Page 1

3GPP TSG-RAN WG1 NR Ad Hoc	R1-1700830
16th – 20th January 2017
Spokane, USA

[bookmark: Source]Agenda item:	5.1.5.1
Source: 	Qualcomm Incorporated
Title: 	LDPC rate compatible design
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
This document presents a rate compatible design for LDPC codes which can serve as a suitable candidate for NR EMBB data channel. The design here is the same as originally proposed in [13] although we emphasize the key elements of the design for adoption. In a companion contribution [12], the performance advantages of this proposal are discussed in detail. Note that the design remains consistent with previous agreements throughout the study item for NR.

In RAN #87 it was determined that a full specification for LDPC codes would be needed for the EMBB data channels. Moreover, the following aspects of the EMBB data channel code were highlighted based on other previous agreements in RAN1 #86 and RAN1 #86.

Agreement:
· Channel coding techniques for NR, should support the following:
· Info block size K flexibility:
· Granularity at lower end of range of K = [D1] bits
· D1 may be different for control and data channels
· FFS whether D1 may be different for different code rates
· FFS whether the granularity is coarser at higher values of K
· Shortening (i.e. assigning info bits to known values, e.g. 0) may be used to provide info block size flexibility
· Codeword size flexibility:
· Basic code design with rate matching (i.e., puncturing and/or repetition) supports 1-bit granularity in codeword size

Agreements:
· Code extension of a parity-check matrix is used for IR HARQ/rate-matching support
· Use lower-triangular extension, which includes diagonal-extension as a special case
· For the QC-LDPC design, the non-zero sub-blocks have circulant weight <=2
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices
· In parity check matrix design, the highest code rate (Rmax,j) to design j-th H matrix for is
· Rmax,j <=8/9
· Rmax,j is the code rate of the j-th H matrix before code extension is applied (0 j< J)
· Rmax,j is the code rate after accounting for the built-in puncturing, if this is applied in H matrix design
· Rate matching to support transmission code rate higher than Rmax,j is not precluded

Note that the definition of a QC-LDPC was established as the following below from RAN1 #85, and will be used here throughout.

Agreement:
· For the purpose of study and comparisons, quasi-cyclic like LDPC codes are defined as follows:
· The Parity check matrix of Quasi-cyclic like LDPC Codes is defined at least by a matrix H of size (mb×z)×(nb×z), which consists of sub-block matrices of size z×z, where each sub-block matrix is composed by circularly shifted matrices or zero matrices. Wherein, mb, nb and z are integers larger than 1.
· The values of mb, nb and z are FFS.

[bookmark: _Ref378529477]LDPC design overview
The coding scheme in the new NR is required to (i) support a large range of rates, (ii) provide a fine granularity of blocklengths and (iii) provide IR HARQ. The coding scheme needs to support the features mentioned above while having good performance and a compact description. Traditional designs such as 802.11n/ad have LDPC base graphs for each code rate and blocklength pair. Since the range and granularity of rates and blocklength required for the NR is large, designing base graphs for each code rate and blocklength pair would incur high description complexity. For all the proposals made below, the corresponding supporting observations can be found in [12].
[bookmark: _Ref471674129]Nested base graph structure
To achieve an efficient description, we define a family as a base graph which contains a collection of nested base graphs. Such a base graph consists of a high-rate core graph (i.e., highest rate supported before puncturing) and a low rate extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes. The remainder of the base graph beyond the core graph consists of low-rate extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. These can be used to generate re-transmissions that support rate-compatible IR HARQ. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 1 depicts nested base graph family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.
Systematic bit-columns
11n-like Parity structure
Low rate extensions
State/punctured nodes
High-rate core graph
Degree one parity-bit

Figure 1: Family of nested base graphs

For each family, we define quantities and as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and and as the minimum and maximum number of parity bit-columns. The number of punctured base information bit-columns is denoted by and is set to two. Multiple base graphs are nested within each other starting at the smallest basegraph over base information columns and ending with the largest basegraph with base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding. More precisely, the base graph is described using the maximum number and the base graphs with smaller base information bits, say kb, are obtained by deleting the last base information bits. This procedure can be interpreted as shortening at the base graph level. Note, however, that this shortening at the base graph level is different from later bit-level shortening at the lifted or final code level. For this base graph level shortening, the variable nodes in that base column need not be processed at all by a decoder and the unused, shortened, base nodes are simply removed, thus incurring no additional complexity. The parities are added for the low rate extension.
The maximum rate supported by all of the nested base graphs associated to the family is given by and the minimum rate supported by the all of the nested base graphs is given by. Note that while the range from to is supported by all the blocklengths there are additional rates supported at particular information blocklengths. For example, there is a rate code, but this rate cannot be supported at all the above stated information blocklengths. For simplicity of exposition we restrict the use of a family to rates in between and blocklengths in between . It will be seen later that each family has sufficient range and granularity in rate required for NR.
Proposal 1: The set of base graphs used to operate across different code rates should consist of a nested basegraph structure, referred to as a family described in Section 2.1, and should have consistent performance across the continuum of the base info-columns. I.e., performance of base graphs, within a family, with in the range at the same code-rate and comparable blocklengths, are close to each other.
Proposal 2: Each family includes at least 2 state/punctured nodes and a degree-1 parity node to enhance performance robustness.
Note that contrary to LTE Turbo Codes [2], which puncture a low rate code in order to provide higher operating code rates, LDPC codes here allow for a base graph per operating rate so as to reduce the computational overhead of correcting for an excessive amount of puncturing at the transmitter.
Set of clustered liftings
The base graphs derived from a given family are then lifted to achieve a binary parity check matrix. Rather than supporting a continuum of liftings, each family also consists of a set of clustered liftings, which are defined as follows. Consider the set of numbers and the set of lifts given by for . For each the set of lifts is referred to as the cluster of lifts. The full set of lifts is given by the set {4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896}. The lifting values used to cyclically lift the base graph are common for each element of a cluster. For a given family the set of all lifts for a base edge is given by a 23 bit descriptor the details of which are given in Section 3.
Note that this coarse set of clustered liftings provides both implementation advantages [12] as well as description simplifications, while achieving good performance after shortening/puncturing/repetition (discussed in Section 2.4.4) to achieve the final desired code information size K and code block size N.
Proposal 3: The LDPC code should be design with a clustered set of liftings, where each cluster is defined by values of lifts that are close to each other. Furthermore, the shift coefficients should be the same for all lift values belonging to a cluster or a group of lifts to decrease description complexity. All this needs to be done while maintaining consistent good performance.
Multiple family descriptions
To meet all the NR requirements, three families or three nested base graphs are proposed. Before we provide further details on the properties of each family, let us introduce some notation below.
	Parameter
	Definition

	
	The maximum number of base information bits in the nested family. Also the number of base information bits in each families’ specification.

	
	The minimum number of base information bits in the nested family.

	
	The number of base information bits punctured. (It is set to 2 in all specified families.)

	
	The number of base parity checks in the core. Also the number of base parity bits in the core.

	
	The maximum number of base parity bits used.

	
	The minimum number of base parity bits used. It may be more or less than cb,core

	
	 , the maximum code rate supported by all members of the family

	
	 , the minimum code rate supported by all members of the family

The proposed base graphs details are given next. The three families are denoted as the highest, middle and the lowest family, which indicates the relative code rate of the core portion of the graph.
1. Highest family: This family corresponds to codes with highest absolute rate. The various parameters mentioned previously are as follows: , , , and . It then follows that and The associated set of clustered lifts given by for . Thus, the minimum information blocklength supported is and the maximum information blocklength supported is Note that the is obtained by using and Z = 896. Such a large blocklength may not be required for NR. However, the design is capable of supporting such large blocklengths. If we restrict is to 8,192, then a maximum Z = 320 is sufficient.
2. Middle family: This family corresponds to codes with middle absolute rate. The various parameters mentioned previously are as follows. , , , and . It then follows that and The associated set of clustered lifts given by for . Thus, the minimum information blocklength supported is and the maximum information blocklength supported is Note that the is obtained by using and Z = 896. Such a large blocklength may not be required for NR. However, the design is capable of supporting such large blocklengths. If we restrict is to 8,192, then a maximum Z = 448 is sufficient. Note that although the lifts {4,5,6,7} have been designed for the middle family we only provide the description for lifts starting at Z = 8.
3. Lowest family: This family corresponds to codes with lowest absolute core rate. The various parameters mentioned previously are as follows. , , , and . It then follows that and The associated set of clustered lifts given by for . Thus, the minimum information blocklength supported is and the maximum information blocklength supported is Note that although the lifts {4,5,6,7} have been designed for the middle family we only provide the description for lifts starting at Z = 8 since the is already less than 100 for Z = 8.

	Family
	
	
	
	
	
	
	
	
	
	

	High
	30
	24
	2
	7
	158
	5
	24/27
	30/186
	96
	8192

	Middle
	20
	16
	2
	9
	106
	10
	16/24
	20/124
	128
	8192

	Low
	10
	8
	2
	11
	114
	14
	8/20
	10/122
	64
	8192

Decoding algorithms for LDPC codes are inherently parallel in nature [4], and can allow high parallelization based on the structure of the code which would result in high throughput decoders. The code blocklength is the product of number of columns in the base graph and the lift size Z [5]. Hence, a decoding hardware capable of processing Z edges (corresponding to the lift Z) in one clock cycle would allow us to attain high decoding throughput. The level of parallelization provided by the specification should meet the requirements needed by NR and be forward compatible with implementation evolution of the air interface. Therefore, consideration should be taken to ensure a reasonable level of parallelization is implementable for initial NR deployments to meet high data throughput such 20Gbps and low latency requirements such as 15-30us of turnaround for self-contained acknowledgement of successfully decoded data.
The proposed design is based on lifted LDPC codes and has inherent parallelism of the lift size. An advantage of the proposed design with three families is that for smaller blocklengths and lower code rates one can use the base graphs from the lowest families. This would give us larger lift values when compared to using base graphs from middle or the highest family. As a result, we would be able to have higher parallelization and resulting higher throughput.
Proposal 4: Highest family used to support codes with highest absolute rates should have relatively larger base graphs to avoid double or multiple parallel edge in the base graphs and to have consistent good performance. Base graphs with minimum base info-columns should be around 24 and maximum base info-columns should be around 30.
Proposal 5: Multiple families (base graphs) should be supported. Lower families should be optimized for lower code rates and smaller blocklengths.
Code rate and blocklength determination
Codes from each family are generated by choosing a base graph from the nested collection of base graph as mentioned before and combining it with an appropriately chosen lift value from the set of clustered liftings. The size of the selected base graph essentially determines the operating rate point. Each family supports every information blocklength such that where and . It should be noted that even though the equation describing the lift sizes allows for sizes greater than 320 (for highest family) and 448 (for the middle family), such lift sizes are not used since they are not required to reach the block sizes of NR. These have been provided here because it makes the definition of clustered or grouped lifts uniform and the design complete.
The appropriate family is then selected for the final graph, after which shortening/puncturing/repetition are applies to achieve the target K and N.
Procedure to obtain code from family
Consider finding a code with parameters K,N in a given family. If K is in the specified range and K/N is in the specified range then a solution is guaranteed. There may be more than one solution. We first determine a lifting size and the base graph parameters. The lifted code may require some additional shortening and puncturing, but this is limited, usually to less than one lifted column, except in the case of the highest rate codes.
The following algorithm can be used to determine a suitable base graph and lifting value.
1. Find so that
2. Set the number of base graph information variable nodes to by deleting the last base information variable nodes from the base graph of the family
3. Append the first parity variable nodes unless in which case the parity variable nodes are appended. (The number of base check nodes is equal to the number of base parity variable nodes.)

Algorithm 1

The base graph and the lift values have been designed so that a solution to 1 is always possible for K in the supported range. In some cases there may be more than one solution. If K/N is within the supported rate range then it is guaranteed that is in the range . When the lifted code will be shortened by padding the K information bits with an additional h zeros. The definition of ensures that and that if then K=. This implies that to obtain the desired information blocklength, , we need to shorten less than one column or worth of information bits in the lifted graph and that the number of information bits is a least . In general the shortening should be done on the last information column. In the same vein, the amount of puncturing of parity bits required to obtain the desired code blocklength , is at most one column, except in the case of the highest family when a rate higher than the core rate is desired, in which case up to two of the degree two parity bit columns may be punctured. The base graph structure has been designed to have good performance when at most one base information column is shortened and less than one column worth of parity-bits are punctured.
Example: This example is high rate, requiring puncturing of more than a single parity column. K = 792, N=891 (rate 8/9). Choose Z = 32, kb = 25, shorten by 8 bits. Need 891-792+2*32=131 parity bits. Take 7 parity columns, puncture last 61 bits. There is another solution given by kb = 29, Z = 28, with 20 bits shortened and 45 parity-bits punctured.
Example: K=1100, N=2118 (just above rate ½). High family solution: Z = 40, kb = 28, base parities=30. Shorten by 20 bits, puncture 22 bits. Middle family solutions: A) Z=48, kb = 23, base parities=25. Shorten by 4 bits, puncture 6 bits. B) Z=56, kb = 20, base parities=22. Shorten by 20 bits, puncture 22 bits.
From the above it is clear that the information blocklength granularity achieved by each family is of single-bit. Since each family is a collection of nested base graphs a description of only the largest base graph in the sequence need be stored. Note that although the set of lift values are discrete, the blocklength granularity that can be achieved is of one bit. The base graph and the lift values are designed such that the code for a given information blocklength K and rate r has good performance and the corresponding graph does not have bad loops.
The base graph description for each family along with its lift values are provided in the appendix. The description consists of a list of base check nodes together with their connected base variable nodes and a descriptor of the lifting values for the associated edge. The first variable nodes constitute the base information bits. When then only base variable nodes in the range [1: are used and those in the range [: are deleted. The base parity variable nodes start at variable node and if L base parity variables are used it is those in the range [:. Shortening in the lifted is done by zero padding the information bits at the end of the set of information bits, so that the zero-padded bits reside in the last lifted column. Puncturing of parity bits is done by puncturing at the end (largest possible base variable index) of the parity bit sequence. Note that puncturing is limited to one lifted parity column except in the case of the highest rate family when the number of base parity bits is -2.
Family selection
In the algorithm 1 mentioned above, for a given and there can be multiple solutions within a family (above example) but also across families. Although the BLER vs EsN0 performance does not vary by much between different solutions for a given K and N, solutions could be chosen depending on the metric that needs to be satisfied. E.g., a solution could be chosen, amongst many, to have maximum lift value so that the hardware can be fully utilized and throughput can be increased at the cost of EsN0 or a solution could be chosen which has the best performance in terms of achievable EsN0 at the desired BLER.
There are other rates available in each family, e.g., rate 10/11 is available for the highest family. However, not all blocklengths in the range 192 to 26,880 can be supported at this rate.
In [12] a detailed analysis of performance of codes across the different families and also recommendations for using the proposed multi-family LDPC codes are provided. It is stated here for completeness.
Recommendation #1: Based on observation 12 in [12] choose codes from the highest family for all K >= 100 for all rates >= 2/5. For rates < 2/5, choose codes from the highest family when K > 2000 and choose codes from the lowest family when K < 2000. For rates < 1/5, choose codes from the lowest family.
Recommendation #2: Based on observation 12 in [12], for rates >= 2/3, for all K >= 100, choose codes from the highest family. For 2/5 ≤ rates < 2/3 and for all K >= 100, choose codes from the middle family. For rates < 2/5, choose codes from the middle family when K > 2000 and choose codes from the lowest family when K < 2000. For rates < 1/5, choose codes from the lowest family.
IR HARQ through extension
IR HARQ would be necessary for energy-efficient data transmission. IR HARQ could be efficiently supported by starting from a higher-rate code and then extending to lower rates by adding extra parity-bits. Such an IR HARQ scheme allows us to have a uniformly close gap to capacity across a larger range of rates. Figure 2 depicts an IR HARQ scheme in which the high-rate code corresponds to the smaller base graph embedded inside the larger low-rate base graph. In the 1st transmission, the decoder operates on the smaller high-rate base graph and if the decoding fails, extra degree one parity bits are transmitted which allows the decoder to operate on the bigger low-rate base graph and achieve successful decoding. Note that for the first transmission, the decoder operates on the smaller embedded base graph which is obtained by puncturing the IR HARQ parity-bits. Since the IR HARQ parity bits are of degree one, they, and their associated parity-check constraints, play no role in the decoding of the first transmission and are completely ignored by the decoder. This is unlike Turbo decoding at higher rates wherein energy must be spent in decoding the punctured bits in order to recover the first transmission.
In the proposed design, the highest rate supported by each family is given by 8/9, 2/3, 2/5 respectively. The highest family can be extended finely from 8/9 to 1/6, the middle family can be extended finely from 2/3 to 1/6 and the lowest family can be extended from 2/5 to 1/12.
[bookmark: _Ref471675280]Shortening, puncturing and repetition
Rate-matching can be done similar to the LTE standard. As mentioned in the previous section, shortening and puncturing is done to obtain the desired K and N. Note that base graph shortening is different in the sense that it selects the corresponding base graph from the nested base graph structure of the family before encoding. After the base PCM with base information columns is selected and the lifts decided, the information bits are encoded as shown in the figure below. As mentioned in the previous section, the shortening of the information bits for the lifted code is done from the end. I.e., information bits corresponding to the last base info-column is shortened first before moving on to the next base info-column to the left. The shortened information block is then encoded using the base PCM obtained previously. Parity-bits corresponding to IR-HARQ re-transmissions are also generated and stored in the circular buffer as shown in the figure below. As shown in the figure depicting the circular buffer, the first two base info-columns worth of information bits are always punctured. These correspond to the state nodes in our design. The parity-bits are punctured starting from the last parity-bit to obtain the desired N. Or in other words, coded bits starting from the first (unpunctured) information bit in the circular buffer are transmitted in a clock-wise fashion as shown in figure below. Once the parity-bits have been exhausted the information bits are repeated and so on so forth.

Information bits
00…0

Shortening

Information bits
00…0
Parity bits
Encoding

Parity bits
Information bits
Remove the shortened bits

Circular buffer

Puncturing

Information bits (State nodes; always punctured)

IR-HARQ Parity bits

Information bits (after shortening bits have been removed)
Circular buffer

Core Parity bits

Transmitted bits order depicted by green arrow

Figure: Circular buffer for rate-matching for IR-HARQ

The retransmission versions (RV) are defined based on the circular buffer shown above. In the 1st transmission, the high-rate LDPC code is transmitted which corresponds to all the information bits in the circular buffer, except the punctured state nodes, and some parity-bits. In the following RVs, additional parity-bits are sent from the circular buffer which lowers the coding rate and successful decoding can be achieved. Once the parity-bits in the circular buffer are exhausted and successful decoding is still not achieved, the information bits in the circular buffer are transmitted/repeated.
The performance of the proposed LDPC code design is robust under 16-bit blocklength granularity as shown in [12]. It is observed that the performance is smooth across the entire range. Indeed, the proposed design allows for at most Z bits (lift-size) to be shortened/punctured. This is equivalent to shortening/puncturing of one base-column. Since the construction guarantees good performance for each nested basegraph (cf. figure 3), the sub-base-column shortening/puncturing retains the performance and hence the scheme is robust under single-bit blocklength scaling.
Proposal 6: Shortening of the information bits should be done from the end of the information block. The starting two base info-columns worth of information bits should be punctured. Puncturing of parity-bits should be done from the end.
Proposal 7: Rate-matching should be done to similar to LTE using a circular buffer.
Proposal 8: RV for 1st transmission should consist of most or all information bits and some parity-bits. The consequent RVs should consist of parity-bits obtained via extension and belong to the same base graph or family. Once the end of the fully-extended base graph is reached (all parities exhausted), the next RV should be just be repetition of earlier transmissions.
 Encoding structure
Recall that all the three families have 802.11n-like encoding structure. For the highest and middle family, the encoding structure is exactly the same as 802.11n consisting of an accumulate chain of degree two and terminated with a degree three node. In 802.11n the permutations on the three edges connected to the degree three variable nodes is 1, 0, 1. I.e., the first edge has a cyclic shift of 1, the second edge has 0 and the third edge has a shift of 1. It has been observed that the 802.11n encoding structure can be limiting the performance for low rate codes. The failure is caused by small loops created by in the encoding structure of 802.11n which limits the performance of the rest of the code. In order to circumvent this problem, the encoding structure of the lowest family is designed to be slightly differently. The basic structure remains the same, however the cyclic shifts on the edges of the degree three variable node are not 1,0,1 as is done usually but some other numbers. This improves the performance of the lowest family codes. The change in the cyclic shift value does not materially increase the complexity of the encoding and all the underlying encoding machinery can be easily leveraged. All this is explained in more detail next.
Typically, the permutations used are from the cyclic group of integers modulo the lift value. As a result, quasi cyclic LDPC codes can be thought of as codes over the ring of binary polynomials modulo . In this interpretation, a binary polynomial, may be associated to each variable node in the base graph. The binary vector corresponds to the bits associated to corresponding variable nodes in the lifted graph. A cyclic permutation by of the binary vector is achieved by multiplying the corresponding binary polynomial by where multiplication is taken modulo . A degree parity check in the base graph can be interpreted as a linear constraint on the neighboring binary polynomials written as where the values, are the cyclic lifting values associated to the corresponding edges. The parity check matrix H(x) in this representation resembles the base parity check matrix but entries associated to edges are monomials with the exponent representing the associated cyclic shift.
In this interpretation of the lifted quasi-cyclic codes the encoding problem typically reduces to solving a linear system

over the ring of polynomials modulo where is an invertible square submatrix of the parity-check matrix . is the part of the codeword corresponding to the parity-bits and is the syndrome obtained using the systematic bits. E.g., in 802.11n there is an accumulate chain of degree two parity-bits terminated using a degree three parity-bit. This is represented by the polynomial matrix shown below for an example with six base parity checks.

Encoding, ie., solving the above linear system, can be done as follows. First, multiply on the left with the vector and note that [1 0 0 0 0 0] to obtain . This then determines and we can easily solve for the rest of C(x) using back substitution. The calculation of the syndrome D(x) is the performing of the multiplication N(x)I(x)= D(x) where N(x) is the submatrix of H(x) complementary to M(x) and I(x) is the vector of information polynomials. Thus, the encoding operations in 802.11n typically involve permutations and XOR of bit-vectors. It can be shown that similar operations are required for the new encoding structure and hence the complexity of encoding the new encoding structure is essentially the same as 802.11n encoding. The largest part of the encoding operation is the computation of D(x). For the cluster in the set of clustered lifts, for , the encoding structure for the lowest family is represented by the following matrix,

Where for the cluster. The encoding is now done in a similar fashion as 802.11n mentioned above. Indeed, if we left-multiply the matrix by the vector [1 1 1 1 1 1] we get the vector [] where the polynomial . Thus, the syndrome equation given above now becomes . It is not hard to verify that for every cluster , the polynomial is a monomial such as or . Furthermore, we can write . Thus the inverse of the polynomial is given by , when the monomial is ,hence the inversion of Q(x) can be done with a a few cyclic permutations and the bitwise XOR operation. Note that multiplying with a monomial is equivalent to a cyclic shift (cyclic permutation) by and adding monomials corresponds to the bitwise XOR operation. In particular multiplication by Q(x) or Q(x2) amounts to taking three cyclic shifts of a binary vector and XORing the shifted vectors together bitwise.
For the first cluster of {8,10,12,14} we use the encoding matrix

which is equivalent to the 802.11 encoding structure.

Proposal 9: Encoding with the new structure should use fixed number of cyclic shifts and XOR operation similar to the 802.11n. However, use different permutations or cyclic shift values for the degree three parity node for better error-floor performance.

[bookmark: _Ref471674677]LDPC description complexity
Given the above structure and procedure, the remaining detail for the design proposal are the permutations in each basegraph family description. Here we provide these details.
Let each row correspond to a check node in the base graph. Each pair in a row corresponds to the variable node index (to which the check node is connected) and a 21-bit (shown in hexadecimal) lifting information for that edge. An example of a row is shown below.
1:: (1,0x19EF51) (3,0x101861) (5,0x0EE10A) (7,0x0B992F) (12,0x0A0027) (13,0x000000)

As noted in the text above, the set of clustered lifts is given by for . We use a common lifting value for each element of the cluster. For the jth cluster the lifting value for an edge is always in the range [0:2j+2-1] and thus applies directly to all Z values in the cluster. To obtain the value for the cyclic shift for each of the Z in the cluster we proceed as follows. Each edge in the base graph has an associated 21 bit descriptor which is given in the table below in hexadecimal. For For the jth cluster we subselect j+2 bits from the 21 bit sequence to determine a j+2 bit integer that defines the lifting value. In general the j leftmost (MSBs) of the 21 bits descriptor comprise the j most significant bits of the lifting value. The two least significant bits of the lifting value are the bits found in positions 2j and 2j-1 where the rightmost (LSB) is position 1 and the leftmost (MSB) is position 21. More specifically, let denote a 21 bit descriptor. Then to obtain the integer for a lift in cluster where , we first take bits from the left (or the start) of the 21-bit sequence, e.g., and concatenate that with . The bit sequence is then interpreted as a binary number and we thereby obtain the corresponding cyclic shift for that edge under the chosen lift value. E.g., if Z = 40, then this value belongs to the 3rd cluster and hence . Consider finding the lift value for the first entry in the lowest family (given below). The 21 bit binary descriptor, suitably parsed, is given by 1100111 10 11 11 01 01 00 01. Since j=3 we use the first 3 bits from the left of the descriptor, which are 110, and concatenate them with the two bit pair from position 6 and 5 (as taken from the right), which is 01, giving us the bit sequence 11001 which interpreted as in integer gives 25. The result would be the same for Z=32, Z=48, and Z=56. An example PCM [13] for the lowest family with lift Z = 32 is provided. As mentioned earlier, the same PCM is used for lift values Z = 40,48,56.
The description complexity of the proposed design can be calculated as follows. Each family has one base graph with a high-rate core and IR HARQ extension. On an average there are 500 edges and the highest family (which results in the largest extended base graph) has 186 columns and 156 rows. Hence for each edge one would require roughly 8 bits to index the row and 8 bits to index the column giving us 16 bits. As shown in the appendix to generate the set of clustered lifts for , 23 bits per edge are required giving a total of 55 bits per edge. All together we get 3x500x55 = 82,500 bits to describe the three family code design.
[bookmark: _GoBack]Proposal 12: Candidate parity-check matrix specified by the shift coefficients in the Appendix 5 should be adopted.
Conclusions
Proposal 1: LDPC codes as new coding scheme for NR that can address all the requirements of NR including consistent good performance down to BLER of 5e-4, IR HARQ capability, high parallelism, low decoding latency, large range of rate and blocklengths, robust blocklength granularity performance and compact description.
Proposal 2: The set of base graphs used to operate across different code rates should consist of a nested basegraph structure, referred to as a family described in Section 2.1, and should have consistent performance across the continuum of the base info-columns. I.e., performance of base graphs, within a family, with in the range at the same code-rate and comparable blocklengths, are close to each other.
Proposal 3: Each family includes at least 2 state/punctured nodes and a degree-1 parity node to enhance performance robustness.
Proposal 4: The LDPC code should be design with a clustered set of liftings, where each cluster is defined by values of lifts that are close to each other. Furthermore, the shift coefficients should be the same for all lift values belonging to a cluster or a group of lifts to decrease description complexity. All this needs to be done while maintaining consistent good performance.
Proposal 5: The set of clustered lifts given by provide a fair balance between performance, implementation and description complexity. The set of shift coefficients provided in the Appendix should be adopted.
Proposal 6: Highest family used to support codes with highest absolute rates should have relatively larger base graphs to avoid double or multiple parallel edge in the base graphs and to have consistent good performance. Base graphs with minimum base info-columns should be around 24 and maximum base info-columns should be around 30.
Proposal 7: Multiple families (base graphs) should be supported. Lower families should be optimized for lower code rates and smaller blocklengths.
Proposal 8: Shortening of the information bits should be done from the end of the information block. The starting two base info-columns worth of information bits should be punctured. Puncturing of parity-bits should be done from the end.
Proposal 9: Rate-matching should be done to similar to LTE using a circular buffer.
Proposal 10: RV for 1st transmission should consist of most or all information bits and some parity-bits. The consequent RVs should consist of parity-bits obtained via extension and belong to the same base graph or family. Once the end of the fully-extended base graph is reached (all parities exhausted), the next RV should be just be repetition of earlier transmissions.

Proposal 11: Encoding with the new structure should use fixed number of cyclic shifts and XOR operation similar to the 802.11n. However, use different permutations or cyclic shift values for the degree three parity node for better error-floor performance.
Proposal 12: Candidate parity-check matrix specified by the shift coefficients in the Appendix 5 should be adopted.
References
[1] [bookmark: _Ref430766234]RP-160671, New SID Proposal: Study on New Radio Access Technology
[2] T. Richardson, M. Shokrollahi, R. Urbanke, “Design of capacity-achieving irregular low-density parity-check codes”. IEEE Transactions on Information Theory, 2001.
[3] T. Richardson and R. Urbanke, “Multi-Edge type LDPC Codes”, 2004.
[4] T. Richardson and R. Urbanke, “Modern Coding Theory”, Cambridge University Press, 2008.
[5] D. Hocevar, “A Reduced Complexity Decoder Architecture via Layered Decoding of LDPC Codes”, 2004.
[6] [bookmark: _Ref450707740]“LDPC Codes – HARQ, Rate”, R1-162209, Qualcomm Incorporated, RAN1 84b, Busan, Korea.
[7] [bookmark: _Ref450707741]“LDPC Codes – throughput, latency, block size”, R1-162210, Qualcomm Incorporated, RAN1 84b, Busan, Korea.
[8] “IEEE 802.11n Wireless LAN Medium Access Control MAC and Physical Layer PHY specifications”, IEEE 802.11n-D2.0, 2007
[9] [bookmark: _Ref450911994][bookmark: _Ref455576130]“LDPC– Performance evaluation”, R1-164698, Qualcomm Incorporated, RAN1 85, Nanjing, China.
[10] T. Richardson, “Error Floor of LDPC Codes”, 2003.
[11] “LDPC-HARQ”, R1-166369, Qualcomm Incorporated, RAN1 #86, Gothenburg, Sweden.
[12] [bookmark: _Ref471675126]“LDPC Design Considerations”, R1-1700831, Qualcomm Incorporated, RAN1 NR AdHoc, Spokane, USA.
[13] “LDPC Rate-Compatible Design”, R1-166370, Qualcomm Incorporated, RAN1 #86, Gothenburg, Sweden.
Appendix
This section provides the basegraph specification for each of the three families.
Lowest family

1:: (1,0x19EF51) (3,0x101861) (5,0x0EE10A) (7,0x0B992F) (12,0x0A0027) (13,0x000000)
2:: (2,0x046C2B) (3,0x07826B) (6,0x0EDF19) (8,0x005169) (10,0x0AA991) (13,0x000000) (14,0x000000)
3:: (2,0x150AB4) (4,0x129CBB) (5,0x16BE23) (6,0x17D3C5) (9,0x038A1F) (14,0x000000) (15,0x000000)
4:: (1,0x04AE19) (4,0x11B465) (7,0x1F7AFD) (8,0x1D9DB4) (12,0x180000) (15,0x000000) (16,0x000000)
5:: (1,0x18D8E4) (2,0x138EE9) (4,0x1BBDFC) (16,0x000000) (17,0x000000)
6:: (1,0x179F5E) (2,0x1DF943) (3,0x0A28A9) (17,0x000000) (18,0x000000)
7:: (1,0x00936C) (2,0x025587) (5,0x07E9DD) (18,0x000000) (19,0x000000)
8:: (1,0x0B22EA) (2,0x0943FA) (6,0x18A562) (10,0x142584) (19,0x000000) (20,0x000000)
9:: (1,0x1D8F6F) (2,0x162994) (7,0x10E457) (9,0x02BFE9) (10,0x06A590) (20,0x000000) (21,0x000000)
10:: (1,0x094C81) (2,0x0140B0) (8,0x15823F) (9,0x0A78B0) (12,0x000003) (21,0x000000)
11:: (1,0x1F936F) (2,0x00D967) (11,0x000000)
12:: (1,0x05E4CB) (8,0x091A78) (11,0x0E7FCB) (12,0x1ADD87) (22,0x000000)
13:: (1,0x037CEF) (2,0x0AFE8F) (7,0x03E3F4) (10,0x06A30E) (12,0x0CC316) (23,0x000000)
14:: (2,0x0F8A7A) (3,0x1E207B) (9,0x193D08) (24,0x000000)
15:: (1,0x03D2BB) (14,0x1E665D) (21,0x032BAB) (25,0x000000)
16:: (1,0x0EDEB2) (4,0x1B990F) (8,0x065027) (26,0x000000)
17:: (2,0x0E0C4A) (5,0x0390B6) (12,0x0541F4) (27,0x000000)
18:: (1,0x1310F1) (6,0x117141) (12,0x1EA97E) (28,0x000000)
19:: (2,0x1A2536) (13,0x067C1C) (21,0x17A737) (29,0x000000)
20:: (1,0x18E8AD) (10,0x0DAE68) (17,0x076C76) (30,0x000000)
21:: (1,0x14B55F) (2,0x03F2B8) (7,0x1D779E) (16,0x009C58) (31,0x000000)
22:: (1,0x17CE60) (7,0x1A531E) (20,0x10000A) (32,0x000000)
23:: (2,0x1FD545) (19,0x17FBD0) (33,0x000000)
24:: (2,0x0CC37A) (7,0x090D41) (16,0x0769D8) (34,0x000000)
25:: (1,0x11DBDF) (5,0x1D92F7) (12,0x18369F) (35,0x000000)
26:: (1,0x124039) (4,0x1C941C) (12,0x0E65AE) (36,0x000000)
27:: (2,0x153355) (6,0x158DE9) (37,0x000000)
28:: (1,0x118F41) (7,0x08B21D) (14,0x0DF8F2) (38,0x000000)
29:: (1,0x13F764) (7,0x155728) (10,0x00B37F) (13,0x043767) (39,0x000000)
30:: (1,0x1EDBFE) (7,0x0C883D) (16,0x03E24D) (40,0x000000)
31:: (1,0x0A72D9) (4,0x0CB483) (9,0x076AE6) (12,0x186F0A) (41,0x000000)
32:: (1,0x039F11) (5,0x11AA75) (12,0x1C3B68) (42,0x000000)
33:: (2,0x1B8987) (14,0x1C509E) (43,0x000000)
34:: (1,0x17EA4B) (5,0x1A0A9B) (10,0x1082C4) (16,0x15B775) (44,0x000000)
35:: (1,0x137652) (12,0x0F511C) (20,0x04BC6F) (45,0x000000)
36:: (1,0x0EAC65) (4,0x13F704) (7,0x064766) (46,0x000000)
37:: (1,0x160085) (4,0x11E9D0) (9,0x130DE3) (13,0x125406) (47,0x000000)
38:: (2,0x04239E) (16,0x17D340) (48,0x000000)
39:: (1,0x107780) (4,0x076C36) (8,0x0029B7) (49,0x000000)
40:: (1,0x151F79) (4,0x019F79) (20,0x028DC9) (50,0x000000)
41:: (1,0x020CAA) (4,0x0739EB) (5,0x1BE314) (51,0x000000)
42:: (1,0x1C2883) (20,0x03D752) (52,0x000000)
43:: (2,0x1EECDA) (10,0x09062B) (15,0x17F163) (53,0x000000)
44:: (1,0x112DC0) (5,0x0D262F) (8,0x16DC2E) (54,0x000000)
45:: (1,0x12E59E) (4,0x091B79) (13,0x061AE8) (55,0x000000)
46:: (1,0x053865) (4,0x05531B) (8,0x0B87ED) (56,0x000000)
47:: (1,0x025E42) (4,0x1BABFD) (13,0x056AD6) (57,0x000000)
48:: (1,0x1D8E5C) (6,0x0B31ED) (58,0x000000)
49:: (2,0x19809E) (3,0x19DAE3) (9,0x0E6CD8) (59,0x000000)
50:: (1,0x08506E) (5,0x1D4DB8) (21,0x16FE5A) (60,0x000000)
51:: (1,0x025E3D) (4,0x02F031) (8,0x16195E) (61,0x000000)
52:: (1,0x0B7CEC) (14,0x148CD4) (62,0x000000)
53:: (7,0x0E8138) (19,0x0761F2) (63,0x000000)
54:: (1,0x18843E) (4,0x03FADA) (21,0x140EE0) (64,0x000000)
55:: (1,0x1F9C8D) (4,0x12EBCE) (17,0x179402) (65,0x000000)
56:: (1,0x15A267) (2,0x1F34F1) (6,0x0D07F4) (66,0x000000)
57:: (1,0x1747F9) (3,0x142E86) (4,0x0876C3) (10,0x1CE55D) (67,0x000000)
58:: (8,0x12B2E0) (9,0x0D4F0C) (68,0x000000)
59:: (1,0x0B20EE) (2,0x0527B9) (18,0x12849D) (69,0x000000)
60:: (5,0x045F31) (10,0x021585) (70,0x000000)
61:: (2,0x0404AE) (18,0x045652) (71,0x000000)
62:: (9,0x1688F3) (21,0x056308) (72,0x000000)
63:: (12,0x0608A0) (15,0x06E348) (73,0x000000)
64:: (2,0x1FF57D) (13,0x03104B) (74,0x000000)
65:: (17,0x1266EC) (75,0x000000)
66:: (1,0x0C8B48) (3,0x144828) (7,0x1B7B92) (76,0x000000)
67:: (2,0x0373C0) (20,0x018CEE) (77,0x000000)
68:: (3,0x1F2102) (78,0x000000)
69:: (1,0x147070) (12,0x1BCDA5) (19,0x0E74AF) (79,0x000000)
70:: (4,0x1D4DAE) (16,0x13ADC4) (80,0x000000)
71:: (7,0x1D0642) (81,0x000000)
72:: (6,0x0D5D7E) (12,0x02982A) (82,0x000000)
73:: (10,0x0E2BF8) (19,0x11740F) (83,0x000000)
74:: (13,0x15D856) (84,0x000000)
75:: (12,0x005587) (18,0x0FEB62) (85,0x000000)
76:: (4,0x18492E) (20,0x120F87) (86,0x000000)
77:: (2,0x11E363) (6,0x1314D8) (87,0x000000)
78:: (16,0x0D9E25) (88,0x000000)
79:: (1,0x152BF0) (2,0x08FBEE) (14,0x0400AA) (89,0x000000)
80:: (12,0x00FAC5) (14,0x091C7A) (90,0x000000)
81:: (11,0x1702C0) (20,0x0CCE50) (91,0x000000)
82:: (2,0x0DF69A) (6,0x0C0C91) (92,0x000000)
83:: (1,0x1AFBA5) (2,0x0D628F) (15,0x115B31) (93,0x000000)
84:: (9,0x152985) (20,0x1FBA1F) (94,0x000000)
85:: (2,0x03C736) (12,0x13A9FB) (15,0x124035) (95,0x000000)
86:: (4,0x15B772) (8,0x0E420D) (96,0x000000)
87:: (1,0x178F5C) (6,0x102F46) (12,0x099BFA) (97,0x000000)
88:: (12,0x17520A) (98,0x000000)
89:: (11,0x092790) (15,0x1562F6) (99,0x000000)
90:: (11,0x195268) (14,0x1282C0) (100,0x000000)
91:: (11,0x1C4923) (18,0x1885B8) (101,0x000000)
92:: (11,0x0D00F8) (21,0x016710) (102,0x000000)
93:: (11,0x14D593) (15,0x0F512E) (103,0x000000)
94:: (6,0x19971A) (10,0x052275) (104,0x000000)
95:: (5,0x093AF5) (9,0x1BAE76) (105,0x000000)
96:: (11,0x0F44FE) (18,0x10A521) (106,0x000000)
97:: (4,0x1832F3) (8,0x01CF29) (107,0x000000)
98:: (11,0x1AA99F) (15,0x119F1C) (108,0x000000)
99:: (7,0x12F085) (9,0x0F061E) (109,0x000000)
100:: (14,0x01C203) (110,0x000000)
101:: (4,0x1CB242) (8,0x175752) (111,0x000000)
102:: (4,0x03038F) (17,0x0DB774) (112,0x000000)
103:: (11,0x0B01D8) (21,0x0B8D13) (113,0x000000)
104:: (11,0x102921) (18,0x1FFAEC) (114,0x000000)
105:: (2,0x1700D4) (3,0x0766B0) (115,0x000000)
106:: (10,0x01C709) (13,0x102DCB) (116,0x000000)
107:: (15,0x017A53) (117,0x000000)
108:: (4,0x1C7C28) (19,0x1A84D2) (118,0x000000)
109:: (21,0x1436BB) (119,0x000000)
110:: (2,0x054276) (3,0x03C9C8) (8,0x0C588F) (120,0x000000)
111:: (2,0x15B439) (17,0x18C150) (121,0x000000)
112:: (11,0x0A1239) (18,0x077DE1) (122,0x000000)
113:: (4,0x065039) (8,0x1198EF) (123,0x000000)
114:: (3,0x1A27F7) (11,0x19D319) (124,0x000000)

Middle family

1:: (2,0x072E79) (3,0x1C1DA1) (4,0x0C1FB7) (5,0x140BAE) (6,0x10D269) (7,0x02CFF9) (8,0x1A9194) (9,0x1F9AB1) (19,0x1160D4) (22,0x001555) (23,0x000000)
2:: (1,0x09E7D6) (10,0x043E61) (11,0x1B1864) (12,0x0DF236) (13,0x0B52BA) (14,0x0BC649) (15,0x0BDE57) (16,0x128F1A) (17,0x1BE5A4) (23,0x000000) (24,0x000000)
3:: (1,0x10D5E9) (2,0x176656) (3,0x1A4577) (6,0x16E342) (13,0x147513) (16,0x0E4402) (19,0x1E102F) (20,0x0FE27F) (24,0x000000) (25,0x000000)
4:: (1,0x1915F3) (2,0x11EA61) (3,0x07ECE2) (8,0x0E33C4) (9,0x01B9FF) (10,0x095A16) (11,0x157386) (17,0x17406B) (18,0x17C5BB) (22,0x000000) (25,0x000000) (26,0x000000)
5:: (1,0x096873) (2,0x09E868) (4,0x131340) (6,0x1AB7F3) (7,0x1DE90C) (11,0x06636C) (12,0x1FCFEB) (15,0x013D9D) (20,0x16B4B2) (26,0x000000) (27,0x000000)
6:: (1,0x12D34C) (2,0x002757) (4,0x03BDB5) (9,0x09495A) (13,0x1A0955) (14,0x04EED6) (18,0x0A54FE) (19,0x05F537) (27,0x000000) (28,0x000000)
7:: (1,0x07845C) (2,0x15A7FC) (5,0x1DAC9F) (7,0x05B09F) (10,0x0610DC) (12,0x0A8E60) (17,0x0EC8B5) (28,0x000000) (29,0x000000)
8:: (1,0x01932A) (2,0x014DFE) (5,0x1014C1) (8,0x09D592) (14,0x0EF693) (15,0x15A86B) (16,0x02ACE1) (18,0x1861E0) (20,0x0102D1) (22,0x001555) (29,0x000000)
9:: (1,0x182DDB) (2,0x0C68D6) (21,0x000000)
10:: (1,0x081512) (2,0x192715) (5,0x1C762A) (8,0x13362E) (20,0x114AD6) (21,0x04EA96) (22,0x1366A7) (30,0x000000)
11:: (1,0x1C321F) (2,0x147EAA) (7,0x11E687) (14,0x0DAE19) (15,0x11B7AE) (17,0x102B52) (31,0x000000)
12:: (1,0x0BB9D9) (8,0x15FA2F) (11,0x180EB0) (16,0x185093) (22,0x0125B7) (32,0x000000)
13:: (1,0x06B1DC) (2,0x101D00) (4,0x1F6460) (9,0x188A9C) (15,0x0AFA88) (33,0x000000)
14:: (2,0x1BE606) (3,0x0A7929) (5,0x19F2C5) (17,0x1735D5) (19,0x19AB30) (34,0x000000)
15:: (1,0x11176F) (6,0x1A1DE5) (22,0x0C8B9C) (23,0x04DF09) (35,0x000000)
16:: (1,0x13FF18) (2,0x1A32B8) (8,0x07ABB9) (9,0x0B564D) (10,0x0F925E) (15,0x013DBF) (36,0x000000)
17:: (2,0x0E69E6) (9,0x171201) (19,0x17226B) (29,0x104E6D) (37,0x000000)
18:: (1,0x0DFE5F) (12,0x1EF8CC) (14,0x113CFC) (15,0x1603F7) (38,0x000000)
19:: (1,0x19F7D5) (8,0x04453C) (13,0x082FF5) (16,0x0E296B) (39,0x000000)
20:: (2,0x0C53F1) (7,0x1099C3) (10,0x0AFE4E) (19,0x0D119F) (40,0x000000)
21:: (1,0x1FCFC4) (4,0x08EF1F) (14,0x0810C8) (16,0x1094C3) (41,0x000000)
22:: (1,0x080191) (11,0x1F6E69) (16,0x0D30AE) (22,0x0E304D) (42,0x000000)
23:: (1,0x07FB06) (2,0x1EA2EF) (5,0x09831B) (8,0x1C31FA) (27,0x057F81) (43,0x000000)
24:: (1,0x0ABB0E) (6,0x15BB7F) (14,0x124C1B) (15,0x1B6CC7) (18,0x16EB12) (44,0x000000)
25:: (2,0x0C7527) (4,0x10A65A) (13,0x031F83) (45,0x000000)
26:: (1,0x02FE67) (9,0x168D74) (12,0x19DA9D) (18,0x18703A) (46,0x000000)
27:: (2,0x18F354) (5,0x158EFE) (8,0x076E38) (24,0x0E20D9) (47,0x000000)
28:: (1,0x1A3314) (7,0x1A76CE) (27,0x131811) (48,0x000000)
29:: (1,0x145100) (2,0x06C0AF) (15,0x0BDBF9) (22,0x100F96) (24,0x00A701) (49,0x000000)
30:: (1,0x1A4608) (11,0x18879D) (15,0x06B1DE) (22,0x0BFA27) (50,0x000000)
31:: (1,0x084240) (2,0x0E389E) (6,0x04B257) (11,0x019BE0) (51,0x000000)
32:: (2,0x1E9C59) (8,0x18058B) (20,0x126DA5) (23,0x1D4455) (52,0x000000)
33:: (2,0x0DEF45) (3,0x0F0FE3) (14,0x041F6F) (15,0x12A82C) (53,0x000000)
34:: (1,0x14E1B5) (10,0x188016) (16,0x0797D0) (20,0x016F06) (54,0x000000)
35:: (2,0x10EDC8) (6,0x1F580D) (15,0x0BB3F6) (24,0x120279) (55,0x000000)
36:: (2,0x048DF0) (12,0x1CD98D) (14,0x175B82) (56,0x000000)
37:: (1,0x009D18) (4,0x09608C) (13,0x068618) (15,0x086328) (17,0x1927A0) (57,0x000000)
38:: (1,0x0E532E) (6,0x1D0770) (27,0x1B9B88) (58,0x000000)
39:: (2,0x0682D6) (11,0x1D529F) (29,0x00FB47) (59,0x000000)
40:: (1,0x15A945) (13,0x18025A) (20,0x039FD1) (24,0x1541F9) (60,0x000000)
41:: (2,0x13B765) (3,0x0EE2BF) (5,0x151541) (61,0x000000)
42:: (2,0x0A8F9A) (7,0x14F69F) (15,0x05CBF1) (22,0x0200D4) (62,0x000000)
43:: (1,0x1D7A02) (19,0x1C8A3D) (22,0x0824F9) (23,0x1AD893) (63,0x000000)
44:: (2,0x11FD07) (4,0x144390) (10,0x08AC41) (64,0x000000)
45:: (1,0x19B6E7) (6,0x0F0142) (15,0x00044F) (29,0x0BFD7C) (65,0x000000)
46:: (1,0x02C1AC) (12,0x15B039) (16,0x08E90C) (66,0x000000)
47:: (1,0x08FDD8) (3,0x00300C) (8,0x024FA2) (15,0x05B9BE) (18,0x00FD36) (67,0x000000)
48:: (2,0x01C676) (9,0x17F934) (11,0x1035B1) (68,0x000000)
49:: (1,0x072072) (13,0x09BECC) (27,0x05EA88) (69,0x000000)
50:: (2,0x1D9E61) (7,0x08405C) (24,0x05E879) (70,0x000000)
51:: (1,0x0FDE83) (14,0x070458) (23,0x0F295A) (71,0x000000)
52:: (6,0x1AA387) (17,0x1E7698) (29,0x0D92B2) (72,0x000000)
53:: (2,0x13ABC4) (3,0x092037) (4,0x043A17) (73,0x000000)
54:: (1,0x0B0983) (8,0x07AA3E) (10,0x146975) (74,0x000000)
55:: (2,0x0DC143) (9,0x12E410) (12,0x0BA7B3) (75,0x000000)
56:: (11,0x0B70E0) (18,0x1EB29D) (27,0x1C7B45) (76,0x000000)
57:: (2,0x1AA650) (3,0x1B0FC8) (5,0x006429) (77,0x000000)
58:: (22,0x119161) (23,0x1059BB) (78,0x000000)
59:: (1,0x124BD3) (16,0x0E8A37) (24,0x0C2D0F) (79,0x000000)
60:: (1,0x1E8BF8) (7,0x0707BA) (13,0x148907) (80,0x000000)
61:: (2,0x110A1A) (15,0x179258) (25,0x1AFE89) (81,0x000000)
62:: (1,0x081789) (4,0x167960) (5,0x0D9AE3) (82,0x000000)
63:: (15,0x114430) (19,0x16ACF7) (25,0x1E91DE) (83,0x000000)
64:: (9,0x037523) (14,0x0CB064) (84,0x000000)
65:: (2,0x092F74) (8,0x1A24F1) (10,0x13AD45) (85,0x000000)
66:: (2,0x051473) (12,0x0A4C8D) (16,0x0256AB) (86,0x000000)
67:: (7,0x1BFE7C) (13,0x10109C) (87,0x000000)
68:: (4,0x172255) (24,0x08E00F) (88,0x000000)
69:: (3,0x0747E9) (5,0x1A83F4) (89,0x000000)
70:: (1,0x19492F) (10,0x0564FB) (12,0x1F946A) (90,0x000000)
71:: (2,0x164025) (15,0x1340C1) (26,0x0CD821) (91,0x000000)
72:: (1,0x1910D7) (8,0x1DAF75) (29,0x0A6086) (92,0x000000)
73:: (2,0x08DE19) (6,0x116C4B) (16,0x172FEC) (20,0x0A42E7) (93,0x000000)
74:: (1,0x0C355D) (15,0x0727B7) (26,0x03CC45) (94,0x000000)
75:: (2,0x0D1DDD) (14,0x1D8166) (29,0x07ADFC) (95,0x000000)
76:: (2,0x1B1630) (8,0x1DC35C) (20,0x1F1FD1) (26,0x15FC62) (96,0x000000)
77:: (16,0x1DCA1C) (18,0x0FE932) (22,0x103972) (97,0x000000)
78:: (2,0x09D669) (8,0x19121C) (26,0x0A0C32) (98,0x000000)
79:: (2,0x18342C) (14,0x0F5540) (27,0x02ACE7) (99,0x000000)
80:: (1,0x0C8C48) (5,0x13B875) (26,0x1162C4) (100,0x000000)
81:: (10,0x1C8850) (17,0x184534) (101,0x000000)
82:: (14,0x0C48CB) (28,0x06B6E2) (102,0x000000)
83:: (5,0x1765F5) (11,0x0766DD) (103,0x000000)
84:: (8,0x0F9FAC) (9,0x103A5F) (104,0x000000)
85:: (1,0x01CD09) (4,0x1EA2BF) (7,0x0EF41C) (105,0x000000)
86:: (2,0x0A2E5E) (6,0x1245F4) (7,0x19AC64) (106,0x000000)
87:: (12,0x156538) (18,0x0A9BAF) (107,0x000000)
88:: (4,0x0AC89C) (29,0x090140) (108,0x000000)
89:: (22,0x19B551) (24,0x000162) (109,0x000000)
90:: (7,0x1AFB43) (26,0x0746ED) (110,0x000000)
91:: (13,0x087E62) (17,0x06FB89) (111,0x000000)
92:: (6,0x19C504) (27,0x0BF2D9) (112,0x000000)
93:: (15,0x1CFFB7) (23,0x0E8517) (113,0x000000)
94:: (3,0x06D38F) (5,0x026A03) (114,0x000000)
95:: (11,0x13B3C9) (16,0x1CC906) (115,0x000000)
96:: (9,0x0FF5AE) (14,0x15EF00) (116,0x000000)
97:: (8,0x0FBA2C) (29,0x110B5C) (117,0x000000)
98:: (1,0x0C9343) (15,0x0EAF24) (25,0x10342D) (118,0x000000)
99:: (15,0x1E50FE) (25,0x19CF64) (119,0x000000)
100:: (1,0x1055A7) (4,0x0D975C) (27,0x06854A) (120,0x000000)
101:: (17,0x1F0351) (24,0x01EDCF) (121,0x000000)
102:: (8,0x12CCBE) (28,0x1641BF) (122,0x000000)
103:: (5,0x16AFF2) (22,0x0D6177) (123,0x000000)
104:: (6,0x1B37C0) (16,0x142B2B) (124,0x000000)
105:: (14,0x0BA81D) (26,0x1B5439) (125,0x000000)
106:: (4,0x0F9934) (7,0x1D01C8) (126,0x000000)

Highest Family

1:: (2,0x0992A7) (3,0x141EB1) (4,0x1D7634) (5,0x09E018) (6,0x1E1D65) (7,0x14A86D) (8,0x0C191F) (9,0x18C574) (10,0x116C3B) (11,0x185435) (12,0x191DF0) (13,0x0A1E99) (14,0x116500) (15,0x1800A7) (16,0x0DBDC0) (25,0x146FF8) (26,0x01FFE4) (29,0x039296) (32,0x001555) (33,0x000000)
2:: (1,0x12D505) (2,0x06D582) (5,0x0CD95E) (6,0x01AF79) (7,0x078C4B) (14,0x190501) (15,0x1A4B40) (19,0x0087ED) (20,0x0014D0) (21,0x0E2D40) (22,0x1DD351) (29,0x195F4F) (30,0x0AFDD8) (33,0x000000) (34,0x000000)
3:: (1,0x1C48D7) (2,0x0B860F) (8,0x10800D) (9,0x092A0C) (10,0x19425D) (11,0x092472) (12,0x144B59) (17,0x0CB855) (18,0x14109A) (19,0x156257) (20,0x11B624) (21,0x00B08F) (22,0x100624) (23,0x1C1D1E) (24,0x071507) (26,0x046D87) (27,0x02CAC3) (28,0x0DF131) (30,0x11D3BD) (32,0x000000) (34,0x000000) (35,0x000000)
4:: (1,0x09038F) (2,0x1A79DD) (3,0x1E2476) (4,0x12BC56) (5,0x1E3F30) (8,0x05E821) (9,0x060BCB) (13,0x1C6E04) (17,0x00E994) (18,0x1C1794) (20,0x106EC1) (23,0x0BA6DC) (27,0x00E0F8) (28,0x15BA4A) (35,0x000000) (36,0x000000)
5:: (1,0x008275) (11,0x0ADDAC) (12,0x050FF9) (13,0x10DE8B) (14,0x041393) (15,0x150C7B) (16,0x094E29) (17,0x064FFE) (18,0x031645) (19,0x0A23C9) (24,0x03C512) (25,0x135AD1) (27,0x11921E) (29,0x10CAD6) (30,0x0F82CE) (36,0x000000) (37,0x000000)
6:: (1,0x094974) (2,0x0E80F6) (3,0x1149E4) (4,0x130AC3) (6,0x09D4C2) (7,0x121827) (10,0x1541C5) (16,0x1B1915) (21,0x1021C9) (22,0x14288F) (23,0x119BE0) (24,0x08A4C4) (25,0x0E06B8) (26,0x0E48DA) (28,0x1E1645) (32,0x001555) (37,0x000000)
7:: (1,0x098F66) (2,0x0D6602) (31,0x000000)
8:: (1,0x170DD7) (2,0x1CE9AA) (10,0x08034C) (12,0x1AFCC9) (16,0x0597DF) (27,0x099A34) (31,0x06C14B) (32,0x00A946) (38,0x000000)
9:: (2,0x02E7D9) (4,0x1DE87F) (8,0x18E353) (9,0x0B31D0) (10,0x15F372) (11,0x171322) (24,0x158D92) (30,0x098246) (39,0x000000)
10:: (1,0x1A6E38) (2,0x0AC6D0) (3,0x142D4D) (4,0x01C0FB) (6,0x10166B) (7,0x100526) (23,0x16DE2C) (26,0x15F35C) (30,0x0B5818) (40,0x000000)
11:: (1,0x128E2B) (2,0x156F36) (3,0x15583F) (11,0x165B70) (21,0x15F26A) (22,0x155D71) (24,0x11676D) (26,0x15CAE4) (41,0x000000)
12:: (1,0x1CFD2C) (7,0x032704) (8,0x1183AC) (9,0x0D8A76) (17,0x10CA48) (29,0x0E7B5A) (30,0x00C53D) (32,0x03BF44) (42,0x000000)
13:: (2,0x0B0DF2) (6,0x19074A) (14,0x089DF9) (16,0x10C15A) (23,0x0A7D39) (26,0x022754) (29,0x1377CA) (43,0x000000)
14:: (1,0x0CE3C2) (11,0x0A5A07) (21,0x07BDE7) (22,0x0E8923) (25,0x14AE59) (30,0x17FB6F) (35,0x141088) (44,0x000000)
15:: (2,0x1000AF) (4,0x1E391E) (5,0x0C6A3D) (10,0x1EA1AB) (24,0x17DFA6) (29,0x11341D) (45,0x000000)
16:: (1,0x143B5D) (3,0x1BC616) (9,0x18ADB4) (12,0x130C87) (13,0x0FF55C) (26,0x131706) (46,0x000000)
17:: (2,0x0E53E7) (8,0x00101C) (17,0x1967D1) (25,0x1F0277) (26,0x07D9F2) (32,0x0013DA) (47,0x000000)
18:: (1,0x025B10) (2,0x1BF162) (7,0x0E020D) (11,0x11F7AA) (12,0x0806C3) (23,0x0EC02F) (33,0x0234B8) (48,0x000000)
19:: (1,0x0A73A0) (2,0x13084E) (5,0x12A37C) (12,0x06098B) (22,0x1FEFAF) (33,0x10E3C6) (49,0x000000)
20:: (1,0x1F491A) (7,0x181800) (10,0x130C71) (18,0x0FD824) (26,0x0EAE1D) (50,0x000000)
21:: (2,0x1C64D0) (11,0x197936) (14,0x0F6625) (24,0x0FC561) (28,0x04A7BE) (33,0x008597) (51,0x000000)
22:: (1,0x0E382F) (2,0x1AAEA6) (3,0x196891) (4,0x0EA8A1) (20,0x09EDD6) (24,0x111857) (52,0x000000)
23:: (1,0x066C3A) (4,0x0C9D9E) (6,0x03134A) (20,0x0412A8) (30,0x1B5CE0) (53,0x000000)
24:: (2,0x095BD9) (20,0x15C6CA) (21,0x0EA93B) (29,0x137A78) (35,0x1555F1) (54,0x000000)
25:: (1,0x0A922E) (3,0x11B3FB) (11,0x066482) (13,0x0AFFC6) (23,0x0A9848) (55,0x000000)
26:: (2,0x1322B9) (18,0x1DEFFD) (22,0x10E9E9) (23,0x18351A) (24,0x14B5D7) (56,0x000000)
27:: (1,0x190DB2) (3,0x1BBCD0) (7,0x0A5590) (29,0x1D5976) (34,0x09F52B) (57,0x000000)
28:: (2,0x15D374) (13,0x056E98) (16,0x0F32FF) (22,0x0CE518) (28,0x03388D) (58,0x000000)
29:: (1,0x18204A) (12,0x158725) (23,0x19642F) (24,0x1241F1) (34,0x1D19C1) (59,0x000000)
30:: (2,0x0AE458) (9,0x15141D) (11,0x064666) (34,0x035479) (60,0x000000)
31:: (1,0x058ADC) (5,0x0C8576) (12,0x190C45) (18,0x0DBFF7) (27,0x0BEFAD) (61,0x000000)
32:: (2,0x07E14C) (33,0x001CA9) (34,0x015357) (35,0x0AFBEC) (62,0x000000)
33:: (1,0x1174EF) (13,0x1276F2) (14,0x02CD38) (23,0x0977E1) (24,0x1086F0) (63,0x000000)
34:: (2,0x122DDE) (8,0x1248AD) (20,0x139579) (26,0x02EE41) (64,0x000000)
35:: (1,0x0EF33F) (3,0x042B79) (7,0x0A174F) (19,0x11E51A) (23,0x1D32B6) (24,0x070A01) (65,0x000000)
36:: (1,0x0124E0) (3,0x0979CE) (4,0x1692CE) (6,0x128C21) (66,0x000000)
37:: (1,0x0FABFF) (11,0x1CAD33) (13,0x144AE5) (32,0x0B12DC) (67,0x000000)
38:: (2,0x0BF43B) (7,0x08D80D) (19,0x0D7B2B) (23,0x13B77D) (24,0x1214FF) (68,0x000000)
39:: (1,0x19B795) (9,0x0B7B84) (10,0x14827B) (69,0x000000)
40:: (2,0x07B508) (7,0x12D338) (19,0x0D7429) (21,0x1DD134) (70,0x000000)
41:: (2,0x074046) (14,0x11B618) (28,0x0CE985) (33,0x142E61) (71,0x000000)
42:: (1,0x075C8C) (17,0x0FF883) (22,0x09113E) (24,0x133F52) (72,0x000000)
43:: (1,0x0CF001) (5,0x181010) (19,0x07C076) (23,0x186C63) (24,0x062B48) (25,0x0820CA) (73,0x000000)
44:: (2,0x0C5321) (16,0x03C651) (19,0x181C23) (74,0x000000)
45:: (1,0x0A04B0) (5,0x03BB80) (11,0x0AC992) (17,0x101A13) (75,0x000000)
46:: (1,0x061A21) (12,0x0DFB4A) (18,0x108ADA) (19,0x0FE7F3) (76,0x000000)
47:: (1,0x182952) (13,0x0AE15B) (23,0x152B98) (32,0x0302A8) (77,0x000000)
48:: (2,0x0550BD) (18,0x1B20DE) (30,0x06494E) (35,0x03DF43) (78,0x000000)
49:: (8,0x0D56F9) (21,0x1C0981) (24,0x102782) (27,0x04D6E9) (79,0x000000)
50:: (1,0x002950) (17,0x0F519B) (19,0x1AE40F) (34,0x13D420) (80,0x000000)
51:: (1,0x02083B) (6,0x00722D) (9,0x17F77F) (81,0x000000)
52:: (14,0x018220) (20,0x1267C8) (23,0x18FD18) (82,0x000000)
53:: (2,0x12BD15) (5,0x0F5900) (19,0x1596D8) (35,0x067093) (83,0x000000)
54:: (2,0x17A48C) (32,0x1BE3B0) (34,0x00751C) (84,0x000000)
55:: (1,0x09F150) (2,0x09FB8C) (3,0x005C77) (7,0x0C1C65) (36,0x083948) (85,0x000000)
56:: (1,0x0B1DED) (4,0x0681C3) (22,0x183C40) (29,0x03EA1C) (86,0x000000)
57:: (1,0x0C0820) (10,0x17589C) (11,0x198AB2) (16,0x0D5EBA) (87,0x000000)
58:: (2,0x0BE4F5) (8,0x157D90) (12,0x1782F7) (28,0x13D9C1) (88,0x000000)
59:: (1,0x1C80C7) (3,0x0B2549) (7,0x02125E) (36,0x05E738) (89,0x000000)
60:: (1,0x1597A5) (5,0x1FABA0) (6,0x1E0ECE) (24,0x1855EF) (90,0x000000)
61:: (13,0x16297C) (17,0x0AA6ED) (25,0x0F3155) (91,0x000000)
62:: (1,0x0469B9) (10,0x0272A1) (33,0x1F824D) (92,0x000000)
63:: (1,0x0BC456) (2,0x029A83) (4,0x057367) (7,0x123365) (36,0x089EE8) (93,0x000000)
64:: (1,0x112DBF) (2,0x0BE1D2) (16,0x1554FC) (21,0x1EDC4B) (94,0x000000)
65:: (2,0x1AC642) (6,0x0ECDBD) (7,0x033BCC) (36,0x141E30) (95,0x000000)
66:: (2,0x198C14) (5,0x1E27D1) (14,0x162DFC) (96,0x000000)
67:: (18,0x181022) (26,0x0D420E) (32,0x12F748) (97,0x000000)
68:: (21,0x18339C) (28,0x1B13D2) (36,0x0E5C7D) (98,0x000000)
69:: (1,0x05DB5D) (9,0x023143) (22,0x17CB49) (99,0x000000)
70:: (16,0x14345E) (28,0x0FFEEB) (35,0x151C9C) (100,0x000000)
71:: (12,0x01387E) (20,0x1E5DD3) (27,0x0287D9) (101,0x000000)
72:: (4,0x1A1D4A) (33,0x159CF3) (102,0x000000)
73:: (1,0x0626CE) (7,0x12FA43) (15,0x087306) (24,0x1721E8) (103,0x000000)
74:: (6,0x0DBB4B) (10,0x1A0630) (104,0x000000)
75:: (11,0x11B8FD) (17,0x08C2CB) (25,0x00F5B9) (105,0x000000)
76:: (7,0x010274) (15,0x084A34) (106,0x000000)
77:: (3,0x1AC430) (14,0x0F021E) (107,0x000000)
78:: (8,0x15C930) (22,0x0A8494) (108,0x000000)
79:: (5,0x1009C8) (9,0x05BA6E) (109,0x000000)
80:: (32,0x0CEE24) (34,0x1285E1) (110,0x000000)
81:: (16,0x0CEC9C) (19,0x039FCB) (111,0x000000)
82:: (15,0x0A5627) (23,0x04EF27) (26,0x10E043) (112,0x000000)
83:: (6,0x11A128) (21,0x172B92) (113,0x000000)
84:: (13,0x0AE967) (18,0x013001) (114,0x000000)
85:: (4,0x0A13E3) (35,0x1460A0) (115,0x000000)
86:: (12,0x1F2058) (14,0x03DBA8) (116,0x000000)
87:: (10,0x1F6781) (36,0x167254) (117,0x000000)
88:: (17,0x0F0E22) (20,0x086590) (118,0x000000)
89:: (11,0x0FCB2F) (33,0x0DFA37) (119,0x000000)
90:: (3,0x1303DD) (8,0x158712) (30,0x16B8B9) (120,0x000000)
91:: (24,0x1288C0) (37,0x0C0224) (121,0x000000)
92:: (5,0x060A20) (22,0x10E0EE) (122,0x000000)
93:: (9,0x1FAA73) (16,0x0A3C09) (123,0x000000)
94:: (21,0x156AB4) (29,0x0B40BC) (34,0x025A3E) (124,0x000000)
95:: (23,0x1AE2EA) (25,0x0114DB) (32,0x03D05D) (125,0x000000)
96:: (7,0x0F6382) (15,0x0D9C4D) (126,0x000000)
97:: (24,0x076657) (37,0x0CBA52) (127,0x000000)
98:: (6,0x0172D7) (13,0x1AAD76) (128,0x000000)
99:: (4,0x02AB5D) (19,0x115B90) (30,0x1D9D7B) (129,0x000000)
100:: (12,0x0BC13E) (18,0x1264A1) (29,0x118682) (130,0x000000)
101:: (10,0x0525FB) (28,0x134D18) (35,0x0885C1) (131,0x000000)
102:: (14,0x11648F) (17,0x06A878) (28,0x1DFD17) (132,0x000000)
103:: (11,0x08524B) (20,0x1C7580) (133,0x000000)
104:: (3,0x18FC35) (25,0x0A7A64) (36,0x14F0F2) (134,0x000000)
105:: (22,0x03E2C9) (23,0x08F754) (37,0x0839D1) (135,0x000000)
106:: (5,0x1B9B25) (33,0x1EE69A) (136,0x000000)
107:: (8,0x1B6AB5) (22,0x181806) (137,0x000000)
108:: (7,0x127BFB) (15,0x1D013C) (21,0x0CBD63) (138,0x000000)
109:: (9,0x048679) (16,0x100252) (139,0x000000)
110:: (6,0x1CC48E) (24,0x03CBB4) (32,0x0B8F93) (140,0x000000)
111:: (4,0x0C8A27) (19,0x0A46C3) (27,0x076A39) (141,0x000000)
112:: (7,0x10D012) (23,0x17E8B7) (37,0x135CFE) (142,0x000000)
113:: (12,0x0469A7) (13,0x03B6E3) (143,0x000000)
114:: (21,0x04027B) (34,0x09F1DE) (144,0x000000)
115:: (10,0x12DC5D) (18,0x01B6A2) (145,0x000000)
116:: (3,0x12C752) (15,0x173BBD) (23,0x0CB18A) (146,0x000000)
117:: (11,0x148CAA) (35,0x0B13C7) (147,0x000000)
118:: (14,0x14F984) (24,0x14072E) (32,0x16F43C) (148,0x000000)
119:: (6,0x1BD1A5) (7,0x0C7F3F) (20,0x17D4D2) (149,0x000000)
120:: (2,0x090B6B) (3,0x1253EF) (37,0x0D9F72) (150,0x000000)
121:: (2,0x0716FE) (5,0x08401D) (15,0x12DBCB) (23,0x0453A2) (151,0x000000)
122:: (17,0x06022F) (22,0x191BCF) (27,0x12FFD8) (152,0x000000)
123:: (7,0x1225F7) (16,0x01F10C) (36,0x18E87C) (153,0x000000)
124:: (6,0x15F333) (8,0x1B190E) (154,0x000000)
125:: (5,0x1F8B34) (15,0x1A7BF1) (24,0x1591C2) (155,0x000000)
126:: (2,0x0CCDAE) (4,0x1C09B4) (33,0x13E99A) (156,0x000000)
127:: (3,0x10B8F1) (23,0x096C67) (37,0x1AAAE1) (157,0x000000)
128:: (2,0x0E47ED) (9,0x083541) (32,0x03DFB6) (158,0x000000)
129:: (10,0x0C25C8) (20,0x0AF090) (26,0x038BB2) (159,0x000000)
130:: (14,0x1C912C) (19,0x114391) (160,0x000000)
131:: (3,0x0284B7) (21,0x0E3E61) (37,0x05F4BD) (161,0x000000)
132:: (11,0x0C9839) (13,0x1CE3F6) (24,0x17199D) (162,0x000000)
133:: (5,0x0D92FC) (15,0x110105) (29,0x128AAB) (163,0x000000)
134:: (16,0x0ADDEB) (24,0x07E7DE) (34,0x0B5480) (164,0x000000)
135:: (12,0x13EEC9) (23,0x1CD048) (36,0x0E5E61) (165,0x000000)
136:: (2,0x060120) (9,0x0DF31B) (32,0x0607A2) (166,0x000000)
137:: (4,0x1270CB) (18,0x0A90E8) (23,0x0903FF) (167,0x000000)
138:: (22,0x0A051A) (27,0x09AAFF) (33,0x04FF5E) (168,0x000000)
139:: (7,0x0ECA8E) (21,0x1E101D) (35,0x01BEDF) (169,0x000000)
140:: (1,0x020045) (13,0x126331) (16,0x0DEB36) (170,0x000000)
141:: (12,0x04B87E) (26,0x106C24) (37,0x1F9623) (171,0x000000)
142:: (18,0x1A2F22) (24,0x0F0425) (36,0x038737) (172,0x000000)
143:: (7,0x06E903) (9,0x1A2864) (17,0x181B4C) (173,0x000000)
144:: (2,0x16FBA0) (11,0x1FDA4D) (34,0x154436) (174,0x000000)
145:: (4,0x044A0E) (8,0x0318E4) (23,0x087C5C) (175,0x000000)
146:: (20,0x190DF6) (30,0x1188C5) (32,0x127BF7) (176,0x000000)
147:: (1,0x148CA3) (14,0x0DB59B) (19,0x1B2219) (177,0x000000)
148:: (10,0x19F890) (13,0x0344F2) (25,0x158792) (178,0x000000)
149:: (21,0x01730E) (35,0x12DBA5) (179,0x000000)
150:: (6,0x1578B6) (15,0x0A188B) (180,0x000000)
151:: (17,0x12A013) (36,0x09030A) (181,0x000000)
152:: (16,0x170C68) (18,0x0E68D9) (30,0x094CAB) (182,0x000000)
153:: (3,0x048CC5) (8,0x1461E9) (27,0x0081A9) (183,0x000000)
154:: (9,0x13DEFD) (11,0x08C024) (184,0x000000)
155:: (19,0x1CE95F) (34,0x17A78B) (185,0x000000)
156:: (5,0x1672F6) (26,0x185658) (37,0x019F33) (186,0x000000)
157:: (4,0x06E38D) (25,0x14246F) (33,0x0C7AF1) (187,0x000000)
158:: (12,0x14B49F) (14,0x1F30F2) (188,0x000000)

19/19
