Page 1

3GPP TSG-RAN WG1 NR AdHoc	R1-1700831
16th – 20th January 2017
Spokane, USA

[bookmark: Source]Agenda item:	5.1.5.1
Source: 	Qualcomm Incorporated
Title: 	LDPC Design Considerations
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In RAN1 #86 and #86bis, an LDPC code description framework was presented in [2][3] which can support IR HARQ, multiple code rates, and scalable blocklengths. This was also reviewed recently in [4], with additional clarifications added with respect to the rate matching scheme. The performance results of such constructions are well documented in [2][3].
Here the salient design aspects of [4] are analyzed with regarding to achieving the requirements of NR channel coding. Moreover, we illustrate their importance by comparing against other alternative approaches which were aggregated in the results summary of [5]. In many cases, alternative approaches can lead to degradations which can limit the ability of LDPC to achieve requirements of NR across both performance and implementation. Overall, this contribution demonstrates the advantages of coding scheme in [4] over other approaches in [5], thus providing a robust solution for the EMBB data channel.
 Performance considerations
The LDPC codes being proposed for NR channel coding should not only have good performance, i.e., lowest EsN0, at codeword error rate (BLER) of 0.01 but should also show good performance consistently down to a BLER of 5e-4 when considering simulations over the AWGN channel using floating point decoders. Indeed, in a practical implementation there will be losses in the performance due to a number of reasons such as channel modelling errors, SNR mismatch etc. and quantization/saturation of LLRs which also cause error-floors and performance degradation [10]. The other important performance criteria brought up in the last few RAN1 meetings has been the robustness of the code design to finely granular blocklength. Above performance criteria, along with a small description complexity, would provide a robust coding solution for NR and also future-proof the design.
Baseline performance of design proposal in [4]
In this section we consider the performance of the LDPC codes proposed in [4]. Figures below show the performance of the LDPC codes for the eMBB prescribed blocklengths and rates. The simulation set-up used the floating point SP decoder with 50 flooding iterations over the AWGN channel.
[image:]

[image:]

[image:]

The performance of the proposed LDPC code design in [4] is robust under single-bit granularity in blocklength. Below, in figure 1, we demonstrate this robustness for 16-bit blocklength granularity. In the simulation set-up codes were generated for rates 1/5, 1/3, 2/5, ½, 2/3, ¾, 5/6, 8/9 for K = 100 to 8000 in the steps of 16 bits. All codes across the three families (see [4]) and within each family are shown in the figures. The AWGN channel was considered and floating point SP decoder with max 50 flooding iterations was used.
It is observed that the performance is smooth across the entire range. Indeed, the proposed design allows for at most Z bits (lift size) to be shortened/punctured after selecting the appropriate base graph. This is equivalent to shortening/puncturing of one base-column. Since the construction guarantees good performance for each (nested) base graph, the sub-base-column shortening/puncturing retains the performance and hence the scheme is robust under single-bit blocklength scaling. We note that the maximum difference of around 0.15 dB at larger blocklengths is because of the codes from the lowest family. However, as shown in next few sections, the lowest family would not be used for large blocklengths. Hence the curves would be even smoother.
[image:]
[image:]Figure 1: Robustness of performance to blocklength scaling across all rates.
Observation 1:
· The proposed LDPC codes in [4] provide consistent good performance up to BLER of 5e-4 implying no error-floor.
· LDPC design in [4] provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
· LDPC design in [4] provides consistent good performance down to BLER of 5e-4, has robust performance to single-bit granularity in blocklength and has low description complexity. All the above make it the best candidate for coding solution for NR.

Issues with alternative design approaches
The actual codes provided by the companies were calibrated and simulated using SP decoder with 50 flooding iterations over the AWGN channel using QPSK modulation. This section starts by demonstrating that the alternative approaches do not hold up to observations 1 made above.
(i) Non-robust performance for finely granular blocklengths:
It is observed that for some of the LDPC codes proposed in [5] that the performance is not robust for finely granular blocklengths. Example plots are shown below in figure 2.
[image:]
Figure 2: Non-robust performance with 16-bit blocklength granularity

(ii) Inconsistent performance with increasing blocklengths:
It is observed that for some LDPC codes in [5], the performance degrades when the blocklength increases for a given rate. Example plots are shown below in figure 3 and 4. Solid and dashed curves are for LDPC codes in [5] and [4] respectively. The curve marked with circles depict performance of code with smaller blocklength.
[image:]
Figure 3: Degrading peformance with increasing blocklengths for some codes in [5] at high-rates
[image:]
Figure 4: Degrading peformance with increasing blocklengths for some codes in [5] at low rates.

(iii) High error-floors:
It is observed that for some codes in [5] there are high error-floors and hence no consistent BLER performance down till 5e-4. Figures 5 and 6 depict the high error floors for some codes in [5]. Solid and dashed curves are for LDPC codes in [5] and [4] respectively.
[image:]
Figure 5: LDPC codes of [5] are shown by solid curves and LDPC codes of [4] are shown by dashed curves. Error-floors when small base graphs are lifted with large values.
[image:]
Figure 6: LDPC codes of [5] are shown by solid curves and LDPC codes of [4] are shown by dashed curves. Error-floors when small base graphs are lifted with large values.
Observation 2: Some LDPC codes in [5] have
· Non- robustness to fine blocklength granularity
· Degrading performance with increasing blocklength
· High error-floor when small base graphs are lifted to large values
Issues with small/compact base graph sizes for codes in [5]
[bookmark: _Ref378529477]The size and the structure of the base graph are important parameters in the design of QC-LDPC codes. If the size of the base graph is small or compact as is for some codes in [5], i.e., , then there could arise degradation in performance if the small base graph is lifted to a large blocklength. Also, if the base graph is small, the presence of double or multiple parallel edges in the base graph could be unavoidable for high-rate base graphs, which would necessitate additional circuitry so that they could be handled by the decoder. This is explained in more details next.
It is well-known that introducing high degree punctured variable nodes, called as state nodes, in the graph improves the performance of LDPC codes [6][7]. In standard irregular LDPC designs (i.e., without punctured nodes), iterative decoding thresholds can be improved by increasing the average degree in the bi-partite graph and thus increasing the degrees of the variable and check nodes. With high-degree punctured variable nodes, the same effect may be achieved with lower average degree thereby reducing the complexity of the LDPC code [6].
Although high-degree punctured nodes may provide good performance, for high-rate LDPC codes, they may introduce double or multiple parallel edges in the base graph if the size of the base graph is small. Such double or multiple parallel edges in the base graph could be undesirable from both a performance and an implementation point of view. A larger base graph is also useful when optimizing the girth of the code which would reflect advantageously in the error-floor performance [8]. Thus, for high-rate QC-LDPC codes, it is desirable to have a larger base graph. Also, it is desirable to have a few punctured variable nodes of smaller degree rather than one of large degree. On the other hand, a larger base graph reduces the lift value needed to achieve a particular blocklength and hence reduces the parallelism that can be leveraged. Hence it is challenging to strike a balance between performance and latency of the decoder.
Some LDPC code designs proposed in [5] have small base graph size which is used to generate codes for every K and N. Figures 5 and 6 in the previous section show the presence of error-floors and performance degradation when small base graphs are lifted to large values. Error-floors are also observed sometimes for blocklengths around 2000 as depicted in the plot on the right in Figure 5.
Error-floors with small base graphs and large lifts can also occur close to BLER of 1e-2 as is shown in figure 8 for some LDPC codes in [5]. Similar to figures 3 and 4, it is again observed in figure 8 that for some LDPC codes in [5], the performance degrades when the blocklength increases. Such inconsistent performance could also be due to the excessive shortening of the resulting base graph, with number of base info-columns , not having performance as good as the same code-rate base graph with number of base info-columns equal to . This could be because of the choice of the lifts as is explained in the next section.
In [4], it is found that for the highest family, which supports highest (absolute value) rates, a base graph size with and = 30 provides a fair balance between performance and achievable parallelism. Furthermore, for each family in [4], the entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs in the range .
[image:]
Figure 8: Error-floors, for small base graphs lifted to large values, start earlier than BLER of 1e-2 for some codes in [5].
Observation 3: Some LDPC codes in [5], which have small base graphs lifted to large values, show error floors starting around BLER of 1e-2 or higher.
Observation 4: LDPC base graph with double or multiple parallel edges in the base graphs could cause implementation issues.
Observation 5:
· The nested base graphs in any family in [4] has consistent good performance across the range of the base info-columns. I.e., performance of base graphs, within a family, with in the range , at the same code-rate and comparable blocklengths, are close to each other.
· It is found in [4] that the choice (, = 30), (, = 20) and (, = 10) has consistent good performance and robustness to fine granularity blocklength for the highest, middle and the lowest family base graphs respectively.

Issues with orthogonality constraints on the parity-check rows
It is also observed that imposing constraints on the base graph such as orthogonality of parity-check rows, as is done for some codes in [5] can degrade the performance. Figure 8 below shows the performance degradation at higher rates caused by imposing a block orthogonality constraint on the parity-check rows. It is also observed that as rates become lower and more layers are added to the base PCM, the average degree of the check rows decreases. This can inherently provide orthogonality of multiple check rows due to sparsity.
[image:]
Figure 9: Performance degradation when block orthogonality constraint is imposed on the base graph.

Observation 6: LDPC code design with orthogonality constraint on the parity-check rows or blocks of parity-check can lead to performance degradation.
Issues with alternative lifting granularities
Another important design parameter for QC-LDPC codes is the set of lift values Z. The set of lifts provided in [4] are coarse yet fine enough so that deep shortening of the base graph is avoided and robust performance is achieved. The set of lift values provided for some LDPC codes in [5] are quite sparse. As an example, to achieve K=6136, a lift value of Z = 384 is needed with . However, when K is slightly increased to 6296, Z = 500 is utilized which results in a shortening of 1704 bits or equivalently 3.4 base information columns. It is observed that such deep shortening causes performance degradation as depicted in figure 10. Notice that in Fig. 10, the performance of K=6296 is much worse compared to the smaller K of 6136. Thus finer granularity in blocklength can be achieved through puncturing and shortening but without proper anticipation of that in the code design of such operations, the performance of the coding system could suffer. In [4], the base graphs in each nested base graph family are optimized for good performance and the lift values are carefully chosen so that the amount of shortening on the lifted graph, obtained after selection of the appropriate base graph in the family, is restricted to at most one base column or Z information bits. This guarantees robust performance for finely granular blocklengths.
On the other hand, a very finely granular set of Z can pose considerable challenge in designing LDPC codes which have robust performance across all blocklengths. Fig. 11 shows performance of some LDPC codes in [5] which have Z defined for every value that could also result in formation of bad trapping sets and consequently error-floor behaviour.
[image:]
Figure 10: LDPC codes in [5] have sparse lift values resulting in deep shortening of the base graph to achieve certain K and consequently degraded performance with increasing blocklengths.

[image:]
Figure 11: Error-floors for some codes in [5] occuring because of lifts defined for every Z.

In [4], a clustered set of lifts are defined which use the same shift coefficients for all the lift values belonging to the th cluster given by the set of lifts . Note that the shift coefficients are different for different . It is observed that shift coefficients generated for the smallest lift value in a particular cluster or group of lifts, when used as shift coefficients for the largest lift value (corresponding to larger blocklength) in that cluster or group, does not cause performance degradation for the larger blocklength code when compared to the shift coefficients designed independently for that larger blocklength. This lends to a compact description of the shift coefficients for various lift values.
Observation 7: Designing a set of Z (lifts), where the set has Z defined for every value less than some maximum or has a very large range, so that the LDPC codes have consistent good performance for all Z (lift) values in that set, is challenging. Such a scaling method could lead to inevitable bad trapping sets for some or multiple Zs, resulting in error floors.
Observation 8: Shift coefficients generated for the smallest lift value in a particular cluster or group of lifts when used as shift coefficients for the largest lift value does not cause performance degradation. The values of lifts in the cluster or group are close to each other.
Observation 9:
· The set of clustered lifts given by in [4] provide a fair balance between performance, implementation and description complexity
· The number of bits used to describe the shift coefficient per edge in the base graph in [4] is 23 bits.
· The method to obtain the shift coefficient from the mother base PCM provided in [4] is easy to implement and involves choosing a certain number of bits from a prescribed pool of bits and associating an integer value to those bits

State nodes (systematic bit puncturing)
It is difficult to achieve good performance for high rate codes where the number of check nodes is relatively small. Hence, introducing high degree punctured variable nodes, called as state nodes, in the graph improves the performance of LDPC codes [6][7]. However, introducing large degree punctured nodes at high-rates could cause double or multiple edges in the base graphs which could be undesirable as mentioned previously. Hence, it is preferred to have two punctured nodes of smaller degree which would provide the same performance benefits and would be desirable for practical implementation.
Observation 10:
· High degree punctured (state node) systematic base info-columns provide performance enhancement
· A single high degree punctured node leads to double or multiple edges in the base graph of the highest rate code which is undesirable
· At least two punctured (state nodes) systematic base info-columns of lower degree should be used in the base graphs

Implementation considerations
In this section, we present the impact of various LDPC code design choices on the decoder implementation complexity. In particular, we study the effects of lift size and the lift-size granularity. We also discuss aspects of decoder parallelism and their associated complexity.
To reach 20 Gbps with the K=8192, R = 8/9 code in the peak-throughput scenario, a decoder can process multiple base-graph edges in parallel as was proposed in [19]. Processing four base-graph edges in parallel is sufficient to reach 20 Gbps with a clock frequency of 1 GHz and a maximum of 15 layered iterations, or 25 Gbps with 12 layered iterations.
Multiple base graphs
[bookmark: _GoBack]Multiple base graph solution for NR channel coding could have several benefits. Firstly, it is observed from the above analysis that the base graph supporting the highest absolute rates (~ 8/9) should be large (~ 24 to 30 base info-columns) so that double edges could be avoided and consistent good performance can be achieved. However, it is observed that extending larger base graphs to very low rates could cause the average column degrees to increase so that consistent good performance can be maintained. As a consequence, for lower (starting) rates, it would be preferable to switch to a smaller sized base graph (middle family or lowest family), depending on the rate, so that the average column degree is kept low. This would lower the decoding complexity. Furthermore, smaller base graphs results in larger lift values to achieve the same blocklength. Thus the hardware is better utilized and leads to a larger throughput. Finally, for achieving very low rates, such as rate 1/8 or lower, it would be required to have a multiple base graph solution for lower description and implementation complexity.
In the algorithm 1 mentioned in [4], for a given and there can be multiple solutions within a family but also across families. Although the BLER vs EsN0 performance does not vary by much between different solutions for a given K and N, solutions could be chosen depending on the metric that needs to be satisfied. E.g., a solution could be chosen, amongst many, to have maximum lift value so that the hardware can be fully utilized and throughput can be increased at the cost of EsN0 or a solution could be chosen which has the best performance in terms of achievable EsN0 at the desired BLER. Note that the starting core rates of the base graphs of each family could serve as a guideline for recommending which codes to use from which family. This is explained in more details next.
Choosing a solution within a family: Multiple solutions may exists within each family. E.g., K = 6408, N = 7209 gives one solution with 26, Z = 256 and one solution with 29, Z = 224. It is observed that performance of different solutions within a family are close to each other. In figures 9, 10, 11 below an example of such performance is depicted. In the figures below, plots in blue are from the highest family, plots in red are from the middle family and plots in green are from the lowest family.
[image:]
Figure 11: On the left, all solutions within the highest family for rate 8/9 are shown. If for a given K and N there are multiple solutions, the solution with minimum and maximum EsN0 are shown by a square and an asterix respectively. Zooming into the figure on the left around K = 4700 and the result is shown by the figure on the right. Observe that there are multiple solutions for a given K (around 4700) and the performance of all the solutions for a given (K,N) are very close.
Similar observation can be made for different solutions within the middle and the lowest families shown in figure 10
[image:]
Figure 12
Since the performance of multiple solutions, if they exist, within a family are close, it is recommended to use the solution that has the largest lift size Z. Such a solution would maximally leverage the hardware parallelism.
Observation 11:
· Performance of multiple solutions, if they exist, within a family are close to each other for the LDPC codes provided in [4]
· Amongst multiple solutions within a family, the solution with larger Z provides larger throughput

Choosing a solution across families: It is observed that the highest family is capable of providing codes for the entire eMBB data scenario. I.e., for every and , there is a code available from the highest family for codes provided in [4].
It is observed that to maintain small gaps to capacity, low rate codes obtained via extension of a larger base graph (highest family) tend to have higher average base column degree which could result in larger decoding complexity. Hence, for middle to lower rates it is preferable to use codes from the middle or the lowest family which have smaller base graphs. Furthermore, when using codes from the middle or the lowest family, the size of the base graph decreases and hence a larger Z is used to achieve the same blocklength and thus increases the throughput. However, as observed in the previous section, lifting small base graphs with large Z values may lead to some performance degradation. Hence, it is not recommend to use codes from the lowest family in LDPC codes provided in [4] for very large blocklengths.
From the plots below it is observed that performance of different solutions across the three families, for the codes in [4], are close.
For K >= 1000:
For rates in the interval [2/3, 8/9], codes from the highest family are used.
[image:]
Figure 13
For rates less than 2/3 codes from all families are used and their performance shown in figures 14 and 15.
[image:]
Figure 14: Rates 0.5 and 0.4. Solutions across different families are close to each other. For K <= 2000, the lowest family is within 0.1 dB from the other two families.

[image:]
Figure 15: Rates 0.33 and 0.20. Solutions across different families are close to each other. For K <= 2000, the lowest family is within 0.1 - 0.15 dB from the other two families.

For K < 1000:
For rates in the interval [2/3, 8/9], codes from the highest family are used. For rates less than 2/3 codes from all families are used and their performance shown in figures 17 and 18.
[image:]
Figure 16

[image:]
Figure 17: Rates 0.50 and 0.40. Solutions across different families are close to each other. Note that above only the maximum and minimum EsN0 solutions are shown. The solution with EsN0 in between also exists but is not shown since the plot is used to demonstrate that all the solutions are close to each other.
[image:]
Figure 18: Rates 0.33 and 0.20. Solutions across different families are close to each other. Note that above only the maximum and minimum EsN0 solutions are shown. The solution with EsN0 in between also exists but is not shown since the plot is used to demonstrate that all the solutions are close to each other.

Observation 12:
· The highest family in the LDPC codes provided in [4] is fully capable of supporting the entire eMBB data channel
· Multiple solutions across different families of codes in [4] have performance close to each other

Based on the analysis above the following two recommendation are provided for choosing a code for every K and N.
Recommendation #1: Based on observation 12 choose codes from the highest family for all K >= 100 for all rates >= 2/5. For rates < 2/5, choose codes from the highest family when K > 2000 and choose codes from the lowest family when K < 2000. For rates < 1/5, choose codes from the lowest family.
Recommendation #2: Based on observation 12, for rates >= 2/3, for all K >= 100, choose codes from the highest family. For 2/5 ≤ rates < 2/3 and for all K >= 100, choose codes from the middle family. For rates < 2/5, choose codes from the middle family when K > 2000 and choose codes from the lowest family when K < 2000. For rates < 1/5, choose codes from the lowest family.
The above two recommendations are depicted pictorially below (blue, red and green denote the highest, middle and the lowest families, respectively).
[image:][image:]
Figure 19: Recommendation # 1, #2. X-axis is K, Y-axis is rate. Highest family is shown in blue, middle family in red and the lowest family in green.
Note that there is freedom to choose the code from different families for the 1st transmission. Once the code is chosen from a particular family, the lower rates for IR-HARQ are obtained by adding parities from the same family so that a rate-compatible solution for IR-HARQ is obtained.
Maximum lift size
Decoder parallelism can be increased by means of increasing the lift size. However, the complexity of the circular shifters scales super-linearly with the lift size. There are different architectures for implementing these shifters, such as the Banyan shifter [11], QC-LDPC shift network (QSN) [12], the very similar subset cyclic shifter (SCS) [13], and the Oh-Parhi network (OPN) [14]. Banyan shifters are restricted to power-of-two lift sizes; while QSN and SCS are the least complex architectures that can perform cyclic shifts of any size. In the following, we will use the number of q-bit multiplexers as a measure of switch complexity, where q is the number of bits in a decoder message.
The number of multiplexers in a Banyan network is , when is a power of two. Additional multiplexing logic is required for Banyan networks to support a non-power-of-two shift of size , increasing their complexity past that of other alternatives. A QSN for a maximum lift size was shown in [12] to require multiplexers. SCS has similar complexity.
From the preceding, we observe that circular-shift networks have a complexity that scales as . For example, tripling the maximum lift size is expected to increase the switch complexity at least 3.6 times. This complexity scaling is illustrated in [12] where increasing the maximum lift size from 32 to 96 increased the area 3.7 times. Therefore, the switch for processing three edges (columns) from a base graph with a lift size , is less complex than the switch for processing a single edge from a base graph with a lift size ; while having the same decoder parallelism and similar throughput.
It was shown in [15], that circular shifts of size can be performed by shifters of size each. This requires an additional stage of multiplexers as was shown in that work. In fact, QSN and SCS utilize a similar architecture, but with .
Using too small of a lift size leads to low parallelism and, in turn, low throughput in the decoder. Therefore, when choosing the maximum lift size, both complexity and speed need to be considered. Using moderate lift sizes as is proposed in this document balances implementation complexity and decoding speed. It should be noted that even though the equation describing the lift sizes allows for sizes greater than 320, such lift sizes are not used since they are not required to reach the block sizes of NR. These have been provided in [4] because it makes the definition of clustered or grouped lifts uniform and the design complete.
Observation 13: Only lift sizes less than or equal to 320 are used to provide the block sizes required by NR.

Lift-size granularity
All the proposed LDPC code candidates for NR have lift sizes that not necessarily power-of-two. Some designs require fine-granularity lifts that can be any number up to the maximum lift size. Others, including the proposed design, have coarse granularity lift sizes that are multiples of a power-of-two. Therefore, simple Banyan networks cannot be used to perform the required shifts for any of the LDPC code candidates.
If the code design requires fine-granularity lift sizes, then QSN or similar switches must be used. In codes with coarse lift sizes that are multiples of a power-of-two, such as the proposed design, the shifts can be efficiently performed by multiple low-complexity Banyan networks as was shown in [16]. Therefore, coarse-granularity lift sizes lead to more efficient hardware implementation than fine-granularity lift sizes.
The proposed codes have two lift sizes that are not a multiple of a power of two: 5 and 7. These are very small lift sizes and therefore the overhead of implementing a QSN to perform the associated shifts is minor.
Observation 14: Coarse-granularity lift sizes that are multiples of a power-of-two lead to a lower complexity implementation.
Row-orthogonal Base Graphs
Multiple layers (or rows) can be decoded in parallel to increase decoding throughput [17]. For example, the 802.11ad LDPC code is designed to accommodate such decoder architecture by providing orthogonal rows in the base graph matrix. As shown Section 2.2.2, such a constraint degrades performance. A decoder that decodes multiple layers simultaneously requires very wide memories, leading to very shallow geometries that necessitate the use of registers instead of more area efficient memory cells [18]. Two additional routers are required to separate messages from the different layers at the input and output of the check node processors [17]. Otherwise, duplicate check-node processors are required.
This additional complexity is not required to reach high throughput in the peak-throughput case as was discussed in [19]. Moreover, in the peak-throughput scenario, the highest code rate is used, which has a dense graph that is unlikely to contain orthogonal rows. Therefore, multi-layer decoding is unlikely to aid in the peak-throughput scenario.
Observation 15: Base graphs should not be row-orthogonal as they have degraded performance and peak throughput can be achieved without such a constraint.
 Conclusions
The following observations are summarized below. Note that a subsequent set of proposals follows for NR LDPC.
Observation 1:
· The proposed LDPC codes in [4] provide consistent good performance up to BLER of 5e-4 implying no error-floor.
· LDPC design in [4] provides single-bit granularity in blocklength with low description complexity while maintaining good performance.
· LDPC design in [4] provides consistent good performance down to BLER of 5e-4, has robust performance to single-bit granularity in blocklength and has low description complexity. All the above make it the best candidate for coding solution for NR.

Observation 2: Some LDPC codes in [5] have
· Non- robustness to fine blocklength granularity
· Degrading performance with increasing blocklength
· High error-floor when small base graphs are lifted to large values

Observation 3: Some LDPC codes in [5], which have small base graphs lifted to large values, show error floors starting around BLER of 1e-2 or higher.
Observation 4: LDPC base graph with double or multiple parallel edges in the base graphs could cause implementation issues.
Observation 5:
· The nested base graphs in any family in [4] has consistent good performance across the range of the base info-columns. I.e., performance of base graphs, within a family, with in the range , at the same code-rate and comparable blocklengths, are close to each other.
· It is found in [4] that the choice (, = 30), (, = 20) and (, = 10) has consistent good performance and robustness to fine granularity blocklength for the highest, middle and the lowest family base graphs respectively.
Observation 6: LDPC code design with orthogonality constraint on the parity-check rows or blocks of parity-check can lead to performance degradation.
Observation 7: Designing a set of Z (lifts), where the set has Z defined for every value less than some maximum or has a very large range, so that the LDPC codes have consistent good performance for all Z (lift) values in that set, is challenging. Such a scaling method could lead to inevitable bad trapping sets for some or multiple Zs, resulting in error floors.
Observation 8: Shift coefficients generated for the smallest lift value in a particular cluster or group of lifts when used as shift coefficients for the largest lift value does not cause performance degradation. The values of lifts in the cluster or group are close to each other.
Observation 9:
· The set of clustered lifts given by in [4] provide a fair balance between performance, implementation and description complexity
· The number of bits used to describe the shift coefficient per edge in the base graph in [4] is 23 bits.
· The method to obtain the shift coefficient from the mother base PCM provided in [4] is easy to implement and involves choosing a certain number of bits from a prescribed pool of bits and associating an integer value to those bits

Observation 10:
· High degree punctured (state node) systematic base info-columns provide performance enhancement
· A single high degree punctured node leads to double or multiple edges in the base graph of the highest rate code which is undesirable
· At least two punctured (state nodes) systematic base info-columns of lower degree should be used in the base graphs

Observation 11:
· Performance of multiple solutions, if they exist, within a family are close to each other for the LDPC codes provided in [4]
· Amongst multiple solutions within a family, the solution with larger Z provides larger throughput
·
Observation 12:
· The highest family in the LDPC codes provided in [4] is fully capable of supporting the entire eMBB data channel
· Multiple solutions across different families of codes in [4] have performance close to each other

Observation 13: Only lift sizes less than or equal to 320 are used to provide the block sizes required by NR.
Observation 14: Coarse-granularity lift sizes that are multiples of a power-of-two lead to lower complexity implementation.
Observation 15: Base graphs that are row-orthogonal can have degraded performance, and peak throughput can be achieved without such a constraint.

Here is a set of proposals for NR LDPC which follows from the above observations.
Proposal 1: LDPC code solution for NR should provide consistent good performance up to BLER of 5e-4, implying no error-floor and also provide single-bit (or any small number of bits such as 8 or 16) granularity in blocklength with low description complexity while maintaining consistent good performance.
Proposal 2: LDPC code solution for NR should consist of at least two families to address all the blocklengths and rates.
· The base graph for the highest family, which supports the highest absolute rates, should have the minimum base information columns to be around 24 and maximum base information columns to be around 30.
· For mid to low rates (1/5 <= rate < 2/3) a middle family with base graph size smaller than the highest family should be used. The middle family could have minimum base info-columns to be around 16 and maximum base info-columns to be around 20.
· For lower rates and smaller blocklengths, a lowest family with a small base graph size should be used. The lowest family could have minimum base info-columns to be around 8 and maximum base info-columns to be around 10.
· Amongst multiple solutions within a family, design should chose the one with the largest Z.

Proposal 3: LDPC base graph should have no double or multiple parallel edges in the base graphs.
Proposal 4: The nested base graphs in any family should have consistent performance across the range of the base info-columns. I.e., performance of base graphs, within a family, with in the range , at the same code-rate and comparable blocklengths, should be close to each other.
Proposal 5: Base graphs should have at least two punctured base information columns.
Proposal 6: Base graphs should have an additional parity-bit connected to only the punctured node for robust performance.
Proposal 7: LDPC code design should not impose block orthogonality constraint on the check rows.
Proposal 8: The set of lifts should not be defined for every value of Z.
Proposal 9: The set of lifts defined should be clustered or grouped so that lift values in a cluster or a group are close to each other. Furthermore, the shift coefficients should be the same for all lift values belonging to a cluster or a group of lifts to decrease description complexity. All this needs to be done while maintaining consistent good performance.
· The number of bits used to describe the shift coefficient per edge in the base graph should be minimized while maintain good consistent performance down to a BLER of 5e-4 for all lift values.
· The set of clustered lifts given by provide a fair balance between performance, implementation and description complexity. The set of shift coefficients provided in the Appendix in [4] should be adopted.

References
[1] [bookmark: _Ref430766234]RP-160671, New SID Proposal: Study on New Radio Access Technology
[2] “LDPC Rate Compatible Design”, R1-166370, Qualcomm Incorporated, RAN1 86, Gothenburg, Sweden.
[3] “LDPC Rate Compatible Design”, R1-1610137, Qualcomm Incorporated, RAN1 86bis, Lisbon Portugal.
[4] “LDPC Rate Compatible Design”, R1-1700830 Qualcomm Incorporated, RAN1 NR AdHoc, Spokane, USA.
[5] “Summary of Channel Coding Simulation Data Sharing for eMBB Data Channel”, R1-1612652, InterDigital Communications, RAN1 #87, Reno, USA.
[6] D. Divsalar, S. Donlinar, C. R. Jones, and K. Andrews, “Capacity approaching protograph codes”, IEEE J. Sel. Areas Communication, 2009.
[7] T. Chen, K. Vakilinia, D. Divsalar and R. Wesel, “Protograph-Based Raptor-Like LDPC Codes”, IEEE Trans. on Communications, 2015.
[8] M. Fossorier, “Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices”, IEEE Trans. on Info. Theory, 2004.
[9] “High Performance and area efficient LDPC Code design with Compact Protomatrix”, R1-1613059, MediaTek Inc., RAN1 #87, Reno, USA.
[10] B. Butler and P. Siegel, “Error Floor Approximation for LDPC Codes in the AWGN Channel”, IEEE Trans. on Info. Theory, 2013.
[11] [bookmark: _Ref471576646]S. Olcer, “Decoder Architecture for Array-code-based LDPC Codes,” Global Telecommunications Conference, Dec. 2003.
[12] [bookmark: _Ref471577047]X. Chen, S. Lin, and V. Akella, “QSN-A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders,” IEEE Trans. On Circ. And Syst., 2010.
[13] [bookmark: _Ref471577056]C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable High-Throughput Decoder Architecture for Quasi-Cyclic LDPC Codes,” Proc. Asilomar, 2008.
[14] [bookmark: _Ref471577066]D. Oh and K. Parhi, “Low-complexity Switch Network for Reconfigurable LDPC Decoders,” IEEE Trans. Very Large Scale Integr. Syst., 2010.
[15] [bookmark: _Ref471579652]M. Rovini, G. Gentile, and L. Fanucci, “Multi-size Circular Shifting Networks for Decoders of Structured LDPC Codes,” IET Electronics Letters, 2007.
[16] [bookmark: _Ref471585500]“Consideration on Flexibility of LDPC Codes for NR,” R1-1611111, ZTE, ZTE Microelectronics, RAN1 87, Reno, USA.
[17] [bookmark: _Ref471587633]M. Weiner, M. Blagojevic, S. Skotnikov, A. Burg, P. Flatresse, and B. Nikolic, “A Scalable 1.5-to-6Gb/s 6.2-to-38.1mW LDPC Decoder for 60GHz Wireless Networks in 28nm UTBB FDSOI,” ISSCC 2014.
[18] [bookmark: _Ref471587946]M. Weiner, B. Nikolic, and Z. Zhang, “LDPC Decoder Architecture for High-data Rate Personal-area Networks,” IEEE ISCAS, May 2011.
[19] [bookmark: _Ref471588417]“Efficient Channel Coding Implementations for EMBB”, R1-1610139, Qualcomm Incorporated, RAN1 86bis, Lisbon Portugal.

11/20
image2.emf
-50510

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=400

Es/No dB

BLER

-6-4-202468

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=1000

Es/No dB

BLER

R=0.20

R=0.33

R=0.40

R=0.50

R=0.67

R=0.75

R=0.83

R=0.89

image3.emf
-6-4-202468

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=2000

Es/No dB

BLER

-6-4-202468

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=4000

Es/No dB

BLER

R=0.20

R=0.33

R=0.40

R=0.50

R=0.67

R=0.75

R=0.83

R=0.89

image4.emf
-6-4-202468

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=6000

Es/No dB

BLER

-6-4-202468

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=8000

Es/No dB

BLER

R=0.20

R=0.33

R=0.40

R=0.50

R=0.67

R=0.75

R=0.83

R=0.89

image5.emf
10002000300040005000600070008000

-6

-4

-2

0

2

4

6

8

AWGN; QPSK; BLER = 1e-2

K

EsN0 (dB)

rate = 0.89

rate = 0.83

rate = 0.75

rate = 0.67

rate = 0.50

rate = 0.40

rate = 0.33

rate = 0.20

1002003004005006007008009001000

-4

-2

0

2

4

6

8

10

AWGN; QPSK; BLER = 1e-2

K

EsN0 (dB)

R = 0.89

R = 0.83

R = 0.75

R = 0.67

R = 0.50

R = 0.40

R = 0.33

R = 0.20

image6.emf
10002000300040005000600070008000

-6

-4

-2

0

2

4

6

8

AWGN; QPSK; BLER = 1e-3

K

EsN0 (dB)

1002003004005006007008009001000

-4

-2

0

2

4

6

8

10

AWGN; QPSK; BLER = 1e-3

K

EsN0 (dB)

R=0.89

R=0.20

R=0.75

R=0.67

R=0.40

R=0.33

R=0.83

R=0.50

rate = 0.89

rate = 0.83

rate = 0.75

rate = 0.67

rate = 0.50

rate = 0.40

rate = 0.33

rate = 0.20

image7.emf
10002000300040005000600070008000

-2

-1

0

1

2

3

4

5

6

7

8

K

EsN0 (dB)

AWGN; QPSK; BLER = 1e-3

R=0.89

data2

R=0.33

R=0.50

R=0.67

10002000300040005000600070008000

-1

0

1

2

3

4

5

6

7

8

AWGN; QPSK; BLER @ 1e-3

K

EsN0 (dB)

R=0.89

R=0.75

R=0.67

R=0.50

R=0.33

image8.emf
5.566.577.58

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate = 0.89

EsN0 (dB)

BLER

K=4072 [5]

K=4104 [5]

K=4232 [5]

K=4072 [4]

K=4104 [4]

K=4232 [4]

55.566.577.58

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

EsN0

BLER

AWGN; 4QAM; rate 8/9

K=2072 [5]

K=2088 [5]

K=2072 [4]

K=2088 [4]

image9.emf
00.511.522.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

EsN0 (dB)

BLER

AWGN; QPSK; rate = 0.5

K=2072 [5]

K=2248 [5]

K=2072 [4]

K=2248 [4]

00.511.522.533.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate = 0.50

EsN0 (dB)

BLER

K=2040 [5]

K=2056 [5]

K=2072 [5]

K=2040 [4]

K=2056 [4]

K=2072 [4]

image10.emf
5.65.866.26.46.66.87

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate 8/9

EsN0 (dB)

BLER

K=7576

K=7624

K=7688

K=7720

K=7736

K=7752

K=7784

K=7848

K=7864

K=7880

K=7896

K=7912

K=7928

K=7960

K=7976

K=7992

K=7704

K=7768

K=7688

K=7880

K=7352

K=7400

K=7320

K=7368

K=7496

K=7560

K=7672

K=7608

K=7592

K=7304

K=7144

K=7064

K=7384

K=7336

0.40.60.811.21.41.61.822.22.4

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

EsN0 (dB)

BLER

AWGN; QPSK; rate =0.50; Error-Floor

K=2168

K=2200

K=2232

K=2264

K=2296

K=2328

K=2360

K=2392

K=2424

K=2456

K=2488

K=2536

K=2568

K=2600

K=2600

K=2568

K=2456

K=2488

K=2424

K=2296

K=2264

K=2200

K=2232

K=2168

image11.emf
3.844.24.44.64.855.2

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

EsN0 (dB)

BLER

AWGN; QPSK; rate 3/4

K=7800

K=7816

K=7832

K=7848

K=7864

K=7880

K=7896

K=7912

K=7928

K=7944

K=7960

K=7976

K=7992

5.65.866.26.46.66.877.27.47.6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate = 0.89

EsN0 (dB)

BLER

K=4104

K=4120

K=4136

K=4152

K=4168

K=4184

K=4216

K=4232

K=4248

K=4104

K=4120

K=4168

K=4184

K=4216

K=4104

image12.emf
-2.5-2-1.5-1-0.500.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate = 0.33

EsN0 (dB)

BLER

K=4072

K=4088

K=4104

K=4120

K=4136

K=4152

K=4168

K=4184

55.566.577.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate 0.89

EsN0 (dB)

BLER

K=6088

K=6104

K=6120

K=6136

K=6296

K=6440

K=6456

K=6920

image13.emf
2.533.544.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=6000

Es/No dB

BLER

R=0.75, [4]

R=0.75, [5]

1.41.61.822.22.42.62.833.23.4

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

4QAM,K=6000

Es/No dB

BLER

R=0.67, [4]

R=0.67, [5]

image14.emf
55.566.577.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate 8/9;

EsN0 (dB)

BLER

K=6136 [5]

K=6296 [5]

image15.emf
0.60.811.21.41.6

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

Es/No dB

BLER

AWGN; QPSK; rate 0.50

K=3784, [5]

K=3800, [5]

K=3816, [5]

K=3832, [5]

K=3848, [5]

K=3864, [5]

K=3880, [5]

K=3896, [5]

K=3912, [5]

K=3928, [5]

K=3944, [5]

K=3960, [5]

K=3976, [5]

K=3992, [5]

K=4040, [5]

K=3784, [4]

K=3800, [4]

K=3816, [4]

K=3832, [4]

K=3880, [4]

K=3896, [4]

K=3912, [4]

K=3928, [4]

K=3944, [4]

K=3960 (QCOM)

K=3976 (QCOM)

K=3992 (QCOM)

K=4040 (QCOM)

00.511.522.533.5

10

-5

10

-4

10

-3

10

-2

10

-1

10

0

AWGN; QPSK; rate = 0.5

K

BLER

K=2056, [5]

K=2072, [5]

K=2088, [5]

K=2104, [5]

K=2120, [5]

K=2056, [4]

K=2072, [4]

K=2088, [4]

K=2104, [4]

K=2120, [4]

image16.emf
10002000300040005000600070008000

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

K

EsN0 (dB)

AWGN; QPSK; rate 0.89; BLER = 1e-2

465047004750480048504900

6.2

6.21

6.22

6.23

6.24

6.25

6.26

6.27

K

EsN0 (dB)

AWGN; QPSK; rate 0.89; BLER = 1e-2

image17.emf
10002000300040005000600070008000

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

AWGN; QPSK; rate 0.67; BLER = 1e-2

EsN0 (dB)

K

10002000300040005000600070008000

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

AWGN; QPSK; rate 0.33; BLER = 1e-2

K

image18.emf
10002000300040005000600070008000

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

K

EsN0 (dB)

AWGN; QPSK; rate 0.89; BLER = 1e-2

10002000300040005000600070008000

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

K

EsN0 (dB)

AWGN; QPSK; rate 0.75; BLER = 1e-2

10002000300040005000600070008000

3

3.1

3.2

3.3

3.4

3.5

3.6

K

EsN0 (dB)

AWGN; QPSK; rate 0.67; BLER = 1e-2

image19.emf
10002000300040005000600070008000

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

AWGN; QPSK; rate = 0.50; BLER = 1e-2

EsN0 (dB)

10002000300040005000600070008000

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

AWGN; QPSK; rate = 0.40; BLER = 1e-2

K

EsN0 (dB)

image20.emf
10002000300040005000600070008000

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

AWGN; QPSK; rate = 0.33; BLER = 1e-2

EsN0 (dB)

10002000300040005000600070008000

-4.2

-4.1

-4

-3.9

-3.8

-3.7

-3.6

-3.5

AWGN; QPSK; rate = 0.20; BLER = 1e-2

EsN0 (dB)

K

image21.emf
1002003004005006007008009001000

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

AWGN; QPSK; rate 0.89

EsN0 (dB)

K

1002003004005006007008009001000

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

AWGN; QPSK; rate 0.75

EsN0 (dB)

K

1002003004005006007008009001000

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

AWGN; QPSK; rate 0.67

EsN0 (dB)

K

image22.emf
1002003004005006007008009001000

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

AWGN; QPSK; rate = 0.50; BLER = 1e-2

EsN0 (dB)

K

1002003004005006007008009001000

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AWGN; QPSK; rate = 0.40; BLER = 1e-2

EsN0 (dB)

K

image23.emf
1002003004005006007008009001000

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

AWGN; QPSK; rate = 0.33; BLER = 1e-2

EsN0 (dB)

K

1002003004005006007008009001000

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

AWGN; QPSK; rate = 0.20; BLER = 1e-2

EsN0 (dB)

K

image24.png

image25.png

