[bookmark: _GoBack]3GPP TSG-RAN2#124 	R2-2312390
Chicago, USA, 13th Nov – 17th Nov, 2023	
	

[bookmark: Source]Agenda item:		7.5.3 (NR_XR_enh-Core)
Source:	LG Electronics Inc.
Title: 	Remaining issues on DRX enhancement for XR
[bookmark: DocumentFor]Document for:	Discussion and Decision
1.	Introduction
In the last meeting, RAN2 discussed to introduce non-integer DRX cycle, and made agreements as follows. 
Agreements on DRX
1. New DRX cycles in rational numbers are supported for both short and long DRX cycles. 
2. If short DRX cycle in rational number is configured, the length of the long DRX cycle shall be an integer multiple of the short DRX cycle, as in legacy.	
3. The new DRX parameter(s) for non-integer DRX cycles are common to both DRX groups
4. At least use legacy formula and add floor () operation.  
5. We will have normative text to avoid rounding errors.
6. specify the DRX cycle by different fields under a CHOICE structure and specify in the field description the correspondence between different fields and DRX cycles

In this contribution, we present our views on remaining issues on DRX enhancement for XR.
2.	Discussion
In [1], RAN2 discussed to implement MAC running CR for XR based on RAN2 agreements, but one issue related to XR power saving is remained as open issue.
As RAN2 agreed to introduce DRX cycle based on rational numbers, DRX formula is implemented for non-integer DRX cycle as follows in the MAC running CR.
1> if the Short DRX cycle is used for a DRX group and the drx-NonIntegerShortCycle is configured for the DRX group, and floor([(DRX_SFN_COUNTER  × 10240) + (SFN × 10) + subframe number] modulo (drx-NonIntegerShortCycle)) = floor([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerShortCycle)):
[bookmark: _Hlk141261902]2>	start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.
1> if the Long DRX cycle is used for a DRX group and the drx-NonIntegerLongCycle is configured for the DRX group, and floor([(DRX_SFN_COUNTER  × 10240)  + (SFN × 10) + subframe number] modulo (drx-NonIntegerLongCycle)) = floor([(drx-TimeReferenceSFN × 10) + drx-StartOffset] modulo (drx-NonIntegerLongCycle)):
3> start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.
However, the modulo operation has potentially rounding error in some hardwares or programming languages. To ensure that the modulo operation does not cause rounding error, some options are discussed in [1].
· Option 1. The exact method to ensure no rounding error is left as UE implementation, by adding Note or Normative text, e.g. "The MAC entity shall ensure no rounding error is generated when performing the modulus operation with drx-NonIntegerShortCycle or drx-NonIntegerLongCycle as the divisor."
· Option 2. The mathematical formula is specified for modulo operation for non-integer DRX cycle as a normative text.
· Alt 1) The modulo operation is defined as A modulo B = A - floor (A/B) x B or 
· Alt 2) The modulo operation is defined as A modulo B/C = [(AxC) modulo B] / C, where A/B/C is integer

Between Option 1 and 2, we think Option 1 is better with following reasons.
First, the Option 2 imposes many restrictions on UE implementation. There may be various ways to resolve rounding error problems, but the Option 2 restricts the UE implementation with the specified formula. 
Secondly, it is not ensured that the specified formula will work correctly when new DRX cycle is introduced in future releases. It is important to have future proof solution.
Thirdly, some program languages support modulo operation on rational numbers without rounding errors, e.g. BigDecimal class in Java [2]. As the rounding error depends on used program language, it is overkill to restrict the UE implementation with the specified formula.
Based on the above reasoning, we think it is enough to leave it up to the UE implementation. We are ok with either Note or Normative text.
Proposal 1. The exact method to ensure no rounding error is left up to UE implementation, by adding Note or Normative text.

In addition to open issue, some suggestions submitted in the last meeting can be discussed. 
Currently, the UE can provide its preference on DRX cycle to the network by transmitting UAI. In the last meeting, it was proposed that non-integer DRX cycle is also considered in drx-Preference-r16 in UAI in [3][4]. 
However, RAN2 already agreed to provide the periodicity of BAT via UAI, i.e. trafficPeriodicity-r18. In our view, the network can estimate the proper DRX cycle length based on trafficPeriodicity-r18, so there is no need to report the preferred DRX cycle redundantly.
Proposal 2. Non-integer DRX cycle is not considered for the preferred DRX cycle in UAI.

Moreover, in order to handle jitter, two solutions were suggested in [5].
One suggests an enhancement for PDCCH monitoring by using two different USSs having different PDCCH monitoring periodicities. Before the arrival of the burst of traffic, the UE monitors the first USS which is configured with a long PDCCH monitoring periodicity, and then upon detecting the burst arrival, the UE switches to the second USS which is configured with a short PDCCH monitoring periodicity. In this way, PDCCH monitoring is reduced and the UE can avoid high power consumption.
However, we think that this is very similar to Rel-17 PDCCH skipping. In Rel-17 PDCCH skipping, upon receiving DCI, the UE can skip PDCCH for a pre-configured time or perform SSSG (search space set group) switching. 
Considering that search space is switched based on DCI, there is no difference between Rel-17 PDCCH skipping and the suggestion, and we don't see the need to introduce the suggestion.
Proposal 3. For jitter handling, the switching between two USSs having different PDCCH monitoring periodicities is not considered.

The other solution suggests to extend onDuration automatically if a packet is delayed. In legacy, if the packet is not received during onDuration, onDuration timer expires and the UE will go to DRX off duration, and then the packet can be received in the next onDuration. This leads to significant impact on overall latency and we also think this should be enhanced in Rel-17.
For the extended onDuration, if the packet is delayed due to jitter and is not received during onDuration, onDuration is extended by a specific duration, and if the packet arrives during extended onDuration, the UE does not extend onDuration anymore.
By introducing the suggested method, i.e., onDuration extension, the UE can monitor PDCCH sufficient time period, and thus the overall latency can be improved.
There may be a concern that the extended onDuration brings some power consumption. However, in our view, if onDuration is extended with short value, the UE can monitor PDCCH without increasing significant power consumption.
Proposal 4. onDuration is extended automatically if PDCCH for scheduling is not received during onDuration.

3.	Conclusion
In this document, we present our view on power saving in XR, and made proposals as follows. 
Proposal 1. The exact method to ensure no rounding error is left up to UE implementation, by adding Note or Normative text.
Proposal 2. Non-integer DRX cycle is not considered for the preferred DRX cycle in UAI.
Proposal 3. For jitter handling, the switching between two USSs having different PDCCH monitoring periodicities is not considered.
Proposal 4. onDuration is extended automatically if PDCCH for scheduling is not received during onDuration.
4.	Reference
[1] R2-23xxxxx	[POST123bis][024][XR] 38.321 Running CR (Qualcomm)
[2] R2-2309486	Power saving enhancements for XR		Qualcomm
[3] R2-2310042	Discussing on XR-specific C-DRX enhancement	Xiaomi Communications
[4] R2-2310787	Discussion on DRX enhancements for XR	China Telecom Corporation Ltd.
[5] R2-2310110	XR-specific power saving	ZTE Corporation, Sanechips
1

1

