3GPP TSG RAN WG1 AH NR Meeting                                                       R1-1701473
Spokane, USA 16th - 20th January 2017

Agenda Item:     5.1.5.1
Source:              ZTE, ZTE Microelectronics
Title: 	             Compact LDPC design for eMBB
Document for:   Discussion and Decision

Introduction
At the 3GPP TSG RAN #71 meeting, the Study Item of “Study on New Radio Access Technology " was approved [1]. And, at 3GPP TSG RAN #84 meeting to #87 meeting, the LDPC code scheme was presented by many companies and was agreed as channel coding for eMBB data channel at #87 meeting. 
In RAN1#85 meeting, some LDPC code schemes were presented [2 - 6] and some basic consensus on LDPC code was agreed. At RAN1#86b, LDPC code was agreed as channel coding scheme for eMBB data at least for information block size > X, wherein, 128 <= X <= 1024 bits. It is generally observed that LDPC has lower complexity and higher throughput with similar or better performance as turbo code. A uniform base matrix with very low code rate (1/5) was shown in [4] and [5] which can support IR-HARQ scheme. In [2], a code rate of 1/3 for LDPC base matrix was presented. Extended methods were mentioned by [3] and [6] to support IR-HARQ. Row-orthogonal property of LDPC codes was presented by [5] for high data throughput. 
At the 3GPP TSG RAN1 #87 meeting, the following agreement has been achieved:
· Code extension of a parity-check matrix is used for IR HARQ/rate-matching support 
· Use lower-triangular extension, which includes diagonal-extension as a special case
· For the QC-LDPC design, the non-zero sub-blocks have circulant weight <=2
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices
· In parity check matrix design, the highest code rate (Rmax,j ) to design j-th H matrix for is 
· Rmax,j <=8/9
· Rmax,j is the code rate of the j-th H matrix before code extension is applied (0 j< J) 
· Rmax,j is the code rate after accounting for the built-in puncturing, if this is applied in H matrix design
· Rate matching to support transmission code rate higher than Rmax,j is not precluded
In this contribution, some considerations for LDPC codes design, as well as the LDPC codes with flexibility of code block sizes, code rates and IR-HARQ are presented. 
Low Density Parity Check (LDPC) Codes 
A LDPC code is defined by a sparse parity check matrix, which can be mapped to a bipartite or tanner graph composed of check nodes and variable nodes, as shown in Figure 1. 
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The parity check matrix of structured LDPC Codes is defined by a matrix H of size, which consists of blocks of circularly shifted identity matrices or zero matrices of size, of the form as following:




If integer, define. 



If integer, defineand P is a standard permutation matrix of the form:






The size of  H is, here. And  of size  has the form:




There are several basic definitions and concepts for structured LDPC codes. H is the expand matrix of, and  is the base parity check matrix (or base matrix) of H, and z is the lift size (or expand factor). As we can see, the information block size K = N-M and N is the codeword block size. Through changing the expand factor z, a LDPC set of variable information length and certain code rate can be obtained. Therefore, a base matrix Hb and an expand factor z together can be used to represent H.  
Matrix feature and design parameters for NR LDPC
In order to complete NR SI, RAN1 should discuss matrix feature and design parameters for NR LDPC according to channel coding requirement of eMBB channel coding.  It is suggested that RAN1 should try to make consensus on matrix feature and design parameters instead of any particular matrix. 
The size of parity check base matrix and compact matrix concept 
QC-LDPC codes have been used widely in high-throughput systems, such as IEEE802.16e, IEEE802.11n, and IEEE802.11ac, and IEEE802.11ad. QC-LDPC codes are very suitable for high-throughput and low-latency system.  The size of base parity check has been summarized as follows:
16e(Wimax)/11n/11ac      rate = 1/2     kb = 12, mb = 12, nb = 24
                                          rate = 2/3     kb = 16, mb = 8,   nb = 24
                                          rate = 3/4     kb = 18, mb = 6,   nb = 24
                                          rate = 5/6     kb = 20, mb = 4,   nb = 24
16ad:                                 rate = 1/2      kb =  8, mb = 8, nb = 16
                                          rate = 5/8      kb = 10, mb = 6, nb = 16
                                          rate = 3/4      kb = 12, mb = 4, nb = 16
                                          rate =13/16   kb = 13, mb = 3, nb = 16
It is observed that the range of Kb is at most 20 in these wireless wideband communication systems. Meanwhile, there are many papers to discuss how to implement them with Gbps throughput, therefore the base matrix of kb<=20 is relatively mature and reliable. Several big base matrices (e.g. kb>=30) have been proposed for NR. However, whether those big base matrices can support the NR peak data rate target with reasonable implementation complexity have not been shown.
Observation1: It is observed that the range of Kb is not more than 20 in most wireless wideband communication systems, such as 16e (Wimax)/11n/11ac/11ad.

The number of systematic columns of LDPC base matrix is kb, wherein kb=nb – mb, nb is the number of base matrix’s columns and mb is the number of base matrix’s rows. The kb value can be used to indicate whether the LDPC base matrix is compact. It is suggested that the area efficiency should be evaluated under the assumption of 20 Gbps which is the core KPI for eMBB. The matrix with small kb (kb <=20, e.g. 2,5,6,8,10,12,16,20) is preferred, which can support a compact structure. 
Compared with non-compact matrix, the compact matrix has the benefits as follows:
1) It is easier and more efficient to realize row parallel decoder for compact matrix because compact matrix has less numbers of rows, less maximum row weights and less non-negative elements  than those of non-compact matrix, which leads to less complexity of CNUs , less barrel shift networks and simpler connection between CNU pins and memory banks.
2) It is easier and more efficient to realize block parallel decoder at 20Gbps peak data rate, since compact matrix can be used to improve the potential maximum parallelism for block parallel decoder. As we all know, block parallel decoder make LDPC decoder work as serial processing like turbo codes, therefore throughput of such decoder is limited and maybe more than 4 decoders are needed which means that more than fourfold increase of memory. In detail, Kmax can be calculated by the formula as kmax = kb * Zmax，and  the limitation of Kmax leads to the limitation of Zmax. For a certain Kmax, Zmax becomes bigger while kb becomes smaller. Therefore, a compact matrix is very helpful to improve Zmax, which is  the potential maximum parallel degree of the typical block parallel decoder where one cycle is needed for one element in the base matrix . Wherein, Zmax denotes the maximum lift size.
3) According to the simulation results of several companies, it is shown that compact matrix has comparable performance to non-compact matrix.
4) Compact matrix has a lot of mature implementations with Gbps throughput since compact matrix has been accepted by many wireless wideband communication with LDPC. However, non-compact matrix has a great risk to NR LDPC implementation since we almost cannot find any known implementations of Gbps throughput based on non-compact matrix.
5) Non-compact matrix leads to very high code rate (eg Rmax,j=0.89) of kernel base matrix before code extension, which leads to that 20 Gbps can be achieved only when code rate is higher than Rmax,j and  20 Gbps cannot be achieved for most MCS levels of high order modulation. However, there are tremendous bandwidth resources for high frequency band, NR UEs should support 20Gbps at most MCS levels of high order modulation.
6) Compact matrix leads to less ROM to store the base parity check matrix.
7) Compact matrix leads to simpler expression and simpler control circuit on cycle shift operations 
8) Compact matrix needs obvious less time in software simulations based on CPU or DSP.
The number of total columns in the base matrix is proportional to systematic columns (kb) and inversely proportional to code rate (R), expressed as nb=kb/R.  For example, the number of total columns will be 3 or 5 times as kb and the number of parity columns (or number of rows) will be 2 or 4 times as kb when the code rate (R) equals 1/3 or 1/5. The more columns in a base matrix, the more likely it will have large average row weight (average number of non -1 for all rows). And, the large average row weight will lead to high decoder complexity [7] and high decoding latency in parity node updating [7]. 
If the number of total columns is larger, the number of total rows will be larger for the same code rate. And, large number of total rows will increase the number of layers in layered decoder which will lead to high decoder latency [7], such as row-parallel decoder. Although the number of total rows can be reduced by decreasing the systematic columns (kb) for low code rate, it may destroy the unity of base matrix. 

The LDPC code information size is proportional to the number of systematic columns (kb) and expanding factor (lift size) (Z), shown as: . The granularity of code block sizes will be large when kb is a big value for large size of base matrix. Therefore, the small size of base matrix (or small value of kb) is preferred. 
Proposal 1: It is preferred that the compact base matrix with small kb (kb <=20) is used for NR LDPC.
Number of base parity check matrix 
It is preferred that single base matrix is used for NR LDPC. The reason is shown as follows: 1）single base matrix has comparable performance to multiple base matrixes.  2)  single base matrix  is simple and unified.  3) single base matrix is suitable for row parallel decoder because multiple matrices lead to  complex connections between CNU pins and LLR memory banks.  4) single base matrix needs less ROM to restore base matrix.   5) single base matrix needs less control logics to exchange among multiple matrices.  
In this contribution, although two matrices are suggested by us, single matrix of the two matrices is preferred. 
The first matrix with Kb = 8 is a very compact matrix, which is preferred if complexity is the most important KPI. Note that 0.1 - 0.2 dB performance loss compared to non-compact matrix at high code is not really a big concern to our understanding due to typical 2 dB SNR gap between adjacent CQI and CQI inaccuracy. The second matrix with Kb = 16 is a compact matrix, which is preferred if 0.1 - 0.2 dB performance difference at high code rate is concerned.  
If multiple base matrices have to be considered for harmonization for eMBB LDPC, at most 2 base matrices are preferred, one is used for large code block size & high code rate, another is used for small code block size & low code rate. Furthermore, we think compact base matrix should be used for at least the small code block size & low code rate base matrices. The reason is shown as follows:  1) Reducing power cost. 2) Realizing the optimal performance. 3) Decreasing the design difficulty.  4) Lower code rate might to be obtained easily. 
Proposal 2: It is preferred that single base matrix is defined for NR LDPC.
Uniform Base Matrix
Uniform base matrix means that code base matrix is derived from a uniform base matrix for any code block size or code rate. A sub-base matrix of corresponding number of rows and columns is extracted from the uniform base matrix to support different code rates. The expanding factor (lift size) can be changed to support different code block sizes. An example for code rates of Ri and Rj is shown in Figure 2. An example of different expanding factor (lift size) (Zs and Zt) is also shown in Figure 2. 


Figure 2 Uniform Base Matrix for different Code Rates (Rj<Ri) and different Code Block Sizes (Zs<Zt)


To generate a LDPC code set of a certain code rate and various code sizes, a uniform base matrix is defined. In order to obtain the base matrix of certain code size, the uniform base matrix has to be modified to generate a modified base matrix, which will really be used as parity check base matrix in the encoder/decoder of the LDPC code of certain code size. That is to say, for the LDPC codes of different code sizes and the same code rate, the positions of non-negative-one elements of their base matrices is the same, and the values of non-negative-one elements of their base matrices need to be changed. 





For each non-negative-one elements of the uniform base matrix above, the value should be modified. Let represents the i-th row, j-th column element of modified base matrix,  represents the i-th row, j-th column element of the uniform base matrixgiven by us. Then



Eg.    


is the largest lift size(expand factor), and z is the currently used expand factor uniquely corresponding to the currently used code size.  denotes the operation that rounds the elements in it to the nearest integers towards minus infinity.
The advantages of uniform base matrix are described as following. 
· Simplicity. Designing multiple LDPC base matrices for each code block size and/or code rate, will for sure bring certain extra complexity for LDPC code design. 
· Uniform Decoder. Since the uniform base matrix has a fixed number of rows and columns, a codeword for any code rate or retransmission may be decoded with the same decoder. 
· Less Storage. Only a uniform base matrix is stored instead of multiple LDPC base matrices for each code block size and/or code rate. 
· Easy to achieve flexible code rate. Since the uniform base matrix can support very low initial code rate, the extracting operation for sub-base matrix (puncturing bits off initial codeword) can provide any continuous code rates larger than initial rate of uniform base matrix. 
· Easy to achieve IR-HARQ. In IR-HARQ scheme, if the first transmitted data block with high rate is received incorrectly, more coded parity bits will be retransmitted for better performance (coding gain) of lower code rate. Since the initial code for uniform base matrix has many coded parity bits, it is very easy and suitable to support IR-HARQ. 
Proposal 3:  It is preferred that uniform base matrix should be considered for LDPC code design.  
Proposal 4: Flexible code rate can be derived by a sub-base matrix of a uniform base matrix, and flexible code size can be derived by element modification of the uniform base matrix.
Mother code rate Rm 
As we all know, mother code rate of both LTE turbo codes and LTE convolutional codes are 1/3, which is the lowest code rate of FEC mother encoder. Actually the code rate of FEC mother encoder is one of the key factor to decide the size of soft buffer, which are very sensitive to the cost of UEs. In order to keep eMBB UEs with competitive cost, it is suggested that the code rate of LDPC mother code (Rm) is 1/3. The code rate has a great influence on the chip area  because Rm has a tight connection to memory and memory is the main component of the chip area. Therefore, very small value of Rm is not preferred, which leads to very low area efficiency and very high power cost. For example, the memory of a decoder with Rm=1/6 is about twice of that of a decoder with Rm=1/3, as a result the chip area of the first decoder become about twice of that of the second decoder. However, the performance gain between the first decoder and the second decoder is very limited.
Proposal 5:  It is preferred that the code rate of LDPC mother codes is 1/3.
The maximum information block size 
As we all know, the maximum information block size of LTE turbo codes is 6144, when the information block size is larger than 6144, code block segmentation will be used. Similarly, the maximum information block size of NR LDPC codes should be defined for code block segmentation. For LDPC decoder, the larger the Kmax is, the higher  memory consumption is. Since memory is one of the main part of the chip area, it is preferred that the maximum information block size of NR LDPC codes is similar with that of LTE Turbo codes. Therefore, the maximum information block size of 6144 <= Kmax <= 8192 are preferred. 
Proposal 6: It is preferred that the maximum information block size as Kmax is in the range of   6144 <= Kmax <= 8192.
Flexible Code Block Size 
As discussed above, flexible LDPC information size can be supported by changing the expanding factor (lift size) (Z). However, the expanding factor (lift size) should not change continuously (the gap equals 1), leading to the granularity of information sizes may be a little large. And, for layered decoder, the expanding factor (lift size) (Z) should equal to an integral multiple of decoder parallelism when the decoder parallelism is less than Z. For example, it equals to a prime integral multiple of 2a, which will have more positive integer factors for parallelism choice, where a is a positive integer. In order to obtain good shortening performance, density evolution and EXIT chart [8] can be used to find base matrix with good shortening performance. Therefore, both scaling expanding factor (lift size) and shortening encoding (padding operation) are used for flexibility of LDPC code block size. 
It is preferred that lift size z = c*2^d，where c is an integer larger than 1 an d is an continuous integers, multiple values of c  have been used to improve TBS flexibility. The reason of such form of lift size is shown as follows:  1) Banyan network can be used since the complexity (number of gates) of Banyan network is half of that of QSN network.  2) the number of padding bits will be decreased by the introduction of an variable c.  
Proposal 7: Flexible code block size for LDPC can be achieved by combining the scaling expanding factor (lift size) and padding operation and multiple values of c in the lift size formula as  z = c*2^d .
Flexible code rate, rate matching and IR-HARQ 
[image: ] 
  Figure 3 circular buffer rate matching with systematic bits puncturing and shortening
As we all know, circular buffer rate matching has been widely used for LTE turbo codes, LTE convolutional codes and LTE Reed Muller codes. For LTE turbo codes, systematic bits puncturing have been used to improve the performance at high code rate and shortening at the beginning position also have been introduced to support full flexibility.  Similarly, according to Figure 3, circular buffer rate matching with systematic bits puncturing and shortening can be reused for NR LDPC codes except BRO interleaver for turbo codes. In detail, The first 1×Z  bits or 2×Z  bits are not transmitted. Puncturing of parity bits is from backward to forward and shortening start at (1×Z +1 ) bit from forward to backward.
In Figure 3, an IR HARQ scheme for LDPC codes is depicted for different retransmissions. In the 1st transmission, the high rate LDPC code is transmitted, and the decoder operates on small size of base matrix. If the decoding fails, the 2nd transmission data is transmitted which allows the decoder to operate on a bigger base matrix with low rate and to achieve successful decoding.. The 1st transmission has the smallest base matrix, whose decoding latency is low and throughput is high. The decoding latency for other retransmissions may increase successively. However, compared with system HARQ latency, the decoding latency of retransmission may be negligible.
Proposal 8: It is preferred that circular buffer rate matching with systematic bits puncturing, shortening and redundancy version (RV) as in LTE turbo codes except BRO interleaver can be reused for NR LDPC codes.
Structure of Parity Part of kernel matrix
The parity part in the base matrix can be designed with the form of low triangular structure or double diagonal structure. The low triangular structure for base matrix was used in IEEE802.11ad and the dual diagonal structure was used in IEEE802.16e and IEEE802.11n. According to our simulations, it shows that two structures have almost the same performances. The LDPC encoder has very complexity for dual diagonal structure, and the encoder may have lower complexity for low triangular structure.. 
Proposal 9: It is preferred that low triangular structure or double diagonal structure can be used for parity part of base parity check matrix.
Code rate (Rmax) of kernel matrix 
Peak throughput is achieved by kernel matrix. If Rmax=8/9, only when code rate is higher than 8/9, peak throughput can be achieved. In this case, only 256QAM can be supported and only several highest MCS can be used. If Rmax=2/3, when code rate is higher than 2/3, peak throughput can be achieved. In this case, 16QAM/64QAM/256QAM can be supported and most MCS of high order modulation can be used. From the example, we can find that compact matrix has lower Rmax than none compact matrix, which means that compact matrix can support 20Gbps peak rate in much more MCS levels of high order modulation  than none compact matrix.
Proposal 10: It is suggested that code rate of kernel matrix should not be too high.
The first Element in each column of Base Matrix
In the LDPC decoder, each element (non -1) in the base matrix corresponds to a cyclic shift. The value of element equals ‘0’, which means that there is no need for cyclic shift. For any column in base matrix, if the first non -1 element of each column is equal to ‘0’, information bits in the original order can be derived when the first two columns are updated. 
Proposal 11: It is preferred that the first non-negative-one element in each column is zero for base parity check matrix. 
Compact LDPC Design
LDPC Base Matrix 
According to the design considerations described above, a uniform base matrix for eMBB is shown as follows with the max expanding factor of 1024. The parameters of this uniform base matrix A/B are: nb=25/50, mb=17/34, kb=8/16. Note this is mainly an illustration of LDPC for simulation and evaluation, other LDPC uniform base matrix design can also be obtained following the principles and considerations discussed above. 
Base  matrix A (the first column with systematic bits puncturing) 17×25： 
 0    0   -1    0    0   -1    0    0    0    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 837   -1    0  990  262    0  574  366   -1    0    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 810   11  952  240   -1  521   -1  143  512   -1    0    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 709  216  781   -1  496  320  541   -1    0   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 360   -1   -1   -1    9   -1  435   -1   -1  993   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 338   -1   -1   -1  406   -1  597   -1   -1    9 1012   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 180   -1   -1   -1  468   -1  329   -1   -1  623   -1   -1   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 701   -1   -1 1012  938   -1  129   -1   -1  807   -1   -1   -1   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1   -1 
 445   -1   -1   -1  805   -1  361   -1   -1  256 1012   -1   -1   -1   -1   -1    0   -1   -1   -1   -1   -1   -1   -1   -1 
 535   -1  381   -1  448   -1  711   -1   -1   16   -1   -1   -1   -1   -1   -1   -1    0   -1   -1   -1   -1   -1   -1   -1 
  12   -1   -1   -1   -1   -1  696  776   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1   -1   -1   -1   -1   -1 
 960   -1   -1   -1  356  883  495   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1   -1   -1   -1   -1 
 759  902   -1   -1  576   -1   84   -1   -1    6   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1   -1   -1   -1 
 430   -1   -1   -1    6   -1 1023   -1   70   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1   -1   -1 
 900   -1   -1   -1    4   -1  798  374   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1   -1 
 287   -1   -1   -1    2   -1  487   -1   -1  254   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0   -1 
 516   -1   -1   -1    2   -1  931   -1   -1   -1   -1  345   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1   -1    0 
Lift size for base matrix A:
Zset = [4   6   8  10  12  14  16  20  24  28  32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 640 768 896 1024] 

Base  matrix B (the first two columns with systematic bits puncturing) 34×50： 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
467 142 45 416 345 41 -1 294 131 196 166 360 12 470 72 -1 260 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
223 172 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 279 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 258 126 320 316 391 245 484 -1 337 48 160 242 390 69 429 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
68 172 128 -1 -1 -1 99 -1 359 494 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
244 282 -1 210 -1 393 -1 -1 -1 -1 -1 -1 449 127 -1 478 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
225 -1 -1 35 -1 123 -1 -1 -1 341 -1 -1 218 -1 -1 475 -1 510 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
36 19 -1 -1 -1 319 -1 -1 103 -1 -1 166 387 -1 -1 262 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
199 -1 -1 330 -1 -1 -1 309 -1 5 -1 -1 177 -1 -1 71 -1 389 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
203 -1 -1 321 -1 -1 -1 -1 -1 -1 298 -1 248 -1 -1 39 -1 321 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 216 -1 248 -1 284 -1 -1 -1 -1 -1 161 -1 -1 354 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
67 264 399 -1 -1 290 -1 -1 -1 -1 -1 -1 241 -1 95 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
407 34 -1 -1 -1 -1 247 -1 -1 -1 -1 -1 -1 -1 -1 165 -1 135 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
321 -1 -1 -1 -1 -1 69 -1 -1 -1 -1 162 -1 242 -1 223 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
318 -1 -1 -1 -1 -1 255 -1 -1 -1 -1 -1 373 -1 -1 -1 -1 -1 194 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
286 -1 -1 -1 128 -1 -1 -1 -1 338 -1 -1 -1 -1 -1 53 -1 327 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
319 -1 -1 322 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 147 279 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 388 -1 -1 -1 -1 -1 -1 364 -1 -1 -1 346 -1 -1 450 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
79 260 -1 -1 -1 -1 -1 -1 211 -1 -1 334 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
92 -1 -1 -1 -1 -1 -1 -1 -1 107 -1 164 -1 -1 -1 -1 240 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
161 -1 -1 -1 -1 401 -1 -1 -1 -1 -1 -1 -1 -1 -1 51 -1 -1 198 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
337 -1 -1 -1 -1 -1 -1 233 -1 -1 -1 -1 246 -1 -1 -1 -1 219 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
440 -1 365 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 -1 233 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
110 -1 130 -1 -1 -1 -1 -1 50 -1 -1 -1 61 -1 -1 86 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
-1 388 -1 -1 -1 -1 -1 -1 -1 341 -1 -1 -1 -1 -1 -1 299 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 
319 252 -1 -1 -1 -1 -1 485 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 
311 -1 -1 -1 317 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 503 126 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 
471 -1 -1 -1 -1 -1 124 -1 -1 -1 -1 161 -1 -1 -1 -1 322 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 
43 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 416 158 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 
-1 363 -1 -1 -1 -1 -1 -1 -1 -1 326 -1 -1 -1 -1 -1 -1 -1 424 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 
451 -1 -1 -1 -1 393 -1 -1 -1 -1 -1 132 -1 -1 -1 96 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 
-1 259 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 167 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 
-1 8 -1 -1 -1 -1 -1 494 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 249 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 
223 -1 -1 -1 -1 -1 -1 -1 -1 -1 58 -1 -1 -1 -1 40 462 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

Lift size for base matrix B:
Zset = [2 4 6 8 10 12 14 16 20 24 28 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512]
LDPC Encoding Process 
There are three steps to encode K information bits into a codeblock of length N: 1. Choosing coding expanding factor and coding base matrix; 2. LDPC encoding and 3. bit selection as illustrated in Figure 4. Note that, if the size of information bits K is larger than 8192 (1024*8 for our proposed base matrix A/B), segmentation is required to encode into multiple code blocks.
1. Choosing coding expanding factor and base matrix  


For information size of K bits, the coding expanding factor Z is chosen to be the first element in Zset larger or equal to , wherein . Then the elements of coding base matrix are modified by coding expanding factor Z as the following:


2. LDPC Encoding 





padding bits are inserted into the information bits starting from the th bit for base matrix A andth bit for base matrix B. padded bits are encoded into codeword of bits using the coding base matrix and coding expanding factor calculated above. 
3. Bit Selection 




Permutation is performed to reorder the coded bits in the order of importance. This is to ensure puncturing will not puncture bits with high importance. For the base matrix A, a permutation vector PV=[1,2,3,4,5,6,7,8,9,10,11, 12,13,14,15,16,17,18,19,20,21,22,23,24,0] for code rate of 8/9 and PV=[ 1,2,3,4,5,6,7,10,11,9,8,12,13,14,15,16,17,18,19,20,21,22,23,24,0 ] for code rates smaller than 8/9 can be considered to shift columns of Z bits.  For the base matrix B, a permutation vector PV=[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,0,1]., k=0, 1, …, nb*Z-1, where is the original sequence and is the shifted sequence. Bit selection is performed as the following to obtain codeword.


wherein “null” is padded bit. The process of LDPC encoding and bit selection for base matrix A are shown in Figure 4 and base matrix B shown in Figure 5. 




Figure 4 the process of LDPC encoding and bit selection of base matrix A


Figure 5 the process of LDPC encoding and bit selection of base matrix B
Accordingly, the number of actually used rows and columns of the base matrix in the decoder for base matrix A can be calculated as 

rows： 
for base matrix B:

rows： 

columns：.
Figure 6 and 7 give an example of LDPC base matrix derived from base matrix A and B respectively for LDPC decoding with K=4096 and N=4608 with code rate of 8/9, where coding expanding factor Z=512/256, mb=4/4, kb=8/16, and nb=12/20.
The performance of proposed LDPC base matrix is simulated and compared with [9]. Table 1 lists the simulation parameters and BLER curves are shown in Figure 8 and Figure 9. The BLER performances of proposed LDPC base matrix  (B) are shown in Appendix with the simulation parameters in Table 1. 

Observation 2 : It is observed that the proposed LDPC base matrix design has no error floor .



Figure 6 Example of LDPC Base Matrix for LDPC Decoding with K=4096 and N=4608 derived from base matrix A




Figure 7 Example of LDPC Base Matrix for LDPC Decoding with K=4096 and N=4608 derived from base matrix B
Table 1 Evaluate the block error rate (BLER) performance versus SNR for eMBB
	Channel
	AWGN

	Modulation
	QPSK

	Coding Scheme
	  ZTE
	[9]

	Decoding algorithm
	Flooding BP

	Target BLER
	0.01

	Max Iterations
	50



[image: ]
Figure 8 Performance comparison for ZTE LDPC Matrix A and LDPC in [9] 

[image: ]
Figure 9 Performance comparison for ZTE LDPC Matrix B and LDPC in [9] 

Conclusion
In this contribution, some considerations of LDPC coding schemes for the new RAT are presented. In summary, we have the following proposals and observations:
Observation1: It is observed that the range of Kb is not more than 20 in most wireless wideband communication systems, such as 16e (Wimax)/11n/11ac/11ad.
Observation 2 : It is observed that the proposed LDPC base matrix design has no error floor .Proposal 1: It is preferred that the compact base matrix with small kb (kb <=20) is used for NR LDPC.
Proposal 2: It is preferred that single base matrix is defined for NR LDPC.
Proposal 3: It is preferred that uniform base matrix should be considered for LDPC code design.  
Proposal 4: Flexible code rate can be derived by a sub-base matrix of a uniform base matrix, and flexible code size can be derived by element modification of the uniform base matrix.
Proposal 5: It is preferred that the code rate of LDPC mother codes is 1/3.
Proposal 6: It is preferred that the maximum information block size as Kmax is in the range of   6144 <= Kmax <= 8192.
Proposal 7: flexible code block size for LDPC can be achieved by combining the scaling expanding factor (lift size) and padding operation and multiple values of c in the lift size formula as  z = c*2^d .
Proposal 8: It is preferred that circular buffer rate matching with systematic bits puncturing ,shortening and redundancy version(RV) as in LTE turbo codes except BRO interleaver can be reused for NR LDPC codes.
Proposal 9: It is preferred that low triangular structure or double diagonal structure can be used for parity part of base parity check matrix.
Proposal 10: It is suggested that code rate of kernel matrix should not be too high.
Proposal 11: It is preferred that the first non-negative-one element in each column is zero for base parity check matrix.
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