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Discussion
1 Introduction
The remaining issues on TRS after RAN1 #90 meeting can be summarized as follows,

· Burst length X
· Whether the working assumption of X=2 can be confirmed
· Whether X= 1 and 4 should also be supported

· TRS symbol number N
· The TRS symbol number in each slot for X=2 (2+2, 3+1 or support both)
· TRS bandwidth B
· Whether the TRS bandwidth should be supported up to the bandwidth of the BWP

· TRS symbol positions, which is related to St
· TRS periodicity Y
· What is the default value of Y?

· Whether the value of Y should be smaller in HST scenario?
· Details on multiple TRS configuration
· Whether TRS is needed in idle mode

· Whether TRS needs to be configured on a BWP/carrier without SS block
· The relationship between SS burst, TRS, and DRX ON duration especially with longer DRX cycle
· Whether TRS is a realization of a CSI-RS
In this contribution, we provide our views on the remaining issues. We further raise the concern on the proper value of N, and St in two consecutive slots, under the high speed train scenario. The simulation results are provided to address our concern, and the feasible parameter values are suggested according to the simulation results.
2 Definition of the TRS parameters 
The 6 parameters defined in the WF[1] are
· X: the length of TRS burst in terms of number of 14-symbol slots
· Y: the TRS burst periodicity in ms
· Sf: TRS subcarrier spacing

· St: TRS symbol spacing within a slot
· N: Number of OFDM symbols per TRS within a slot

· B: TRS bandwidth in terms of number of RBs      
3 Burst length X
In frequency domain of post-FFT, the parameter B determines the resolution for time delay and delay spread estimation, and the parameter Sf determines the observable range. In time domain of post-FFT, roughly speaking, NxSt (time span) determines the resolution for Doppler spread estimation, and St determines the observable range.
The reason we say “roughly speaking” in above is because, as compared to the frequency domain of allocating wideband and uniformly-spaced TRS more easily, it is very challenging to allocate uniformly-spaced TRS in time domain of post-FFT. So St may not be a constant value. The multiplexing between RSs is one of the key factor that TRS needs to be non-uniformly spaced in time domain.

Another key factor is St, which determines the frequency offset tracking range. If St is not equal to 7, it may not be possible for TRS to be uniformly spaced in two consecutive slots.
The network can allocate TRS with longer time span. However, it is still not feasible for UE implementation to buffer so many TRS symbols.

The PDSCH DMRS is allocated in a slot. The slot bundling is also agreed in NR. The time span of PDSCH DMRS is limited within a slot time without slot bundling. As such the corresponding filter resolution is also bounded.

The X=2 for TRS, in our view, is very appropriate for the following reasons,
· The TRS resolution is slightly better than PDSCH DMRS. Then TRS is not the bottleneck on the demodulation performance
· In current NR specification, the time span of PDSCH DMRS is 10 OFDM symbols (sym 2 to sym 11). Considering the complicated DMRS configuration of supporting front-loaded one or two symbols, and the potential uplink region at later symbols, it is not easy for TRS to have the same time span as DMRS in a slot
· From our experience in LTE implementation, the suitable RS number for Doppler spread estimation is >= 4. It is very challenging to allocate TRS in 4 symbols in a slot, with enough time span
So we don’t consider X= 4. The PDSCH DMRS resolution has been bounded. The improved TRS resolution doesn’t help significantly.

Observation 1: When X=2 is configured to TRS, the resolution is slightly better than PDSCH DMRS. Then TRS is not the bottleneck on the demodulation performance

Observation 2: In NR, the time span of PDSCH DMRS is 10 OFDM symbols (sym 2 to sym 11). Considering the complicated DMRS configuration of supporting front-loaded one or two symbols, and the potential uplink region at later symbols, it is not easy for TRS to have the same time span as DMRS in a slot

Proposal 1: Confirm the working assumption that at least X=2 is supported
Proposal 2: X= 4 is not considered because PDSCH DMRS resolution has been bounded. The improved TRS resolution doesn’t help significantly

Proposal 3: X = 1 can be supported for the above-6GHz band 
4 TRS symbol number N, and the TRS spacing St to the impact on Doppler spread estimation under high speed train scenario
It may not be easy to directly see the connection between N and St, and the Doppler spread estimation performance under high speed train scenario. By using the reference architecture for Doppler spread estimation as shown in APPENDIX, we analyse 4 TRS configurations in Fig. 1 to 4.
The TRS in Fig. 1 is uniformly spaced. In Fig. 2, St= 4 in each slot is considered to provide sufficient frequency offset tracking range, especially for longer DRX cycle. Fig. 6 and Fig. 7 show the detection rate of the Doppler spread range for St= [7 7 7] and [4 10 4], respectively, under Doppler = 700Hz and SCS=15KHz. It is seen that there is some percentage for the misdetection as < 100Hz.
Under Doppler=1480Hz and SCS=30KHz, the misdetection rate is increasing as shown in Fig. 12 and 13. The misdetection rate instead becomes 100% for St= [7 7 7] and [4 10 4] under Doppler=1850Hz and SCS=30KHz, which can be observed in Fig. 16 and 17.
The root cause can be justified by looking at the Doppler spread estimation filter response in Fig. 20 and 21. The signal components of higher than around 550Hz is enlarged at the filter output. It means even though the TRS with St= [7 7 7] and [4 10 4] have better resolution, the resolvable range is bounded around 550Hz.
The TRS configuration St= [4 4 6] and [3 3 8 3 3] respectively in Fig. 3 and 4 are also tested. In Fig. 3, the TRS symbol number is 3+1 and the time span is 14 symbols, which is shorter than the configuration in Fig. 1 and 2. In Fig. 4, the TRS symbol number is 3+3 and the time span in 20 symbols.
In Fig. 14 and 15, under Doppler=1480Hz and SCS=30KHz, the TRS configuration St= [4 4 6] and [3 3 8 3 3] can successfully detect the high Doppler scenario without misdetection. In Fig. 18, the TRS configuration St= [4 4 6] has misdetection rate more than 20% on Doppler=1850Hz. The TRS configuration St= [3 3 8 3 3] can still detect very well on Doppler=1850Hz as shown in Fig. 19.
Fig. 24 shows the Doppler shift and path power trajectory of two-path HST channel model discussed in RAN4. As the train is moving around the middle point of two RRHs, the power of the paths from two neighbouring RRHs are almost equal. The Doppler shift is +Fd and –Fd Hz for each path respectively. The demodulation performance will be degraded significantly as the misdetection occurs.
The TRS configuration in Fig. 5 is also feasible. The TRS symbol number is 2+2 and the symbol location is different at the two consecutive slots. The spacing between the second TRS symbol at the first slot and the first TRS symbol at the second slot is shortened to ensure sufficient resolvable range.
Based on the above, we have,

Observation 3: The TRS time span, and TRS symbol location and N for each slot should be analysed carefully for high speed train scenario to avoid misdetection on Doppler spread
Proposal 4: Consider N= 3+1 under X=2 that the time span is shortened in order to increase the resolvable range. The misdetection can be avoided significantly in high speed train scenario. For example, TRS is at symbol 5, 9 and 13 at first slot and at symbol 5 at second slot
Proposal 5: Consider N=2+2 under X=2 that the TRS symbol location can be different at two consecutive slots. For example, TRS is at symbol 9 and 13 at first slot and at symbol 5 and 9 at second slot in order to shorten the spacing between TRS symbols
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Fig. 1: St = [7 7 7] across two slots with N =[2 2]
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Fig. 2: St = [4 10 4] across two slots with N =[2 2]
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Fig. 3: St = [4 4 6] across two slots with N =[3 1]
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Fig. 4: St = [3 3 8 3 3] across two slots with N =[3 3]
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Fig. 5: St = [4 6 4] across two slots with N =[2 2]. The TRS symbol location can be different at two consecutive slots
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Fig. 6, St= [7 7 7] detection rate under Doppler = 700Hz     Fig. 7, St= [4 10 4] detection rate under Doppler = 700Hz
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Fig. 8, St= [3 3 8 3 3] detection rate under Doppler = 700Hz
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Fig. 9, St= [7 7 7] detection rate under Doppler = 1250Hz  Fig. 10, St= [4 10 4] detection rate under Doppler = 1250Hz
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Fig. 11, St= [3 3 8 3 3] detection rate under Doppler = 1250Hz
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Fig. 12, St= [7 7 7] detection rate under Doppler= 1480Hz  Fig. 13, St= [4 10 4] detection rate under Doppler= 1480Hz
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Fig. 14, St= [4 4 6] detection rate under Doppler= 1480Hz  Fig. 15, St= [3 3 8 3 3] detection rate under Doppler= 
                                                                                        1480Hz
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Fig. 16, St= [7 7 7] detection rate under Doppler= 1850Hz  Fig. 17, St= [4 10 4] detection rate under Doppler= 1850Hz
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Fig. 18, St= [4 4 6] detection rate under Doppler= 1850Hz  Fig. 19, St= [3 3 8 3 3] detection rate under Doppler= 
                                                                                        1850Hz
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Fig. 20: Doppler spread estimation filter response         Fig. 21: Doppler spread estimation filter response

       for St=[7 7 7]                                      for St=[4 10 4]
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Fig. 22: Doppler spread estimation filter response         Fig. 23: Doppler spread estimation filter response

       for St=[4 4 6]                                      for St=[3 3 8 3 3]
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Fig. 24, Doppler shift, path power and time delay trajectory under 2-path HST model

5 The relationship between SS burst, TRS, and DRX ON duration especially with longer DRX cycle
In our view, SS burst is very suitable for coarse synchronization. The symbol spacing of 2 on PBCH DMRS can provide sufficiently large tracking range. However the accuracy is of the concern.
The DRX ON duration can be arranged after the occurrence of a SS burst, also shown in Fig. 25. The TRS can be further allocated at the slots after a SS burst, before the starting point of ON duration. In this way, the PBCH DMRS can provide the first shot on frequency offset estimation/compensation and the tracking continues by using TRS in the following two slots.
If the alignment of ON duration of DRX cycle with a SS burst occurrence is the constraint on the network side, especially for the long SS burst periodicity, the time offset of TRS transmission from the SS burst can be considered so that the starting point of the ON duration of DRX cycle can be aligned with the starting point of a TRS burst, or can be aligned with the starting point of a SS burst after Z slots. It is shown in Fig. 26. As such, the constraint is reduced.
Configuring aperiodic TRS before DRX ON duration could be also the solution. However, the rate matching for other UEs could be the concern. We suggest both the periodic and aperiodic TRS configuration can be considered for longer DRX cycle. It is up to the network operations.
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Fig. 25, TRS alignment with SS blocks before DRX ON
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Fig. 26, TRS timing offset from SS blocks to increase DRX ON scheduling

Observation 4: Configuring aperiodic TRS before DRX ON duration could be also the solution. However, the rate matching for other UEs could be the concern

Proposal 6: Both periodic and aperiodic TRS configuration can be considered for longer DRX cycles. It is up to the network operations
6 TRS bandwidth B
The around 24 and 50 RBs as TRS bandwidth have been agreed. The resolution/granularity by 50 RBs under SCS=15KHz is around 0.1 us. It is very sufficient for delay spread and time delay estimation.

Whether the TRS bandwidth should be supported up to the bandwidth of the BWP needs to consider the RS overhead, especially when the comb-4 structure has been agreed for TRS in frequency domain.
Based on the above, we have,

Observation 5: The resolution/granularity by 50 RBs under SCS=15KHz is around 0.1 us. It is very sufficient for delay spread and time delay estimation. The higher resolution doesn’t improve the performance
Observation 6: The RS overhead is the concern if TRS bandwidth is supported up to the bandwidth of the BWP, when the comb-4 structure has been agreed for TRS in frequency domain

Proposal 7: TRS bandwidth of up to the bandwidth of BWP is not considered due to the RS overhead concern

7 Whether TRS needs to be configured on a BWP/carrier without SS block

We support that TRS needs to be configured when the SS block is not on a BWP/carrier.

The carrier without SS block may happen in intraband non-contiguous case. Fig. 27 shows the receiver of one LNA and two mixers for intraband non-contiguous CA. Basically it is two RF chains in the receiver. So having the RS for synchronization/tracking on each carrier/BWP can ensure the robustness of the receiver performance.
If the serving cells are not co-located, for example, the operator would like to deploy non-co-located intraband non-contiguous CA at B3, the RS for synchronization/tracking is definitely needed in each carrier.
Based on the above, we have,

Observation 7: For intraband non-contiguous CA, the receiver applies one LNA and two mixers for signal reception. Basically it is two RF chains
Proposal 8: TRS needs to be configured when the SS block is not on a BWP/carrier, to ensure the robustness of the receiver performance
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     Fig. 27, Receiver of one LNA, two mixers architecture for intraband non-contiguous CA

8 TRS periodicity Y for high speed train scenario
Whether the TRS should be transmitted in each slot for high speed train needs to consider the deployment profile. Ds and Dmin, where Ds is the distance between two RRHs and Dmin is the distance between RRH and the rail.
Fig. 24 shows the Doppler shift trajectory under Ds=500m and Dmin=50m. The large Doppler shift occurs when the train approaches each RRH and approaches the middle of two RRHs. The Doppler shift is 0 when the moving direction is perpendicular to the wave propagation direction, namely the UE is right in front of the RRH. 
Fig. 24 is plotted based on the carrier frequency 2.7GHz and speed 500 km/hr. We see that at t = 0, the Doppler shift = 0. At t = 60ms, the Doppler shift is -205.5Hz. It means on the average the Doppler shift is 3.5Hz per ms. The average Doppler shift is lower when the UE is away from the RRH. As such we don’t see that TRS needs to be configured in each slot for high speed train scenario.
Observation 8: For Ds=500m and Dmin=50m and max Doppler shift=1250Hz, the average Doppler shift is around 3.5Hz per ms during t=0 to t=60ms, where t=0 is the time point when the Doppler shift is 0
Proposal 9: Based on the Doppler shift trajectory analysis under HST channel model, the TRS configuration on each slot for HST is not needed

9 Conclusion
Based on the above, we have

Observation 1: When X=2 is configured to TRS, the resolution is slightly better than PDSCH DMRS. Then TRS is not the bottleneck on the demodulation performance

Observation 2: In NR, the time span of PDSCH DMRS is 10 OFDM symbols (sym 2 to sym 11). Considering the complicated DMRS configuration of supporting front-loaded one or two symbols, and the potential uplink region at later symbols, it is not easy for TRS to have the same time span as DMRS in a slot

Observation 3: The TRS time span, and TRS symbol location and N for each slot should be analysed carefully for high speed train scenario to avoid misdetection on Doppler spread

Observation 4: Configuring aperiodic TRS before DRX ON duration could be also the solution. However, the rate matching for other UEs could be the concern

Observation 5: The resolution/granularity by 50 RBs under SCS=15KHz is around 0.1 us. It is very sufficient for delay spread and time delay estimation. The higher resolution doesn’t improve the performance

Observation 6: The RS overhead is the concern if TRS bandwidth is supported up to the bandwidth of the BWP, when the comb-4 structure has been agreed for TRS in frequency domain

Observation 7: For intraband non-contiguous CA, the receiver applies one LNA and two mixers for signal reception. Basically it is two RF chains

Observation 8: For Ds=500m and Dmin=50m and max Doppler shift=1250Hz, the average Doppler shift is around 3.5Hz per ms during t=0 to t=60ms, where t=0 is the time point when the Doppler shift is 0
Proposal 1: Confirm the working assumption that at least X=2 is supported

Proposal 2: X= 4 is not considered because PDSCH DMRS resolution has been bounded. The improved TRS resolution doesn’t help significantly

Proposal 3: X= 1 can be supported for the above-6GHz band
Proposal 4: Consider N= 3+1 under X=2 that the time span is shortened in order to increase the resolvable range. The misdetection can be avoided significantly in high speed train scenario. For example, TRS is at symbol 5, 9 and 13 at first slot and at symbol 5 at second slot

Proposal 5: Consider N=2+2 under X=2 that the TRS symbol location can be different at two consecutive slots. For example, TRS is at symbol 9 and 13 at first slot and at symbol 5 and 9 at second slot in order to shorten the spacing between TRS symbols
Proposal 6: Both periodic and aperiodic TRS configuration can be considered for longer DRX cycles. It is up to the network operations
Proposal 7: TRS bandwidth of up to the bandwidth of BWP is not considered due to the RS overhead concern

Proposal 8: TRS needs to be configured when the SS block is not on a BWP/carrier, to ensure the robustness of the receiver performance
Proposal 9: Based on the Doppler shift trajectory analysis under HST channel model, the TRS configuration on each slot for HST is not needed
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Reference architecture for Doppler spread estimation
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 Fig. a, Doppler=200Hz, MCS=19                      Fig. a+1, Doppler=300Hz, MCS=19
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  Fig. a+2, Doppler=450Hz, MCS=19
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  Fig. a+3, Doppler=300Hz, MCS=23                      Fig. a+4, Doppler =450Hz, MCS=23 
[image: image34.emf]
