
[bookmark: _GoBack]3GPP TSG-RAN WG2 Meeting #120		R2-2211494
Troulouse, France, 14th Nov. – 18th Nov. 2022
Source:	vivo
Title:	Discussion on DRX Enhancements for XR Power Saving
Agenda Item:	8.5.3.1
Document for:	Discussion and Decision
1. Introduction
In this contribution, we discuss the issues related to potential DRX enhancements for XR service.
2. Discussion
2.1. Align DRX Configuration with Non-integer Periodicity of XR Service
Currently, the standard values for DRX cycle are integers. However, the typical XR traffic periodicities are non-integers. For example, 16.67ms for 60FPS, 33.33ms for 30 FPS etc. Therefore, the existing DRX cycle values don’t match with the XR traffic periodicities. To address the mismatch issue, we have agreed to study potential DRX enhancements. Some solutions on the table are analyzed as following:

· Solution1: Introduce non-integer DRX cycle value
To align DRX cycle with non-integer traffic periodicity, a straightforward way is to extend the standard values of DRX cycle to include non-integer values. For example, new DRX cycle values, e.g. 33.33/16.67/8.33 ms, can be introduced to support 30/60/120FPS frame rate in Rel-18.
One main concern of introducing non-integer DRX cycle(s) is the lack of flexibility and backward compatibility. Let's imagine an XR service with a new frame rate, e.g. 65 FPS, appears after Rel-18 is frozen. Then the Rel-18 UE, which doesn’t support 1000/65ms DRX cycle, cannot work in a power-efficient manner for this XR service. Hence, we propose:
Proposal 1: Non-integer values for DRX cycle are not introduced due to a lack of flexibility and backward compatibility.

· Solution2: UE switches among multiple DRX configurations according to pre-configurated order
In the RAN2#119bis-e meeting, the following agreement was achieved:
	1: At least RRC pre-configuration and switching of configurations of DRX could be considered for enhancements of XR power saving. Other solutions are not precluded and can be further discussed.

However, no details were agreed. We provide our view on this solution following the light of the above agreement. An example of XR traffic with 60 FPS (i.e. 3 frames arrive every 50ms) is used to explain the solution, as depicted in Figure 1 below.

Figure 1 DRX configuration solution to solve the mismatch issue
In this solution, one DRX configuration set, which includes 3 DRX configurations, is provided to UE via RRC, i.e. {DRX configuration1, DRX configuration2, DRX configuration3}. UE applies the DRX configurations one by one according to the pre-configured order, and the DRX configuration set is repeated in time. e.g.
· UE starts a DRX cycle (i.e. DRX cycle1) according to the DRX configuration1 after the DRX configuration set is configured
· Then UE starts a new DRX cycle (i.e. DRX cycle2) according to the DRX configuration2 upon the DRX cycle1 is over.
· Then UE starts a new DRX cycle (i.e. DRX cycle3) according to the DRX configuration3 upon the DRX cycle2 is over.
· Then UE starts a new DRX cycle (i.e. DRX cycle4) according to the DRX configuration1 upon the DRX cycle3 is over.
· ……
Except for the DRX cycle lengths, which are 16/17/17ms in this example, other parameters of DRX configurations in one set may be configured to the same value, e.g. drx-onDurationTimer and drx-InactivityTimer. Hence, the new DRX configuration set IE should indicate at least the cycle length and order of each component of DRX configuration, assuming other parameters are common for all the components of DRX configurations and configured with the existing IEs.
Compared with introducing non-integer DRX cycle(s), this solution can provide enough flexibility and backward compatibility. Again, let’s take an XR service with 65 FPS as an example. The network can configure different DRX configuration set to match the service as following:
· Configuraiton1: 8 DRX configurations with cycle length = 15ms, 5 DRX configurations with cycle length = 16ms;
· Configuraiton2: 4 DRX configurations with cycle length =14ms, 9 DRX configurations with cycle length = 16ms;
· Configuraiton3: 7 DRX configurations with cycle length =14ms, 6 DRX configurations with cycle length = 17ms;
· Potential Configuraiton4: ……
It means even if some cycle lengths are not supported by old UEs, assuming 15ms is not specified in Rel-18, the network can still configure a Rel-18 UE with a set of DRX cycles specified in Rel-18 (e.g. 14ms, 16ms, and 17ms) to match an XR traffic with new emerging frame rate after Rel-18 frozen.
Proposal 2: RAN2 to capture the following DRX enhancement to address non-integer periodicity of XR service in the TR:
· UE switches among pre-configured multiple DRX configurations: gNB configures UE with one DRX configuration set, which includes N DRX configurations and the order of use. UE applies the DRX cycle configurations one by one according to pre-configured order, i.e. UE starts a new DRX cycle with the next DRX configuration when a current DRX cycle is over. When the current DRX cycle, which is based on the last DRX configuration in the DRX configuration set, is over, the next DRX cycle is initiated with the first DRX configuration in the DRX configuration set.
· Solution3: dynamic adaptation of a pre-configured C-DRX configuration
Another potential solution is dynamic adaptation of a pre-configured C-DRX configuration. This method allows the gNB to provide UE with an original C-DRX configuration with RRC signaling. Then the network can adjust the DRX parameters, e.g. the start offset of DRX on-duration (e.g. via L1/L2 signaling), to align with XR packet arrival.
One reason for dynamic adaptation C-DRX configuration is the assumption that data burst of XR traffic may shift from time to time. Hence, the (semi-)static configured C-DRX configuration cannot match with the dynamically changing XR traffic pattern. However, we have concerns about developing DRX solutions based on the above assumption, which has not been confirmed by SA.
Another motivation for dynamic adaptation solution is to address the issues of DRX cycle mismatch and jitter with a common solution. However, we think this argument may not align with the following RAN1 assumption:
	Conclusion of RAN1 110:
RAN1 does not assume instantaneous jitter value for a frame is predictable for Rel-18 XR SI power saving study before further input is provided by SA.

With the assumption of RAN1, we wonder how can a gNB dynamically select and indicate UE a proper on duration start time to handle the instantaneous jitter.
Taking the above into account, we think the motivation and target scenarios for dynamic adaptation of a pre-configured C-DRX configuration are not clear and propose:
Proposal 3: Further study on the dynamic adaptation of a pre-configured C-DRX configuration is postponed until SA has identified the motivation or target scenarios.

2.2. SFN wrap-around
According to the current specification, the DRX on-duration timer starts when SFN and subframe number satisfy the following formula:
[(SFN × 10) + subframe number] mod (drx-LongCycle) = drx-StartOffset.
[bookmark: OLE_LINK2]In this formula, SFN takes the value of 0~1023, i.e., wraps around every 10240ms. Therefore, when the DRX cycle is set to a value when 10240ms is not integer times of DRX cycle (e.g., 50ms), there will be a problem that the start point of the first DRX on-duration after SFN wrap-around is shifted with a wrong offset and then propagates this offset to the following cycles. The unexpected offset causes a mismatch between DRX on-duration and XR traffic arrival time and leads to extra latency.
To handle this issue, we propose to modify the formula by introducing hyper frame number, which is the concept from eDRX cycle in idle/inactive mode:
 [(SFN + 1024* H-SFN) × 10+ subframe number] mod (drx-LongCycle) = drx-StartOffset.
Proposal 4: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.

2.3. Multiple XR traffic flows with different periodicities
[bookmark: OLE_LINK3]In TR 38.838 [1], the model for XR traffic considers the multi-flow nature of XR traffic, which includes, for example, video, audio and pose flow. The flows are characterized by different periodicities, jitter distributions, and so on. Hence, using a single DRX configuration is hard to match the multi-flow XR traffic with different characteristics and to achieve enough power saving gain. Then a straightforward solution is to support multiple active DRX configurations, i.e. each DRX configuration for one data flow.
Proposal 5: To match the different characteristics for multi-flow of XR traffic, one UE can be configured to apply multiple DRX configurations (e.g., with different periodicities/on-duration timers) at the same time.

2.4. Jitter handling
The existence of jitter forces UE to wake up earlier than the expected PDU arrival time which may increase the UE’s power consumption. According to the conclusions in the RAN1#110 meeting, RAN1 does not assume instantaneous jitter value for a frame is predictable for Rel-18 XR SI power saving study before further input is provided by SA. Hence, the potential jitter handling only depends on the statistics jitter information.
In RAN1#110 meeting, solutions for jitter handling have been discussed with the below conclusion:
	Conclusion
All the proposed PDCCH monitoring adaptation/reduction schemes including those for jitter handling need to be compared against the Rel-17 PDCCH monitoring adaptation which is to be used as performance reference.

The conclusion in RAN1 means any jitter handling solution could be considered if there is power saving gain compared to Rel-17 PDCCH monitoring adaptation.
· Legacy R17 PDCCH monitoring adaptation scheme
Leveraging the Rel-17 search space set group (SSSG) switching indication, as depicted in Figure 2, to handle jitter, UE can be switched to the default SSSG with sparse PDCCH monitoring periodicity via the expiration of searchSpaceSwitchTimer-r17 or explicitly SSSG switching indication. Once the UE detects a scheduling PDCCH (which implicitly indicates the arrival of the traffic burst), the UE can automatically switch to dense SSSG for data transmission. After that, a PDCCH skipping indication can be indicated to the UE at a proper time. In this sense, the existing R17 SSSG switching indication can reduce the unnecessary power consumption caused by jitter.

Figure 2 R17 PDCCH monitoring adaptation
Observation 1: R17 PDCCH monitoring adaptation can reduce the unnecessary power consumption caused by jitter.
· Two-stage DRX scheme
In RAN2#119e meeting, some companies proposed several solutions to handle jitter. One typical solution is to introduce two-stage DRX as proposed in [2]. In principle, it could be sufficient that the UE monitors a few short times during that range instead of the whole jitter range. In this case, existing DRX functionality could be used by configuring a long DRX cycle, with the difference that the UE would monitor PDCCH only intermittently during that “OnDuration” time.
In this scheme, two-stage DRX introduces Inner DRX cycles within an Outer DRX cycle. The outer onDurationTimer determines the period over which shorter Inner DRX cycles run. In other words, the inner onDurationTimer is started only as long as the outer onDurationTimer is running. The UE monitors the PDCCH only during the inner onDurationTime of the Inner cycles.
· Performance evaluation
[bookmark: _Hlk115076714]In order to evaluate whether there is power saving gain for two-stage DRX scheme compared to the legacy R17 PDCCH monitoring adaptation, simulation is performed with the assumptions /configurations provided in Annex B.
Table 1 shows the performance comparison of the two-stage DRX scheme and legacy R17 PDCCH monitoring adaptation scheme. Both schemes can achieve a considerable power saving gain compared to the Always-On solution. However, compared to Rel-17 PDCCH monitoring adaptation, two-stage DRX scheme will result in more UE power consumption by 1.84% ~ 5.48% due to the inflexibility to stop PDCCH monitoring. Two-stage DRX also shows worse capacity than R17 PDCCH monitoring adaptation when the number of UEs per cell is 10.
Table 1 Evaluation results in FR1 DL Indoor Hotspot with 30Mbps traffic model
	Power saving scheme
	DRX configuration
(Cycle_ODT_IAT) ms
	avg # UEs/ cell = N1
	C1=floor
(Capacity)
	% of satisfied UEs when #UEs/cell = N1
	Power saving gain (%)
	Notes

	AlwaysOn
	-
	5
	10
	100%
	-
	

	R17 PDCCH monitoring adaptation
	16.67_10_4
	5
	10
	100%
	23.36%
	Note1

	
	16.67_10_4
	5
	10
	100%
	25.39%
	Note2

	Two-stage CDRX
	Outer CDRX:
16.67_4_4
Inner CDRX:
4_2_4
	5
	10
	100%
	21.52%
	Note3

	AlwaysOn
	-
	10
	10
	92.50%
	-
	

	R17 PDCCH monitoring adaptation
	16.67_10_4
	10
	10
	92.22%
	19.28%
	Note1

	
	16.67_10_4
	10
	10
	88.52%
	21.84%
	Note2

	Two-stage CDRX
	Outer CDRX:
16.67_4_4
Inner CDRX:
4_2_4
	10
	10
	86.89%
	16.36%
	Note3

	Note1: doing PDCCH monitoring every 2 slots in sparse SSSG before data arrive
Note2: doing PDCCH monitoring every 4 slots in sparse SSSG before data arrive
Note3: 4ms CDRX cycle and 2ms ODT for inner CDRX

Observation 2: Compared to the existing Rel-17 PDCCH monitoring adaptation scheme, two-stage DRX scheme achieves less power saving gain and cell capacity.
With the above observation, we think legacy Rel-17 PDCCH monitoring adaptation could be used to handle jitter for XR service.
Proposal 6: From RAN2 point of view, jitter can be handled by R17 PDCCH monitoring adaptation.
2.5. UL slot handling
In addition to the non-integer cycle issue, the design of NR DRX, comparing to LTE, may increase UE power consumption due to the stringent latency requirement of XR service. For DRX configuration in LTE [3], the following DRX related timers are defined as below:
	drx-InactivityTimer: Except for NB-IoT UEs, BL UEs or UEs in enhanced coverage, it specifies the number of consecutive PDCCH-subframe(s) after the subframe in which a PDCCH indicates an initial UL, DL or SL user data transmission for this MAC entity. For NB-IoT UEs, it specifies the number of consecutive PDCCH-subframe(s) after the subframe in which the HARQ RTT timer or UL HARQ RTT timer expires. For BL UEs or UEs in enhanced coverage, it specifies the number of consecutive PDCCH-subframe(s) following the subframe containing the last repetition of the PDCCH reception that indicates an initial UL or DL user data transmission for this MAC entity.
drx-RetransmissionTimer: Specifies the maximum number of consecutive PDCCH-subframe(s) until a DL retransmission is received.
drx-ULRetransmissionTimer: Specifies the maximum number of consecutive PDCCH-subframe(s) until a grant for UL retransmission or the HARQ feedback is received.
onDurationTimer: Specifies the number of consecutive PDCCH-subframe(s) at the beginning of a DRX Cycle.

However, in NR, these DRX timers are defined by the duration with the unit of ms or slots in [4]. With the unit of ms or slot, the timers are controlled by absolute time duration, without considering TDD pattern configuration. There may be no issue for non-delay-sensitive traffic, where only a long DRX cycle is actually configured. But for XR service, which has requirements of stringent latency and high data rate, much shorter DRX timers need to be configured for seeking the balance between power saving and capacity.
Taking drx-InactivityTimer as an example, to achieve power saving gain, a shorter drx-InactivityTimer will be configured. In case several slots within a periodicity are configured as UL slots according to the TDD pattern configuration, there may be the case that the duration determined by a running DRX timer may partially or fully fall into UL slot(s). Hence, the UE will have less or even no opportunity to monitor PDCCH during the duration actually while the timer is running. In this way, the latency requirement for the traffic may not be guaranteed. On the contrary, if a longer drx-InactivityTimer is configured to allow UE to have enough PDCCH monitoring occasions, it would result in more power consumption.
Take TDD frame structure DDDUU and SCS=30KHz as an example, we assume the DRX cycle is 16ms and drx-InactivityTimer is configured as 2ms as shown in Figure 3. Following the current NR specification for DRX timers, the decrement of DRX timer will be regardless of DL or UL slot. When a drx-InactivityTimer runs, some of the slots during the drx-InactivityTimer are overlapping with the UL slots. Therefore, the UE has fewer PDSCH scheduling opportunities, which will lead to larger scheduling delay.
To address this problem, we need to enhance the mechanism so that DRX timers do not decrement during UL slots.
[image:]
Figure 3 DRX configuration in TDD deployment
Proposal 7: To achieve more power saving gain, RAN2 to consider C-DRX enhancements to enable a short DRX timer configuration without latency increasing, e.g., some DRX timers (e.g., drx-onDurationTimer and drx-InactivityTimer) are configured without counting the UL slot.
3. Conclusion
In this contribution, we discuss the issues related to potential DRX enhancements for XR service. Based on the discussion, we have the following proposals:
Proposal 1: Non-integer values for DRX cycle are not introduced due to a lack of flexibility and backward compatibility.
Proposal 2: RAN2 to capture the following DRX enhancement to address non-integer periodicity of XR service in the TR:
· UE switches among pre-configured multiple DRX configurations: gNB configures UE with one DRX configuration set, which includes N DRX configurations and the order of use. UE applies the DRX cycle configurations one by one according to pre-configured order, i.e. UE starts a new DRX cycle with the next DRX configuration when a current DRX cycle is over. When the current DRX cycle, which is based on the last DRX configuration in the DRX configuration set, is over, the next DRX cycle is initiated with the first DRX configuration in the DRX configuration set.
Proposal 3: Further study on the dynamic adaptation of a pre-configured C-DRX configuration is postponed until SA has identified the motivation or target scenarios.
Proposal 4: To handle the SFN wrap-around issue, introduce hyper frame number in the formula used to determine the start point of DRX on-duration.
Proposal 5: To match the different characteristics for multi-flow of XR traffic, one UE can be configured to apply multiple DRX configurations (e.g., with different periodicities/on-duration timers) at the same time.
Proposal 6: From RAN2 point of view, jitter can be handled by R17 PDCCH monitoring adaptation.
Proposal 7: To achieve more power saving gain, RAN2 to consider C-DRX enhancements to enable a short DRX timer configuration without latency increasing, e.g., some DRX timers (e.g., drx-onDurationTimer and drx-InactivityTimer) are configured without counting the UL slot.
4. References
[1] [bookmark: specType1][bookmark: specNumber]TR 38.838 Study on XR (Extended Reality) Evaluations for NR
[2] R2-2208680 Discussion on power saving enhancements for XR Ericsson
[3] TS36.321 E-UTRA Medium Access Control (MAC) protocol specification
[4] TS38.321 NR Medium Access Control (MAC) protocol specification
[bookmark: OLE_LINK7][bookmark: OLE_LINK6]Annex A - TP for TR38.835
============Start of Text proposal of TR 38.835==============================
…Omitted part…
5.2.2	 Layer 2 Enhancements
5.2.2.X Techniques for handling non-integer XR traffic periodicity
Potential DRX enhancement techniques for handling mismatch between DRX cycle and non-integer XR traffic periodicity in this study are summarized as follows,
· Alt1: UE switches among pre-configured multiple DRX configurations
In this solution, gNB configures UE with one DRX configuration set, which includes N DRX configurations and the order of use. UE applies the DRX cycle configurations one by one according to pre-configured order, i.e. UE starts a new DRX cycle with the next DRX configuration when a current DRX cycle is over. When the current DRX cycle, which is based on the last DRX configuration in the DRX configuration set, is over, the next DRX cycle is initiated with the first DRX configuration in the DRX configuration set.
Annex B - Simulation assumptions
[bookmark: _Ref1208685]Table 2. Simulation assumption for FR1 Indoor Hotspot scenario
	Parameter
	value

	Scenarios
	Indoor Hotspot, 12 nodes in 50 m x 120 m

	Channel model
	InH

	Carrier frequency
	4GHz

	Bandwidth
	100 MHz, 1.72% Guard Band

	Subcarrier spacing
	30 KHz

	Frame structure
	DDDSU (S: 10D:2G:2U)

	BS Antennas
(M,N,P,Mg,Ng;Mp,Np)
	For 32T: (4,4,2,1,1;4,4), (dH,dV) = (0.5, 0.5)λ

	UE Antennas
(M,N,P,Mg,Ng;Mp,Np)
	2T/4R, (M, N, P, Mg, Ng; Mp, Np) = (1,1/2,2,1,1;1,1/2),
(dH, dV) = (0.5, N/A) λ

	BS antenna pattern
	Ceiling-mount pattern, 5 dBi

	UE antenna pattern
	Omnidirectional, 0 dBi

	BS Power
	24 dBm per 20MHz

	UE max Power
	23 dBm

	UE Power
	Max Tx power: 23 dBm, (P0 = -80, alpha = 0.8)

	ISD
	20 m

	BS height
	3 m

	UE height
	1.5 m

	Noise Figure
	BS:5 dB, UE:9 dB

	Max MCS
	256QAM

	Device deployment
	100% indoor

	Down-tilt
	90 degrees

	BS receiver
	MMSE-IRC

	UE receiver
	MMSE-IRC

	Channel estimation
	Realistic

	Target BLER
	10%

	UE speed
	3 km/h

Table 3. The DL video traffic models with 60 FPS adopted in R17 XR SI
	Traffic model
	VR/AR
	VR/AR

	Data rate (Mbps)
	30
	45

	Packet size distribution
	Truncated Gaussian distribution

	Mean packet size (Bytes)
	62500
	93750

	STD of packet sizes (Bytes)
	6562
	9844

	Maximum packet size (Bytes)
	93750
	140625

	Minimum packet size (Bytes)
	31250
	46875

	Packet arrival interval (ms)
	16.67
	16.67

	Packet delay budget (ms)
	10

	Jitter distribution
	Truncated Gaussian distribution

	Jitter Mean (ms)
	0

	Jitter STD (ms)
	2

	Jitter Range (ms)
	[-4, 4]

Microsoft_Visio___1.vsdx
XR non-integer traffic period = 16.67ms
ON
ON
ON
ON
ON
ON
DRX cycle1
16ms
DRX cycle2
17ms
DRX cycle3
17ms
DRX Configuration Set

image1.emf
XR non-integer traffic period = 16.67msONONONONONONDRX cycle116msDRX cycle217msDRX cycle317msDRX Configuration Set

Microsoft_Visio___2.vsdx
Jitter range
Actual traffic arrival time
Traffic periodicity

Dense SSSG
delay
Indicate SSSG switching
Indicate PDCCH skipping

DRX onduration
Sparse SSSG

image2.emf
Jitter rangeActual traffic arrival timeTraffic periodicityDense SSSGdelayIndicate SSSG switchingIndicate PDCCH skippingDRX ondurationSparse SSSG

image3.png

