3GPP TSG-RAN WG2 Meeting #120

R2-2212812
Toulouse, France, November 14~18, 2022
Agenda item:
8.5.3.1(DRX enhancements)
Source:
Samsung

Title:
Discussion on power saving scheme for XR
Document for:
Discussion & Decision
1 Introduction
In last two RAN2 meetings, the power saving for XR was discussed and some preliminary agreements were achieved.
	· 1: RAN2 to focus on the following issues for power saving, as well necessary parameters XR-awareness to support such enhancements, i.e.:

-
DRX enhancements to address the issues of DRX cycle mismatch and jitter

-
Identify necessary parameters from CN for XR-awareness for power saving

· Enhancements to Rel-17 PDCCH adaptation can be discussed based on RAN1 feedback, if they have any RAN2 impact

· RAN2-specific aspects can be studied based on contributions (e.g. multiple XR traffic flows with different periodicities, SFN wrap-around, RAN2-specific CDRX aspects, …).

	· 1: At least RRC pre-configuration and switching of configurations of DRX could be considered for enhancements of XR power saving. Other solutions are not precluded and can be further discussed.

So far, the discussions in RAN2 can be categorized into two aspects:

· Aspect 1: RAN2 specific enhancements for C-DRX

Such aspect is mainly focused on addressing the issues related to DRX configurations, e.g., non-integer periodicity of XR, SFN wrap-around, multi-flow coexistence, retransmission of pose/control information. The potential solutions for this aspect can be considered as pure (almost pure) RAN2 related.

· Aspect 2: RAN1 related enhancements

Such aspect is mainly focused on adapting the active time (PDCCH monitoring period) to address the issues related to the dynamic change of XR traffic, e.g., Jitter, early completion of XR traffic. The potential solutions for this aspect are highly related to RAN1 discussions.
In this contribution, we will share our views on the above two aspects.

2 Discussion
2.1. RAN2 specific enhancements for C-DRX

This aspect is mainly focused on three issues: 1) non-integer periodicity of XR, 2) SFN wrap-around, and 3) multi-flow coexistence.

· Non-integer periodicity of XR

The frame per second (fps) is used for the XR traffic so that the resultant periodicity of each XR frame becomes a non-integer value, e.g., 8.3333 (for 120 fps), 11.1111 (for 90 fps), 16.6666 (for 60fps). An intuitive solution is to define the non-integer periodicity for the DRX cycle, which breaks the “modulo” calculation used to determine the starting time of legacy DRX cycle. Moreover, there is no clear benefit to have an exact matching between the DRX cycle and periodicity of XR traffic since the jitter issue will result in the aperiodic arrival of XR traffic at the RAN side.

Observation 1: the non-integer DRX cycle breaks the legacy calculation of DRX cycle without clear benefit considering the jitter issue.

Another direction is to dynamically adjust the start offset of DRX OnDuration Timer. However, such method introduces unnecessary signaling overhead since the periodicity of XR traffic is a semi-static feature. For example, for 60fps, the dynamic signaling should be used in every 50ms. Moreover, the start offset is impacted by jitter as well, which is unknown at gNB side. Thus, it is difficult to derive the exact starting time for each XR traffic. The dynamic indication of the start offset has also been discussed in RAN1 where, due to jitter, it has been considered that it is preferable for UE power savings and for XR capacity to extend the DRX OnDuration Timer and for the UE to monitor PDCCH for a scheduling DCI instead of a DCI like DCI 2_6 that indicates the start offset.
Observation 2: the feasibility and the benefit of the dynamic DRX starting offset adjustment is unclear.
Proposal 1: the non-integer DRX cycle and dynamic DRX starting offset adjustment are not considered as the solutions for the issue of non-integer periodicity of XR.
Till now, several semi-static solutions are proposed. The main intention is to derive a certain cycle pattern so that the UE can repeatedly use such pattern for DRX operation. Taking 60 fps as an example, an applicable DRX cycle pattern can be {17ms, 17ms, 16ms}, and such pattern is repeated every 50ms. The following alternatives can be considered to realize such pattern:

· Alt. 1: explicit pattern configuration, e.g., {17ms, 17ms, 16ms}

· Alt. 2: one DRX cycle with multiple on-durations, e.g., a DRX cycle is 50ms, where three active times are given

· Alt. 3: multiple DRX configurations with different offsets in 50ms

In our understanding, the above three alts. may cause large specification impact on top of current C-DRX scheme. For example, for Alt. 1, except configuring DRX pattern, the specification should define the ways to start OnDuration timer w.r.t. different cycles in each pattern; for Alt. 2, specification efforts should be spent to define three on-duration starting offsets; for Alt. 3, the specification needs define multiple DRX cycles within a certain period. In order to reduce the impact of specification, another possible solution can be

· Alt. 4: “Super cycle + Short cycle”

Taking 60fps as an example, the packet generation periodicity is 16.6666ms so that 3 XR-packet (each of which may contain multiple IP packets) is generated evenly within every 50ms. Thus, DRX configuration should generate 3 cycles within every 50ms. To achieve such purpose, this solution defines a new cycle with the value of 50ms for 60fps XR traffic. As shown in Fig. 1, SuperCycle is 50ms, while DRX ShortCycle is 17ms. During SuperCycle, the DRX ShortCycle is used to determine the start position of DRX active time. Once 50ms ends, the SuperCycle restarts so that the last DRX cycle during every 50ms is 16ms only. To realize such method, the specification can be changed as below to determine the start of OnDurationTimer, i.e.,
	1>
if the Short DRX cycle is used for a DRX group, and{ [(SFN × 10) + subframe number] modulo (SuperCycle) }modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle):

2>
start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.

[image: image1]
Fig. 1 “Super cycle + Short cycle”
It can be observed that Alt. 4 has less specification impact compared to Alt. 1~3.
Proposal 2: RAN2 is kindly asked to consider the “Super cycle + Short cycle” (i.e., limit the calculation of OnDurationTimer starting time within new cycle, e.g., SuperCycle) as the solution dealing with non-integer periodicity of XR traffic.
Meanwhile, on top of Alt. 4, the multi-flow case can be considered further. Fig. 2 shows an example. When two flows are considered, the short cycles in the super cycle are different. Thus, it is hard to formulate different cycles with modulo operation and the specification should define the ways to start OnDuration timer w.r.t. different cycles in each super cycle. To address this issue, we can define a new timer, which determines the length of each short cycle in super-cycle. If each short cycle in super-cycle is different, such new timer can have different values. Once such timer expires, it will start again with next value of such timer. For example, XR traffic contains two flows, i.e., flow 1 has 60Hz (16.66 ms periodicity) and flow 2 has 40 Hz (25 ms periodicity). They will share common super-cycle, 50 ms, with start time of on-duration could be {0 ms, 17 ms, 25 ms, 33 ms}. Each timer is configured like pattern; 1st timer: 17 ms, and 2nd timer: 8 ms, and 3rd timer: 8 ms.
[image: image2.png]Flow 1

HE B B B

Flow 2

Flow 1+2

P2

P1

Fig. 2 pattern configuration considering multi-flow
Proposal 3: RAN2 is kindly asked to discuss the multi-flow case under “Super cycle + Short cycle” (e.g., different short cycles in one super-cycle).
· SFN wrap-around
In this issue, whenever SFN changes to 0, the DRX cycle may not match the period of XR flow. This is a valid issue under the current DRX design and it can be considered as a part of DRX cycle mismatch. Till now, the following solutions are proposed:
· Alt. 1: replace SFN in current DRX formula by a new state variable SFN_M (i.e., 0~1000), i.e., [Qualcomm, R2-2209453]

	1>
if the Short DRX cycle is used for a DRX group, and [(SFN_M × 10) + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle):

2>
start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe

· Alt. 2: introduce a reference SFN indicator for DRX configuration [Huawei, R2-2209516]

	1>
if the Short DRX cycle is used for a DRX group, consider sequentially that the Nth (N >= 0) DRX short cycle occurs in the subframe for which [(SFN × 10) + subframe number] = (drx-timeReferenceSFN × 10 + drx-StartOffset + N × drx-ShortCycle) modulo (10240):

2>
start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe.

· Alt. 3: introduce H-SFN [VIVO, R2-2209488]
	1>
if the Short DRX cycle is used for a DRX group, and [(SFN+1024*H-SFN)× 10 + subframe number] modulo (drx-ShortCycle) = (drx-StartOffset) modulo (drx-ShortCycle):

2>
start drx-onDurationTimer for this DRX group after drx-SlotOffset from the beginning of the subframe

The above three methods are workable and Alt. 1/3 has less specification impact than Alt. 2.

Proposal 4: RAN2 is kindly asked to consider the following alternatives to address SFN wrapped-around issue:

· Alt. 1: replace SFN in current DRX formula by a new state variable SFN_M (i.e., 0~1000)

· Alt. 2: introduce a reference SFN indicator for DRX configuration

· Alt. 3: introduce H-SFN
· Multi-flow coexistence

In actual deployments, XR traffic may contain multiple XR traffic flows. Thus, from practical point of view, multi-flow should be addressed in the scope of Rel-18 to avoid limiting the applicability of Rel-18 XR.

Proposal 5: RAN2 is kindly asked to address multi-flow case in Rel-18.

To address this issue, one possible solution can be to apply different DRX configurations for different XR-flows. Specifically, the DRX configuration may be provided together with information identifying a XR-flow, e.g., DRB ID, logical channel ID, etc. In practice, multiple DRX configurations may result in separate active time, e.g., Fig. 3(a), so the operation of each DRX configuration is performed independently. However, in some cases, multiple DRX configurations may have overlapped active times, e.g., Fig. 3(b).

[image: image3]

 SHAPE * MERGEFORMAT
[image: image4]
(a) (b)

Fig. 3 multiple DRX configurations for multi-flow case

For the overlapped case, the resultant issue is how to update the DRX related timers. An intuitive solution is to maintain independent set of DRX related timers for each XR-flow. Thus, the DRX related timers can be updated according to the legacy DRX scheme. However, this would cause much more implementation burden at the UE due to the maintenance of multiple sets of DRX related timers. Thus, for multi-flow case, it is beneficial to have some discussion on how to update the DRX related timer(s), e.g., DRX On duration timer, DRX Inactivity timer.
1) Example 1: DRX On duration timer update

As shown in Fig. 4, for case a, the second On duration timer starts later than the first one. Since the value of drx-onDurationTimer2 can result in the active time being extended after expiry of the first On duration timer, the On duration timer should be restarted by setting value of drx-onDurationTimer2; for case b, the second timer would not extend active time so that the UE will not update the ongoing On duration timer. This example indicates that, with multiple DRX configurations, the DRX related timer can start/restart with the value causing the largest active time. In our understanding, the value setting of each timer is based on the traffic features. Thus, the timer update cannot reduce the intended active time when serving one traffic.

[image: image5]
Fig. 4. Update of On duration timer

2) Example 2: DRX Inactivity timer update

DRX Inactivity timer is different from On duration timer. The latter one starts/restarts based on the calculation toward the subframe. However, the condition of starting/restarting DRX inactivity timer is given as below:
	2>
if the PDCCH indicates a new transmission (DL, UL or SL) on a Serving Cell in this DRX group:

3>
start or restart drx-InactivityTimer for this DRX group in the first symbol after the end of the PDCCH reception.

Observation 3: the drx-InactivityTimer starts/restarts when a new transmission is indicated by PDCCH, moreover, the counting down of the timer starts at the first symbol after the end of PDCCH reception.

In legacy DRX, the configuration is not differentiated by traffic. Thus, as long as PDCCH indicates a new transmission, the timer can start with the configured value after PDCCH reception. However, in XR, if different traffic flows use different timers, the PDCCH cannot indicate the scheduled XR-flow, which is identified by the UE when MAC PDU is successfully decoded. For example, as shown in Fig. 5, at time T1, the UE can start/restart the DRX Inactivity Timer when the UE receives a DCI scheduling a transmission/reception. However, at that moment, the UE cannot determine the applicable drx-InactivityTimer value since the UE cannot know the XR-flow of the scheduled MAC PDU. At the time T2, the UE successfully decodes the MAC PDU and can determine the applicable drx-InactivityTimer value based on the XR-flow of the received MAC PDU.

[image: image6]
Fig. 5 Start/Restart of DRX Inactivity timer

Thus, for the start/restart of DRX inactivity timer, the following issues should be further discussed:

· Issue 1: what is the initial value set to DRX Inactivity Timer when the UE receives a PDCCH with a scheduling DCI?

To resolve Issue 1, a default (primary) DRX configuration can be selected among the multiple DRX configurations. When the XR-flow cannot be determined, the DRX Inactivity Timer can be set based on the default configuration. Such scheme can be also applied when the MAC PDU is not successfully decoded.

· Issue 2: how to deal with the ongoing DRX Inactivity Timer when the MAC PDU is successfully decoded?

To resolve Issue 2, the remaining time of the DRX Inactivity Timer should be updated by the drx-InactivityTimer corresponding to the decoded MAC PDU. For example, as shown in Fig. 6, the new remaining time = drx-InactivityTimer2 - (Default drx-InactivityTimer – Remaining time).

[image: image7]
Fig. 6 DRX Inactivity Timer update
Proposal 6: RAN2 is kindly asked to discuss the update of DRX related timer(s), e.g., DRX On duration timer, DRX Inactivity timer, given that multiple DRX configurations are pre-configured to the UE for multi-flow.
2.2. RAN1 related enhancements
The RAN1 related enhancements are mainly focused on dynamic adjustment of the DRX active time, with intention of addressing jitter issue and early completion of XR traffic.
· Jitter related enhancement

1) Early Jitter
To address this issue, the potential solution is to dynamically indicate the start offset of DRX cycle, or to trigger a sparse PDCCH monitoring before the start of OnDurationTimer. However, this solution is workable only if the gNB can know the exact arriving time of XR traffic. Considering the jitter follows a random distribution, such dynamic method may not be feasible and would be preferable instead, at least in terms of capacity, for a UE to monitor PDCCH for a scheduling DCI instead of a DCI/signal that indicates the start offset without scheduling data.
Observation 4: Dynamic indication of DRX start offset or sparse SSSG before the start of DRX OnDurationTimer is not feasible for XR as jitter is random.

2) Late Jitter

If the XR traffic arrives late after the start of DRX OnDurationTimer, the two–stage CDRX on duration is proposed, i.e., the UE starts the PDCCH monitoring from a sparse SSSG and switches to a dense PDCCH monitoring if new data transmission is scheduled. Such method causes additional latency if the XR traffic arrives during PDCCH monitoring according to the sparse SSSG configuration and may also be realized based on Rel-17 SSSG switching. However, either approach would reduce PDB and decrease capacity while offering marginal/no UE power savings particularly when multiple traffic flows are considered.

Observation 5: Two-stage SSSG switching may result in additional latency of XR traffic and reduced capacity.
3) Late data arrival after DRX active time

This issue results from the small OnDurationTimer, i.e., the XR traffic arrives after the expiry of DRX active time. To resolve this issue, potential solutions can be autonomous or DCI-triggered extension of DRX if the UE is not scheduled during DRX active time. This is also related to the estimation accuracy of jitter. To avoid this issue, the value of OnDurationTimer can be set large enough to cover jitter and PDCCH skipping can be used, if needed, after the last XR packet has been delivered.

Observation 6: Large DRX OnDurationTimer setting can achieve the same effect as the enhancements on the autonomous or DCI-triggered extension of DRX active time and PDCCH skipping can additionally be used for UE power savings.

For the above jitter related issues, the essential problem is how to derive an accurate jitter estimate at the gNB. Since the jitter is a random parameter as a result of codec operation and non-deterministic NW delays, it is infeasible to derive/predict the exact arrival time of each XR packet. However, as a semi-static feature, the lower/upper-bound of jitter could be derived via, e.g., gNB’s statistics or CN notification. Thus, the gNB can configure the DRX (e.g., start offset, OnDurationTimer) with large Active time to cover the jitter. It may be argued that a large DRX active time may cause additional power consumption. However, in Rel-17, PDCCH skipping was specified which allows UE to skip the PDCCH monitoring based on received DCI. To avoid the unnecessary power assumption, the PDCCH skipping can be reused. Moreover, it is preferable for a UE to monitor PDCCH for a scheduling DCI instead of monitoring PDCCH/signal for a DCI 2_6/WUS especially since the PDCCH monitoring needs to be relatively dense to avoid impacting PDB and reducing capacity.
Proposal 7: The jitter issue can be addressed by setting large DRX active time and reusing PDCCH skipping scheme.

· Early completion of XR traffic
By setting large DRX active time, a consequence is that the Active time may not expire after completing the last packet transmission. To address this issue, PDCCH skipping is an established technology with L1 flexibility, i.e., after knowing the last packet is delivered, the gNB can trigger PDCCH skipping for the UE to skip PDCCH receptions for the rest of active time.
Proposal 8: the PDCCH skipping can be used to address the early completion of XR traffic.

The Rel-17 design of PDCCH skipping is limited by the support of up to 3 durations. It may be beneficial to achieve flexible skipping, and then more skipping durations may be needed. However, this highly relies on RAN1 discussions.

Proposal 9: RAN2 is kindly asked to wait for progress on PDCCH skipping.
Conclusion

Based on the above, RAN2 is requested to discuss and agree on the following proposal:

Proposal 1: the non-integer DRX cycle and dynamic DRX starting offset adjustment are not considered as the solutions for the issue of non-integer periodicity of XR.
Proposal 2: RAN2 is kindly asked to consider the “Super cycle + Short cycle” (i.e., limit the calculation of OnDurationTimer starting time within new cycle, e.g., SuperCycle) as the solution dealing with non-integer periodicity of XR traffic.
Proposal 3: RAN2 is kindly asked to discuss the multi-flow case under “Super cycle + Short cycle” (e.g., different short cycles in one super-cycle).
Proposal 4: RAN2 is kindly asked to consider the following alternatives to address SFN wrapped-around issue:

· Alt. 1: replace SFN in current DRX formula by a new state variable SFN_M (i.e., 0~1000)

· Alt. 2: introduce a reference SFN indicator for DRX configuration

· Alt. 3: introduce H-SFN
Proposal 5: RAN2 is kindly asked to address multi-flow case in Rel-18.

Proposal 6: RAN2 is kindly asked to discuss the update of DRX related timer(s), e.g., DRX On duration timer, DRX Inactivity timer, given that multiple DRX configurations are pre-configured to the UE for multi-flow.
Proposal 7: the jitter issue can be addressed by setting large DRX active time and reusing PDCCH skipping scheme.

Proposal 8: the PDCCH skipping can be used to address the early completion of XR traffic.

Proposal 9: RAN2 is kindly asked to wait for progress on PDCCH skipping.
[image: image8.png]Remaining time

ityTImer2

Determine to use drx- New remaining time
InactivityTImer2

[image: image9.png]T1:
Start/restart of DRX

Inactivity timer

MAC
DU

T2:

Determine the value
of drx-InactivityTimer

[image: image10.png]drx-onDurationTimer1
+—>

+—>
drx-onDurationTimer2

Restart timer with value set
as drx-onDurationTimer2

(case a)

drx-onDurationTimer1
+—>

+—>
drx-onDurationTimer2

Keep running on
duration timer

(case b)

[image: image11.png]DRX config. 1

DRX config. 2 J

[image: image12.png]DRX config. 1

DRX config. 2

[image: image13.png]SuperCycle = 50ms

ShortCycle = 17ms ShortCycle = 17ms 16ms

