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7.5
Fast fading model

Unaffected parts were omitted

Step 10: Draw initial random phases

Draw random initial phase 
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 for each ray m of each cluster n and for four different polarisation combinations (θθ, θϕ, ϕθ, ϕϕ). The distribution for initial phases is uniform within (-).

In the LOS case, draw also a random initial phase 
[image: image2.wmf]0
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 for both θθ and ϕϕ polarisations.
Step 11: Generate channel coefficients for each cluster n and each receiver and transmitter element pair u, s.
The method described below is used at least for drop-based evaluations irrespective of UT speeds. Relevant cases for drop-based evaluations are:
-
Case 1: For low complexity evaluations

-
Case 2: To compare with earlier simulation results, 

-
Case 3: When none of the additional modeling components are turned on.

-
Case 4: When spatial consistency and/or blockage is modeled for MU-MIMO simulations

-
Other cases are not precluded

For the N – 2 weakest clusters, say n = 3, 4,…, N, the channel coefficients are given by:
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(7.5-22)

where Frx,u,θ and Frx,u,ϕ are the field patterns of receive antenna element u according to (7.1-11) and in the direction of the spherical basis vectors, 
[image: image5.wmf]q
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 and 
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 respectively, Ftx,s,θ and Ftx,s,ϕ are the field patterns of transmit antenna element s in the direction of the spherical basis vectors, 
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 and 
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 respectively. Note that the patterns are given in the GCS and therefore include transformations with respect to antenna orientation as described in Section 7.1. 
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 is the spherical unit vector with azimuth arrival angle ϕn,m,AOA and elevation arrival angle θn,m,ZOA, given by 
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where n denotes a cluster and m denotes a ray within cluster n. 
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 is the spherical unit vector with azimuth departure angle ϕn,m,AOD and elevation departure angle θn,m,ZOD, given by
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where n denotes a cluster and m denotes a ray within cluster n. Also, 
[image: image13.wmf]u
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,

is the location vector of receive antenna element u and 
[image: image14.wmf]s

tx

d

,

is the location vector of transmit antenna element s, n,m is the cross polarisation power ratio in linear scale, and 0 is the wavelength of the carrier frequency. If polarisation is not considered, the 2x2 polarisation matrix can be replaced by the scalar 
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 and only vertically polarised field patterns are applied.

The Doppler frequency component depends on the arrival angles (AOA, ZOA), and the UT velocity vector 
[image: image16.wmf]v

with speed v, travel azimuth angle ϕv, elevation angle θv and is given by 
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(7.5-25)

For the two strongest clusters, say n = 1 and 2, rays are spread in delay to three sub-clusters (per cluster), with fixed delay offset. The delays of the sub-clusters are
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(7.5-26)

where 
[image: image20.wmf]DS

c

 is cluster delay spread specified in Table 7.5-6. When intra-cluster delay spread is unspecified (i.e., N/A) the value 3.91 ns is used; it is noted that this value results in the legacy behaviour with 5 and 10 ns sub-cluster delays
Twenty rays of a cluster are mapped to sub-clusters as presented in Table 7.3-5 below. The corresponding offset angles are taken from Table 7.5-3 with mapping of Table 7.5-5.

Table 7.5-5: Sub-cluster information for intra cluster delay spread clusters

	sub-cluster #
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Then, the channel impulse response is given by:
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where 
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(7.5-28)
In the LOS case, determine the LOS channel coefficient by:
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(7.5-29)

where (.) is the Dirac’s delta function and KR is the Ricean K-factor as generated in Step 4 converted to linear scale.

Then, the channel impulse response is given by adding the LOS channel coefficient to the NLOS channel impulse response and scaling both terms according to the desired K-factor 
[image: image40.wmf]R
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 as
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(7.5-30)
Unaffected parts were omitted
7.6.8
Explicit ground reflection model

In case the ground reflection shall be modelled explicitly, Equation (7.5-30) has to be replaced by
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(7.6-32)
with the delays for the ground reflected and the LOS paths being defined by their lengths, according to the Tx-Rx separation 
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 and the Tx and Rx heights 
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and
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(7.6-34)
The channel coefficient for the ground reflected path is given by
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(7.6-35)
with the normalized vectors pointing towards the ground reflection point from the Tx
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(7.6-36)
and from the Rx side
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(7.6-37)

The angles for the ground reflected path are given by the geometry assuming a flat surface with its normal pointing into z-direction. The angles at the Tx side can be determined by
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and at the Rx side by
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The reflection coefficients for parallel and perpendicular polarization on the ground, cf. [21], are given by
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(7.6-38)

and
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(7.6-39)

with the complex relative permittivity of the ground material given by
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(7.6-40)

The electric constant 
[image: image58.wmf]0

e

 is given by 8.854187817... × 10−12 F·m−1.

For applicable frequency ranges, the real relative permittivity can be modelled by
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(7.6-41)

while the conductivity in [S/m] may be modelled by
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(7.6-42)

with 
[image: image61.wmf]c

f

 being the center frequency in Hz.

A selection of material properties from [19] is given below. Since the simpl,ified models for conductivity and relative permittivity are only applicable for frequencies between 1 and 10 GHz, Figure 7.6.8-1 presents curves up to 100 GHz at least for very, medium dry and wet ground, cf. [20].

Table 7.6.8-1 Material properties [19]

	Material class
	Relative permittivity
	Conductivity
	Frequency range
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	GHz

	Concrete
	5.31
	0
	0.0326
	0.8095
	1-100

	Brick
	3.75
	0
	0.038
	0
	1-10

	Plasterboard
	2.94
	0
	0.0116
	0.7076
	1-100

	Wood
	1.99
	0
	0.0047
	1.0718
	0.001-100

	Floorboard
	3.66
	0
	0.0044
	1.3515
	50-100

	Metal
	1
	0
	107
	0
	1-100

	Very dry ground
	3
	0
	0.00015
	2.52
	1-10

	Medium dry ground
	15
	−0.1
	0.035
	1.63
	1-10

	Wet ground
	30
	−0.4
	0.15
	1.30
	1-10


Figure 7.6.8-1: Relative permittivity and conductivity as a function of frequency [20]
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