3GPP TSG RAN WG1 Ad hoc			R1-1700383
Spokane, USA, 16th - 20th January 2017
[bookmark: Source]Agenda item:	5.1.5.1
Source: 	Intel Corporation
[bookmark: Title]Title:	LDPC prototype matrix design

[bookmark: DocumentFor]Document for:	Discussion/Decision
1. Introduction
In this contribution, we discuss prototype matrix design including following aspects
· Base matrix structure
· Encoding
· Circulant weight
· Base matrices and lift size(s)
2. Discussion
LDPC parity-check matrix is typically described using a combination of base matrix (or a protograph) and shift size (or lift size). If Hb denotes a base matrix of dimensions m x n, and this base matrix is expanded (or lifted) using a lift size z to obtain a parity-check matrix H with dimensions (m ∙z) x (n ∙z), corresponding to an information block of length k∙z=(n-m)∙z, bits and a native code rate r = (n-m)/n.
The LDPC encoder encodes an information block i = i0, i1,i2…ik-1 into a codeword c, of size n, c = (c0, c1,….ck-1,ck….cn-1), where each element denotes a vector of length-z (lift value). In systematic encoding, the first k elements of the codeword are typically the same as information block i.e. cj = ij, for j = 0 to k-1. The codeword c satisfies the parity-check equations H∙cT = 0. In case of information bit puncturing, for a given code rate, the parity-check matrix dimensions are slightly different as additional parity-check bits need to be generated instead of transmitted parity-check bits.
We now describe some principles for various operations including encoding, code extension, and selection of lift sizes/zero padding, etc.
3. Base matrix structure
We propose encoding using a dual-diagonal or a repeat accumulate structure for the base matrix, similar to the encoding used in 802.11n parity-check matrix. For a (n-k)xn base matrix for this consists of a systematic potion (k columns), followed one parity-check column with an odd weight (e.g. 3), and then (n-k-1) columns with a dual-diagonal structure (i.e. weight-2 columns). The repeat accumulate structure for encoding can be applied at block level (i.e. on expanded matrix) to support efficient high-speed encoding. An example of the base matrix is shown below:
[image:]
Figure 1. An example of base matrix with a repeat accumulate structure for encoding.
To support lower code rates, and for Incremental Redundancy (IR) operation, the base matrix can be extended using a single-parity-check extension via a diagonal parity-check structure for the extension portion. An example of such an extension matrix is shown in Figure 2.
[image:]
Figure 2. An example of proposed base matrix, with a repeat accumulate structure for encoding, and a single parity-check extension for IR-support.
In the figure, the top left portion [Hs1 Hp1] denotes the initial matrix to begin with i.e. this submatrix structure has the repeat-accumulate structure for encoding , including the parity-check portion Hp1 that has a first column with an odd weight, and the remaining columns of Hp1 having a dual-diagonal structure (similar to Figure 1). Then full base matrix as shown in Figure 2, has a single-parity-check extension, wherein Hq1 is a m1xm2 all-zero matrix, and Hq2 is an m2xm2 Identity matrix. The full base matrix then has dimension (m1+m2)x (k+m1+m2). This structure of parity-check matrix has been proposed by several companies in RAN1, and the resulting performance is excellent and hence we propose to adopt such a parity-check matrix structure for LDPC design in NR.
Proposal 1: The base matrix Hb is an (m1+m2) x (k+m1+m2) matrix with the structure shown in Figure 2.
Proposal 2: The base matrix Hb has additionally the following features - Hq1 is an m1xm2 all-zero matrix, Hq2 is an m2xm2 Identity matrix.
Proposal 3: The base matrix Hb has additionally the following features – Hp1 has a first column with an odd weight (e.g. 3) and the remaining columns of Hp1 have a dual-diagonal structure.
4. Circulant weight
The base matrix gets expanded using a lift size to obtain the expanded parity-check matrix that is used in encoding and decoding. The parity-check matrix H can be also be envisioned as being composed of square blocks (or submatrices) of size z x z.
When maximum circulant weight of one is used, these submatrices are either cyclic-permutations of Identity matrix (or shifted Identity matrix) or null matrices. For instance, a cyclic permutation matrix Pi is obtained from the zxz Identity matrix by cyclically shifting the columns to the right by i elements. The matrix P0 is zxz Identity matrix. For convenience, P-1 may be used to denote the null matrix of size z xz. For example, for z = 5, the following show example matrices,

 ,
When maximum circulant weight of two is used, these submatrices could then additionally be composed of super-imposed cyclic permutations of Identity matrices or null matrices. Below is an example matrix with two lift values (P2,4).

Many LDPC designs (including 802.11n/ac/ad, etc) use maximum circulant weight 1 as it performs well, and it is naturally well-suited for the practical layered LDPC decoding algorithms without requiring any special handling at the submatrix level. In contrast, when maximum circulant weight is two, the same variable node participates in two check equations within one layer, and this leads to conflicts in LLR updating during the processing of that layer. These conflicts require special handling such as splitting of the LLR memory into two banks that can complicate implementation or lead to reduced parallelism. Moreover, recent RAN1 studies (including the observations from Lisbon) indicate that LDPC designs with maximum circulant weight 1 have very good performance and can satisfy the EMBB requirements. Therefore, we propose to adopt maximum circular weight of one for further LDPC design work.
Proposal 4: The maximum weight of circulant for LDPC matrix design is 1.
5. Base matrix and lift sizes
In section 3, we discussed the overall structure of the base matrix. In this section, we look at some examples of base matrix dimensions and how the flexibility in block size and code rate is built in conjunction with the lift sizes.
Table 1 has some example parameter sets of base matrices that we consider (some are from our previous RAN1 contributions [1][2]). The supported information block sizes is shown in column 3, where z denotes the lift size supported for the corresponding base matrix. The resulting BLER curves for the base matrices 1 and 2 have been demonstrated in previous meetings, whereas for base matrix 3, see attached text file and the results ‘intelLDPC_EMBB_AdHoc.txt’, ‘Intel_BLER_LDPC_AdHoc.xls’, respectively. Corresponding BLER plots for base matrix 3 is shown in Figure 3.
The different base matrices were designed to support different range of code rates and block sizes. For example, the first and third base matrices support the range of code rates from very high (~8/9) to very low rates (1/3 or 1/6), and the second base matrix could support URLLC like application when the code rate can range from 1/3 to 1/6. The different base matrices can be optimized for different use cases, e.g. for peak rate scenarios, there is no need for extending a parity-check matrix from a very high code rate to a very low code rate – therefore the base matrix can be optimized for a limited range (e.g. 8/9 to 2/3).
Table 1. Base matrix parameters for different cases.
	Mother code rate
	Base matrix
	infoBlockSize
	Note

	1/3
	5x29 (@rate-6/7) extended to 49x73 (@rate-1/3)
1 column puncturing
	24z
	Base matrix 1
k=24, m1 = 5, m2 = 44.
From [2]

	1/6
	17x25 (@r1/3) extended to 41x49 (@r1/6)
1 column puncturing
	8z
	Base matrix 2
K = 8, m1 = 17, m2 = 24
From [1]

	1/5
	6 x 38 (@ r-8/9) extended to 130x162 (@r-1/5)
2-column puncturing
	32z
	Base matrix 3
K=32, m1 = 4, m2 = 126
New

[image: C:\Users\animbalk\AppData\Local\Microsoft\Windows\INetCache\Content.Word\eMBB_newDesign_wt12_mat1bm2_upto_r15_NOzp_new_perm_v2.png]
Figure 3. BLER vs SNR results for Info Block 6144 bits.

Parity-check matrix scaling
If the lift sizes support is z = {2….256} with base matrix 1, the natively supported information block sizes are = {48, 72…..6144}. In principle, each expanded matrix (for a particular z value) can be designed independently, but compact techniques to derive expanded matrices for different z values from one expanded matrix are also feasible. For example, modulo or scaling techniques can be used. For obtaining the matrix for a given z value, each value in the parity check matrix is computed by modulo operation of the corresponding entry in the original matrix, and the desired z value i.e. x is replaced by x mod z. This has been demonstrated in many RAN1 contributions, including [2].
Proposal 5: Parity-check matrix scaling is supported for LDPC to obtain the parity-check matrix for a lift value z1 from the parity-check matrix for another lift value z2 (z2 >z1).

Zero-padding
Then, other information block sizes (that are not natively supported) e.g. 32, 56, etc can be supported via zero-padding operation - zero padding bits are inserted at the end of information bits (i.e. systematic portion) and they are skipped during rate-matching. With properly design base matrices, a larger amount of zero-padding can be used in conjunction with a small number of lift values to cover the entire range of block sizes. Therefore, we think that supporting very fine granularity for lift sizes is not essential as the flexibility can instead be efficiently supported using a less granular set of lift values and zero-padding instead.
Proposal 6: Zero-padding is supported with LDPC for efficient block size support.

Maximum lift size
Lift value is indicative of the degree of built-in parallelism, and hence larger lift size can imply lower latency. However, latency is also reduced by other techniques such as processing multiple check/variable nodes (of a base matrix) in parallel or using multiple decoders, etc. Thus it is not strictly necessary to support very large lift sizes (such as ~1024). Our preference is to support a maximum lift size of 256, though we are a bit open to supporting a slightly higher value (e.g. 320) if there is sufficient justification. While there is a dependency of maximum lift size with the base matrix dimension as the two together determine the maximum supported block size. Assuming 24 information columns (base matrix 1), and maximum z = 256, the max block size supported is 6144. For base matrix 3, with k=32, a maximum z value of 256 results in block size 8192, which may be still be fine.
Proposal 7: Maximum supported lift value is 256.

Lift value granularity
The granularity of lift values can be selected from a set of decimated values between the smallest and largest supported lift sizes. For example, with maximum lift size of 256, following is one example of supported lift sizes : {2:2:8, 8:4:32, 32:8:64, 64:16:128, 128:32:256}. At least, at higher end of lift values, this implies requiring support of up to 20% zero padding. We think this aspect should be considered in the design of the base matrix.
Some further decimation in support of lift values can be considered if it can provide benefits in decoder implementations, e.g., {2 4 8 16 32 64 128 256} – in such cases, a larger zero-padding amount may have to be supported, but as long as it is feasible, such choice of lift values need not be precluded. As shown in [1], with suitable shift size selection, the desired range of block sizes can be supported. We propose to consider to consider lift value granularity that is a power of 2. We prefer the lift value granularity to be at least 8 or larger for the higher range of lift sizes. We think, for a zmax = 256, a maximum lift size granularity of at upto 32 (i.e. 2L, L=5) can be supported.

Proposal 8: Supported Lift size granularity is 2L, where L ≥ 1.
Proposal 9: Supported Lift size granularity is 2L, where L ≥3, at least for higher range of lift values.
6. Conclusion
We propose the following to further progress the LDPC matrix design.
Proposal 1: The base matrix Hb is an (m1+m2) x (k+m1+m2) matrix with the structure shown below.
[image:]
Proposal 2: The base matrix Hb has additionally the following features - Hq1 is an m1xm2 all-zero matrix, Hq2 is an m2xm2 Identity matrix.
Proposal 3: The base matrix Hb has additionally the following features – Hp1 has a first column with an odd weight (e.g. 3) and the remaining columns of Hp1 have a dual-diagonal structure.
Proposal 4: The maximum weight of circulant for LDPC matrix design is 1.
Proposal 5: Parity-check matrix scaling is supported for LDPC to obtain the parity-check matrix for a lift value z1 from the parity-check matrix for another lift value z2 (z2 >z1).
Proposal 6: Zero-padding is supported with LDPC for efficient block size support.
Proposal 7: Maximum supported lift value is 256.
Proposal 8: Supported Lift size granularity is 2L, where L ≥ 1.
Proposal 9: Supported Lift size granularity is 2L, where L ≥3, at least for higher range of lift values.

7. References
[1] R1-167703, “Channel coding scheme for URLLC, MMTC and control channels”, Intel Corp., RAN1 #86, Gothenberg, Sweden
[2] R1-1610377, “Channel Coding scheme for EMBB”, Intel Corp., RAN1 #86bis, Lisbon, Portugal
[3] R1-1612586, “LDPC design for NR data channel”, Intel Corp., RAN1 #87, Reno
[4] [bookmark: _GoBack]R1-1700384, “LDPC HARQ design”, Intel Corp., Intel, RAN1 Ad hoc, Spokane
5 | Page

oleObject2.bin

image5.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

1

0

1

0

0

0

1

0

1

1

0

0

1

0

0

1

0

0

1

1

0

1

0

0

4

,

2

P

oleObject3.bin

image6.png
BLER

107

10°

10

Information Block Length: 6144, Z=192

T

T

—A—R=1/4
—+—R=1s
—-R=153
—R=112
—f—R=273
—S-R=3/4
—-R=5/6
—4—R=8/9
——R=094

image1.jpg

image2.emf
k m1 m2

m

1

m

2

H

s1

H

s2

H

p1

H

p2

H

q2

H

q1

image3.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

P

oleObject1.bin

image4.wmf
ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

2

P

