BM-Case 2 DL Tx beam
	35k to 11M 
majority reported less than 0.1s M ~ 1M
	0.5Mbytes to 15Mbytes majority reported about 1s Mbytes 
	~90K to 54M 
majority reported less than 0.1s M or 1s M

	BM-Case 2 DL beam pair
	20k to 13M
majority reported about 0.1M~1M
	0.08M to 15M 
majority reported about 1Mbytes 
	~90K to 443M
majority reported less than 0.4 M or 1s M



In the following performance results, Top-K/1(%) is used for Top-K DL Tx beam prediction accuracy or Top-K beam pair prediction accuracy.


From our understanding, the inference complexity and model size can be presented alongside the performance results. Other LCM-related signaling overhead and complexity can be investigated during LCM discussion.
Proposal 10a: It is recommended that companies provide the Inference complexity along with the performance in their simulation results, e.g., FLOPs and model size.
Proposal 10b: The overhead and complexity of LCM procedures can be investigated during the LCM discussion.

3. Conclusion
Simulation assumptions
Proposal 1: Consider FR2 as the starting point for the frequency range of simulation.
Proposal 2: Take UE speed of 60km/h as the baseline for mobility simulation.
Proposal 3: Only consider outdoor UEs for mobility simulation.
Proposal 4: RAN2 to discuss the boundary processing, the following options can be considered:
- Option 1: Wrap-around model: when the UE hits the simulation border (the wrap-around contour), it will wrap around and enter the simulation area from a different point on the wrap-around contour. 
-	If wrap-around occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 2: Bouncing-circle model: when the UE hits the simulation border (the bouncing-circle), it will bounce back with a random angle.
-	If bouncing back occurs between the start time of observation window and the end time of prediction window for a data sample, the sample should be discarded.
- Option 3: boundary-terminated model: when the UE hits the simulation border, the trajectory should be terminated.
-	If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 

Proposal 5: Reuse the RLF modeling-related parameters in TR 36.839 for mobility simulation:
	Parameter
	Value

	Qout
	-8 dB

	Qin
	-6 dB

	Qin sliding window length
	100ms

	Qout sliding window length
	200ms

	T310
	1s

	N310
	1

	N311 
	1


Proposal 6: Take the mobility-specific simulation parameters of HetNet in TR 36.839 as the baseline and introduce two sets of TTT, e.g., 480 ms and 40 ms.
	Parameter
	Value

	L1 measurement period
	40ms

	Filtering Factor K
	4

	A3 Offset
	3 dB 

	TimeToTrigger
	480 ms (baseline), 40 (baseline)

	Ping-Pong-Time/short time of stay
	1 s

	Handover preparation (decision) delay
	50ms

	Handover execution time
	40ms



Evaluation Methodology
Proposal 7: For the mobility related performance KPI:
· Ping-pong HO rate, short ToS rate, HOF rate, RLF frequency, handover interruption are common system-level performance KPI that can be evaluated for all use cases;
· Measurement reduction is only applicable for RRM prediction;
· Prediction accuracy is an intermediate KPI, and is specific to each use case.
Proposal 8a: Reuse the definition of the following KPIs in 36.839:
· Ping-pong rate is defined as (number of ping-pongs)/(total number of successful handovers excl. handover failures).
· A Short ToS rate is defined as the number of Short ToS occurrences divided by the number of successful handovers. I.e., Short ToS rate = (number of Short ToS occurrences)/(total number of successful handovers).
· The RLF performance metric is defined as: the average number of RLF occurrences per UE per second.
· The HOF rate is defined as: Handover failure rate = (number of handover failures) / (Total number of handover attempts).
Proposal 8b: The KPI handover interruption can be reflected as HO occurrences per UE per second.
Proposal 8c: Introduce CDF of UE serving cell RSRP/SINR as one performance KPI to reflect the overall user experience.
Proposal 9a: The generalization performance of the NW-sided model should consider various UE parameters.
Proposal 9b: The generalization performance of the UE-sided model should consider various gNB settings.
Proposal 9c: For both UE- and NW-sided models, the generalization performance should consider various deployment scenarios.
Proposal 10a: It is recommended that companies provide the Inference complexity along with the performance in their simulation results, e.g., FLOPs and model size.
Proposal 10b: The overhead and complexity of LCM procedures can be investigated during the LCM discussion.
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5. Annex
A.1 System-Level Simulation assumptions for beam management
The baseline system-level simulation assumptions for AI/ML in beam management evaluations in [2] are illustrated in Table A.1-1.
Table A.1-1: Baseline System-Level Simulation assumptions for beam management
	[bookmark: _Hlk161732660]Parameter
	Value

	Frequency Range
	FR2 @ 30 GHz; SCS: 120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel model
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	For spatial domain beam prediction: 3km/h
For time domain beam prediction: 30km/h (baseline), 60km/h (optional) 90km/h (optional), 120km/h (optional)
Other values are not precluded

	UE distribution
	10 UEs per sector/cell for system performance related KPI (if supported) [e.g., throughput] for full buffer traffic (if supported) evaluation (model inference).
X UEs per sector/cell for system performance related KPI for FTP traffic (if supported) evaluation (model inference).
Other values are not precluded. 
Number of UEs per sector/cell during data collection (training/testing) is reported by companies if relevant.

For spatial domain beam prediction (optional to compare different UE distributions assumptions):
-	Option 1: 80% indoor ,20% outdoor as in TR 38.901
-	Option 2: 100% outdoor
For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	Antenna setup and port layouts at gNB: (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Number of BS beams: 32 or 64 downlink Tx beams (max number of available beams) at NW side. Other values, e.g., 256 not precluded.

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	Antenna setup and port layouts at UE: (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)
Other assumptions are not precluded

Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Number of UE beams: 4 or 8 downlink Rx beams (max number of available beams) per UE panel at UE side. Other values, e.g., 16 not precluded.

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	For system performance related KPI (if supported) evaluation (model inference), companies report either of the following traffic model:
    Option 1: Full buffer
    Option 2: FTP model with detail assumptions (e.g., FTP model 1, FTP model 3)

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies to explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	40 dBm (baseline)
Other values (e.g., 34 dBm) not precluded

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200 m

	BS Antenna height
	25 m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB

	UE measurements/reports
	At least for Temporal Downlink beam prediction: 
-	Periodicity of time instance for each measurement/report in T1: 20ms, 40ms, 80ms, [100ms], 160ms, [960ms]. Other values can be reported.
-	Number of time instances for measurement/report in T1 can be reported. Time instance(s) for prediction can be reported.

	Scenario
	Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. Other scenarios are not precluded. 

	Spatial consistency 
	At least for BM-Case1, companies report the one of spatial consistency procedures: 
-	Procedure A in TR38.901
-	Procedure B in TR38.901

	UE trajectory model
	UE trajectory model is defined at least for temporal beam prediction in initial phase of the evaluation. Further details below. 

UE trajectory model is not necessarily to be defined at least for spatial-domain beam prediction in initial phase of the evaluation.

	UE rotation
	UE speed to be reported. Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded



Model complextity
BM-Case1 Tx beam	0.21	4.9000000000000004	1	1.0900000000000001	1.3	1.56	8.9280000000000002E-3	1.15E-2	0.30299999999999999	0.27	1.4E-2	4.5060000000000003E-2	0.16672000000000001	1.2999999999999999E-3	0.08	8.2000000000000003E-2	1.4E-2	1.4999999999999999E-2	1.8	7.0000000000000007E-2	0.03	1.34	4.5999999999999999E-3	0.05	0.03	0.05	0.22220000000000001	22	2	1.1000000000000001	2.59	3.12	1.7600000000000001E-2	1.14E-2	5.4	0.26700000000000002	0.03	4.4999999999999998E-2	0.16300000000000001	2.7000000000000001E-3	1.1100000000000001	1.4999999999999999E-2	1.3	8	0.78	8.4	0.55000000000000004	38	9.7999999999999997E-3	0.1	0.03	BM-Case1 beam pair	2.5	4.9000000000000004	1	0.04	4.03	2.3199999999999998	1.35	2.14	0.55800000000000005	0.42699999999999999	0.6	0.27	0.33	2.88	1.05	0.86799999999999999	8.2000000000000003E-2	7.3999999999999996E-2	0.54	8.2000000000000003E-2	1.4E-2	1.5E-3	0.03	7.0000000000000007E-2	2.2599999999999998	2.6	22	2	0.08	4.0199999999999996	1.93	2.69	4.26	1.1160000000000001	0.42599999999999999	0.59799999999999998	0.27	0.33	2.88	1.048	0.87	0.17	1.4999999999999999E-2	1.3	224	1.27	0.1	4.5	BM-Case2 Tx beam	1.1000000000000001	0.57999999999999996	1.42	4.03	0.11	7.0000000000000007E-2	1.0289999999999999	3.5000000000000003E-2	0.35	0.115	4	11.3	0.2	0.10199999999999999	0.57199999999999995	9.2999999999999999E-2	1.95	3.33	2.4	0.40300000000000002	1.62	2.5	17	1.35	3.03	4.0199999999999996	0.183	0.17499999999999999	4.37	0.09	8	54.5	0.41	0.30299999999999999	4.08	5	BM-Case 2 beam pair	0.66	1.1499999999999999	2.13	0.13	2.758	0.24859999999999999	0.15	0.107	0.91	11.2	0.71	0.73	0.442	1.74	1.5	2.4900000000000002	4.45	0.99	7.25	0.41299999999999998	0.26	8	433.68	5.05	model parameter(M)

Computational complexity Flops(M)
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