3GPP TSG RAN WG1 Ad hoc			R1-1700386
Spokane, USA, 16th - 20th January 2017
Agenda Item:	5.1.5.2.1
Source: 	Intel Corporation
[bookmark: Title]Title:	 Polar code design

[bookmark: DocumentFor]Document for:	Discussion/Decision
1. Introduction
In this contribution, we discuss some considerations in polar code design in regards to control channels, including the following aspects:
· CRC-aided polar code vs parity-check polar code
· [bookmark: _GoBack]Polar coding chain for encoding
2. CRC-aided vs parity-check polar code
There are two main types of polar code that have been discussed in RAN1 – 1) conventional CRC-aided polar code, and 2) parity-check polar code [1]. Both techniques lead to improved code performance when list Polar decoding is employed. We describe below the steps required in each type of polar code, and highlight the related latency issue with parity-check polar.
CRC-aided polar code
Following steps are involved in CRC-aided polar encoding based on a rate-r and code size N (N is a power of 2).
1. Identify what each of the N = 2n positions on the input side corresponds - possible choices are shortening bit positions, data bit (or information bit) positions and frozen bit positions.
2. Fill each of the N = 2n positions on the input side with the corresponding bits (shortening/data/frozen).
3. After the 2N positions are filled, follow the Polar code encoding graph to obtain the codeword on the output side.
Parity-check polar code
On a very high-level parity-check polar coding also has three main steps:
1. Identify what each of the N = 2n positions on the input side corresponds - possible choices are shortening bit positions, data bit (or information bit) positions, frozen bit positions and PC-frozen bit positions,.
2. Fill each of the N = 2n positions on the input side with the corresponding bits (shortening/data/frozen), while also simultaneously encoding the data bits to obtain the PC-frozen bit value to place in PC-frozen bit locations.
3. After the 2N positions are filled, follow the Polar code encoding graph to obtain the codeword on the output side.
However, compared to conventional polar code, parity-check polar code requires identification of additional bits on the input side which are known as PC-frozen bits, which can lead to increased complexity in the step of identification.
The actual steps are given below.
· Step 0: For given info size (K) and rate-r, determine N=2n (N >=k/r), denote M = N-k/r
· Step 1 : Quality permutation - A fixed permutation of length-N identifies input positions arranged in decreasing order of reliabilities (e.g. so that it is possible to place K data bits in the K indices identified by the permutation QN)
· Step 2: Shortened bits (Bit-reversal) - Identify M positions on input side which cannot contain data bits – Prune fixed permutation (QN) to obtain variable permutation QꞌN-M
· Step 3:PC-Frozen bits - Identify P positions from the remaining N-M positions, based on the QꞌN-M, block length (K),
· Note “based” step includes calculation of special parameter Fp, identifying K+Fp most reliable positions from QꞌN-M, find least row-weight (dmin) of Kronecker matrix on these positions, and determine n as the number of positions having dmin, calculate some extra parameters, and so on
· Step 4: Data (or information) bits - Identify K positions from the remaining N-M-P positions
· Step 5: Frozen bits - Identify the remaining N-M-P-K positions
· Step 6 : Place Data bits and Frozen bits in identified positions on the input side
· Step 7 : Determine the values to place in PC-Frozen positions on the input side
· A cyclic shift on a register with length of a prime value is used for the parity check function
 Note : All N = 2n positions on the input side are filled now
· Step 8: Polar encoding to determine output codeword of length-N
· Step 9: From the output codeword, discard M positions corresponding to shortened positions to obtain the rate-matched codeword output
While the fixed reliability location (QN) is a pre-determined permutation (i.e. in step 1), the identifying part can be composed of up to four steps (steps 2-5) and the steps may have to be done in a sequential order due to dependencies – e.g. there is pruning (e.g. in step 2), and scanning over K values (e.g. find dmin and number of positions having dmin), and marking some of those as PC-frozen, then identifying data bit locations, etc. After these steps, data bits are encoded using parity-check to generate the PC-frozen bits and then finally the polar encoder can encode to obtain a codeword.
While it is possible that some aspects (such as step 0,1 (generation of permutation offline), etc) can be parallelized or simplified (offline computation, or pre-stored in lookup table), it is not clear that all steps are parallelizable (especially steps 2,3,4 and step 7) because of the interdependency in the steps. Therefore, we think there is an inherent latency issue due to the required serialized processing with parity-check polar coding. It is possible that some of this latency (for pre-processing of PC-polar) could be masked in practice (parallel operation while another function is ongoing e.g. LLR demodulation). However, if the pre-processing takes a lot of clock cycles (even if masked by another function), it can impact power consumption e.g. relative to another coding scheme which may not require a lot of clock cycles for pre-processing. Therefore, it would be good to clarify how much is the latency of pre-processing steps and overall latency of parity-check-polar coding for encoding/decoding.
In our understanding, the latency of pre-processing steps for parity-check polar code is larger than the pre-processing step required for CRC-aided polar. In particular the step of identifying parity-check bits with parity-check polar code is larger and hence, it is important to consider the overall encoding latency in the overall selection procedure.
Number of parity-check bits in Parity-check polar code
We also discuss the possible number of parity-check bits in parity-check polar and compare it to CRC-aided polar code. In Table 1, we show the number of parity-check frozen bits for different cases of information blocks (KP, which denotes information payload and a 16-bit CRC for error detection) and code rates, based on our understanding of [1]. For example, for KP=100, and rate-1/5, the number of shortened bits is M=12, number of PC-frozen bits is PC-F = 73, and the number of frozen bits F = 327. The table shows that the PC-frozen bits are widely varying for a given information block length or for a given code rate. It also seems that the number of parity-check bits introduced based on the algorithm in [1] is a bit heuristic.
The handling of PC- frozen bits in polar decoder may not be so trivial especially for decoders such as Simplified SC decoders that use subcode decoders to reduce latency. For instance, instead of two bit types (e.g. frozen or data), the decoder has to also consider and handle the third type of bit (PC-frozen) and required additional functionality of parity-checks.
Instead of parity-check polar code and its associated complexities, a simple CRC-attachment (with 3-4 bit additional CRC) to aid list decoder can be a better and simpler alternative. Overall, we think that parity-check polar code has larger pre-processing latency compared to a conventional CRC-aided polar code.

Table 1. Number of PC-frozen bits for different block sizes and code rates.
	KP
	1/5
	1/3
	2/5
	1/2
	2/3
	3/4
	5/6
	8/9

	100
	73
	50
	57
	35
	21
	24
	8
	6

	400
	483
	340
	256
	178
	107
	72
	42
	23

	1000
	1250
	715
	622
	426
	251
	175
	100
	65

Observation 1: Parity-check polar code has larger pre-processing latency compared to a conventional CRC-aided polar code.
3. Performance of CRC-aided polar and parity-check polar code
In this section, we compare the performance of CRC-aided polar and parity-check polar code with list size L=8 (see [5] for discussion on list size). We assume a minimum CRC of 16 bits is attached in either cases for error detection, i.e. KP=64, with a data payload of 48 bits. For the CRC-aided polar, we add additional CRC bits (C0 to C4, i.e. 0 to 4 bits) to aid the list decoding as function of list size. For parity-check polar code, since the parity-check bits aid list decoder, no additional CRC bits are required to aid list decoding, i.e. C0 is assumed. Bit-reversal permutation based puncturing method is used. Note in actual simulations, we attach a single CRC polynomial (encompassing both the error detection CRC and list-aiding CRC) and use that CRC for aiding the decoder. The rate is computed based on KP (i.e. considering 16-bit error detection CRC as part of data).
[image:]
Figure 1. Internal structure of CRC-aided and parity-check polar code block

Figure 2 shows that there is not a significant performance difference between parity-check polar code and CRC-aided polar code for wide-range of block sizes and code rates. Annex A has additional BLER results for different block lengths and code rates, as well as list sizes.
CRC-aided polar code can outperform parity-check polar code for payloads KP lower than ~100 bits with list size L8. The reason is built-in 16-bit CRC (included in payload) can be used by CRC-aided polar decoder to improve performance while in case of parity-check polar code it is useful only for error detection (parity-check bits aid list decoding). Thus, parity-check polar code requires additional bits (PC-frozen bits) to aid list decoding while CRC-aided polar code doesn’t need that additional overhead of parity-check. It may need only additional CRC bits (1 – 4 depending on list size) to lower false alarm rate, but still it is much less, than PC-frozen bits number (see Table 1).
[image: C:\Users\animbalk\AppData\Local\Microsoft\Windows\INetCache\Content.Word\CRC_0 1%BLER_L8.png]
Figure 2. Comparison of parity-check polar code and CRC-aided polar code for List L=8, and different block length (KP) and different coding rates.
[image:] [image:]
Figure 3. False alarm rate for parity-check polar code and CRC-aided polar code.
Relation between FAR & list size (left) and FAR & CRC length (right)
We also consider the impact on false alarm rate. As can be seen from Figure 3 (left plot) false alarm rate is higher for larger list sizes for parity-check polar code. However, in case of CRC-aided polar code this effect can be eliminated by increasing of CRC length by several bits (right plot). Thus, CRC-aided polar code provides more flexibility in controlling of false alarm rate.
Parity-check polar code performs slightly better than CRC-aided polar code on larger payloads (starting from ~150 bits) due to large number of PC-frozen bit while CRC length in CRC aided polar code is fixed. Thus, while parity-check polar code can have slightly better performance in some cases, for control channel payloads CRC-aided polar code is preferable.
Given this, and the fact that parity-check polar code can have increased latency, based on overall trade-offs, it seems that CRC-aided polar code can be adopted for NR EMBB control channels.
Proposal 1: CRC-aided Polar code is adopted for NR EMBB control channels.
4. Polar coding chain
In this section we discuss polar coding chain assuming a CRC-aided polar code. Given there are two purposes of CRC, i.e. error detection and aiding the list decoding, there are two potential ways of incorporating the CRC into polar encoding. The two CRC attachments can be concatenated (serially), or one effectively equivalent but a larger CRC can be attached – these two options are shown in Figures 2 and 3, respectively. Note that for error detection, we assume a CRC of length C1 = 16 bits is required, while for aiding list decoding, with list L=8, a CRC of length C2=3 bits (at least) may be required to keep the same level of false alarm.

[image:]
Figure 3. Polar encoding with CRC attached in two stages.

[image:]
Figure 4. Polar encoding with CRC attached in one stage.
In between the two options of CRC attachment, it is preferable to attach a CRC of longer length at once – this simplifies the CRC check implementation for both encoding and decoding and allows using the entire CRC in CRC-aided decoding. The UEID (or RNTI) masking can be performed similar to LTE; although the CRC length and RNTI length do not match, the masking can be performed on a subset of CRC bits.
Proposal 2: A single CRC that can facilitate false detection and aid list decoding is attached for polar code.
As described in a companion contribution [5], it is desirable to limit the maximum code size (value of N) for both downlink and uplink to reduce implementation complexity and associated encoding/decoding latency. We propose to limit the maximum code size to N = 256 on the downlink, which should provide a mother code rate of ~ 1/3 or so for DCI payloads of 24-80 bits (including the 16-bit UEID). The rate-matching (i.e. obtaining the desired number of coded bits from the polar codeword of length-N) can be performed using one of the following two techniques:
· Shortening based rate-matching
· For input block of length K and rate-R, a Polar code encoder of length-2n is used, where n corresponds to the smallest integer such that 2n >= K/R. Details of the Polar code data bit positions and frozen bit selection is described in [3][4]. In shortening based rate-matching, a bit-reversal based shortening is applied (as described in sec 6 of [4], but using bit-reversal to identify the S encoder bits to shorten instead of the last S encoder bits as shortened).
· Puncturing based rate-matching
· For input block of length K and rate-R, a Polar code of length-2n is used, where n corresponds to the smallest integer such that 2n >= K/R. Details of the Polar code data bit positions and frozen bit selection is described in [3][4]. In puncturing based rate-matching, the output code word of length-2n is punctured using a pre-determined permutation (i.e. fixed puncturing pattern) to obtain codeword of length K/R.
We think that the technique used for rate-matching should be studied further to ensure robust performance across different range of block sizes and code rates.

5. Conclusion
In this contributions, we compare CRC-aided polar and parity-check polar and draw the following observation and make two proposals.
Observation 1: Parity-check polar code has larger pre-processing latency compared to a conventional CRC-aided polar code.
Proposal 1: CRC-aided Polar code is adopted for NR EMBB control channels.
Proposal 2: A single CRC that can facilitate false detection and aid list decoding is attached for polar code.
6. References
[1] R1-1611257, Huawei, “Performance evaluation of channel coding schemes for control channel”, RAN1#87, Nov 2016
[2] R1-1612587, Intel, Discussion on Control channel coding for NR, RAN1#87, Nov 2016
[3] R1-164184	Intel, Polar code design for NR, RAN1#85
[4] R1-164185, Intel, “Polar code constructions for evaluation”, RAN1#85, May 2016.
[5] R1-1700385, Intel, “Considerations in Polar code design”, NR RAN1 adhoc, Spokane WA, Jan 2017

Annex A
Additional BLER results comparing parity-check polar code vs CRC-aided polar code
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

12 | Page

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image1.png

image2.png

image3.png

