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Introduction
In RAN1 87 meeting, the following features were agreed for NR LDPC code
· Code extension of a parity-check matrix is used for IR HARQ/rate-matching support 
· Use lower-triangular extension, which includes diagonal-extension as a special case
· For the QC-LDPC design, the non-zero sub-blocks have circulant weight <=2
· Circulant weight is the number of superimposed circularly shifted ZZ identity matrices
· In parity check matrix design, the highest code rate (Rmax,j ) to design j-th H matrix for is 
· Rmax,j <=8/9
· Rmax,j is the code rate of the j-th H matrix before code extension is applied (0 j< J) 
· Rmax,j is the code rate after accounting for the built-in puncturing, if this is applied in H matrix design
· Rate matching to support transmission code rate higher than Rmax,j is not precluded
In the past migration of channel coding from HSPA to LTE, the turbo code was modified to easily adapt to higher parallelism. Understanding the trend of pursuing throughput and therefore parallelism, we should take the lessons learned from the previous migration of turbo codes and propose designs with high parallelism and area efficient features.
In this contribution, we would like to discuss features which are beneficial for both a block parallel LDPC decoder and a row parallel LDPC decoder.
We also propose two metrics to quantify the area efficiency of both LDPC decoders. Simple quantitative evaluation on area efficiency accompanied with performance can help the NR LDPC code convergence.
The proposed LDPC code features for better area efficiency are listed below.
· Block Parallel Decoder
· Compact protomatrix
· Small information variable node (VN) block number
· Small row/ column number of protomatrix
· Less normalized edge block number
· Small maximal row weight.
· Metric: 
·  
· Row Parallel Decoder
· Restriction on lifting factor
· Quasi-row orthogonal protomatrix to achieve less layer number.
· Single Compact protomatrix
· Metric:
·  
Where  is number of information VN blocks,
 is the edge number corresponds to the code rate (CR) used for evaluation, 
 is the column number,
 is the layer number. 
 is the maximal group row weight
Block Parallel Decoder
A block parallel decoder of QC-LDPC code uses large lifting factors to support large parallelism. Some state-of-art decoders are designed with double hardware engines to process two blocks within one clock cycle. However, this does not double the parallelism gain because of memory contention problems. Therefore, it is preferred to design a QC-LDPC code with larger lifting factor to ensure higher parallelism without sacrificing on the memory access problem.
Compact Protomatrix
Under the same code block size (CBS), a compact protomatrix which has a smaller number of information variable node (VN) blocks results in a larger lifting factor and therefore larger parallelism for a block parallel decoder. The smaller number of information VN block also implies less columns  and rows  in a protomatrix. In [1], the proposed protomatrix has only 16 information VN blocks. The disadvantage of the compact protomatrix is the potential performance degradation under high CRs and small code block sizes. Therefore, it is very important to carefully verify the performance. Under the NR eMBB performance requirements, we should try to make the protomatrix as compact as possible to have larger parallelism under block parallel decoders.
Observation 1: Compact protomatrix which has smaller number of information VN blocks can have larger parallelism.
If we consider two LDPC codes, one is with half of the lifting factor of the other. We can expect the logic area of the decoder for the half lifting factor to be roughly half of that of the other. Assuming the same lifted edge number, the throughput of the decoder for the small lifting factor will also be half. Therefore, two decoders for the smaller lifting factor operating in parallel would be needed to maintain the same throughput as the decoder with the larger lifting factor. So in total the logic area is roughly the same, however, the memory would be doubled since it will not decrease by halving the lifting factor. Therefore, large parallelism not only increases the throughput but also the area efficiency.


Figure 1: Illustration on the advantage of larger parallelism
Observation 2: Large parallelism can result in better area efficiency.
Shift network
For the observation 2, one might argues that the area of the shift network is not linear proportional to the lifting factor (z) and should be proportional to. Therefore, large lifting factors might increase the area portion of shift network and make the conclusion invalid. Observing the proposed LDPC codes of [1], [4] and [5], the information VN block numbers and the normalized effect of logarithm term are listed in the Table 1.
[bookmark: _Ref471203080]Table 1
	
	[5]
	[1]
	[4]

	Information Block Size (Kb)
	8
	16
	32

	Lifting factor Size (z)
	1024
	512
	256

	
	10
	9
	8

	Normalized to Kb=16
	111%
	100%
	89%



Taking LDPC code of [1] as a reference, we can observe that only 11% extra overhead if the logarithm term is considered. Besides that, the shift network only occupies 5.5% of the whole decoder in some off-the-shelf implementations. So considering that the potential deviation is of the order of 0.6 % of the whole decoder, it is reasonable to ignore the logarithm term of the shift network to simplify the analysis of area efficiency. With this simplification, the observation 2 is valid and the area efficiency metric could be very simple and could be predicted directly based on the protomatrix. The metric will be discussed in Section 2.4.
Observation 3: The logarithm term of the complexity of shift network can be ignored not only because the shift network only occupies a small portion of whole decoder (5.5%) but also because the complexity deviation considering it is in itself small (12%).
Proposal 1: It is reasonable to ignore the logarithm term in the area analysis of the shift network to provide a simple quantitative metric for area efficiency.
Less Normalized Edge Block Number
We define normalized edge block number as the ratio of edge block number to the number of information VN block. The block parallel decoder processes one edge block per cycle. Therefore, the cycles required to process one code block would be proportional to the total edge block number. The transmitted information size of one code block would be proportional to the number of information VN block. Therefore, less normalized edge block number can result in higher throughput.
Observation 4: Less normalized edge block number can result in higher throughput.
Small Maximal row weight
In block parallel decoders, a Q memory defined in [3] is used to store the extrinsic LLR from a VN to a check node (CN) during the processing of the CN block. Its size is proportional to maximal VN block number connected to a CN block. Therefore, a small maximal row weight is preferred for better area efficiency.
Observation 5: A small maximal row weight can result in smaller memory size.
[bookmark: _Ref471203240]Quantitative Metric for Area Efficiency
In order to do objective down selection on NR channel coding candidates, it is meaningful to find some simple quantitative metric to represent the area efficiency among block parallel decoders of different LDPC codes. The parameters used to quantify an area efficiency metric are listed in Table 2.
Table 2: Parameters of protomatrix
	Parameter
	Abbreviation

	Row number
	r

	Column number
	c

	Information number
	i

	Edge number
	e

	Maximal row weight
	w

	Edge number
of Ultimate CR of Peak T-put
	e’

	Lifting factor
	z



Area efficiency is defined as the ratio of peak throughput to area. 
Peak throughput is proportional to  where  is the edge number for the supported CR at peak throughput. 
For the memory area, a block parallel decoder has 4 blocks of memory and the memory should be analyzed based on the lowest CR and largest CBS. Considering feasible bit widths, we can predict the memory size as in Table 3. For the detail please refer to [3].
Table 3: Memory Size
	Memory Type
	Size

	LLR memory
	c x (5+8) x z

	Q memory
	w x (8) x z

	R memory
	r x (5+5+ceil(log2(c))) x z

	Sign memory
	e x (1) x z


For the logic area, we can ignore the logarithm term in the shift network as proposed observation 3 and assume it to be proportional to z.
Considering logic area efficiency, throughput and logic area are both proportional to z and therefore logic area efficiency can be irrelevant to z (irrelevant to CBS). Thus, the logic area to process one edge in one cycle can be assumed to be the same. So for block parallel decoder, the logic area efficiency can be assumed to be the same among block parallel decoders of different LDPC codes.
Considering memory area efficiency, throughput and memory area are also both proportional to z and therefore memory area efficiency can be irrelevant to z (irrelevant to CBS) too. The memory area efficiency can be represented as.
Therefore a compact protomatrix with less normalized edge block number and small maximal row weight can have better area efficiency.
Since LLR memory and R memory dominate the total memory size and both of them are correlated with and. Moreover, c and r are highly correlated. So for simplification, it is proposed the use as a simplified metric of area efficiency for a block parallel decoder.
Observation 6: Logic area efficiency can be assumed to be the same among block parallel decoders of different LDPC codes.
Observation 7: Memory area efficiency depends on compactness, normalized edge block number and maximal row weight. 
Proposal 2: The NR LDPC code should maximize the area efficiency of a block parallel decoder while still fulfilling the NR eMBB performance requirements.
Proposal 3: The area efficiency of a block parallel decoder can be quantified as .
Row Parallel Decoder
Lifting Factor Design 
For a row parallel decoder, the soft information of log-likelihood ratio (LLR) is required to be interleaved in the memory such that the decoder can efficiently process each segment in one cycle as in Figure 1. 


[bookmark: _Ref471159602]Figure 2: Memory allocation for Z=384=24x16
The size of each word is the maximal achievable parallelism within one CN block.
Based on the interleaved memory allocation, the criterion of lifting factor should be the product of two integers, one of which should be the achievable parallelism within one CN block. Therefore the lifting factor needs to be carefully designed to enable high parallelism and implementation design freedom. In the proposed LDPC code [1], the lifting factor set is design as sets of 


With this design, the size of one word in the memory can be chosen as a power of two and therefore an efficient Banyan shift network can be used.
Observation 8: The lifting factor can be carefully designed such that row parallel decoder can process in parallel while not limiting the throughput by any memory access problems.
Quasi-row orthogonal protomatrix
For a row parallel decoder, all variable nodes corresponding to one segment of a CN block are processed in parallel and the size of the segment is proportional to the parallelism of the decoder. Unfortunately a well performing LDPC code usually has very different check node degrees, i.e., the row weights of the protomatrix are quite different. In the row parallel decoder, the hardware engine is required to support the CN block processing with the maximum CN degree.  Therefore, some hardware modules are forced into idle mode when the decoder processes CN blocks with lower check node degrees.  This results in a poor hardware utilization. To increase the hardware utilization, it is preferred to group and decode several CN blocks that are orthogonal to each other in parallel. With some modification on the hardware engine, the decoder can process one segment of several CN blocks which are orthogonal to each other within one cycle. The number of groups of rows in the protomatrix we refer to as the layer number. The throughput of the row parallel decoder would highly depend on the layer number in the protomatrix. The LDPC protomatrix used in IEEE802.11ad in Figure 3 is a good example of a row orthogonal protomatrix. It has 8 CN blocks but only 4 layers.
[image: ]
[bookmark: _Ref471155532]Figure 3: 802.11ad LDPC Code
Observation 9: Several rows should be grouped and processed in parallel to reduce the cycle counts of a row parallel decoder and therefore result in higher throughput.
But unfortunately, most good LDPC codes have some puncturing VN blocks among the information VN blocks. It can be observed that the column weights of the puncturing VN blocks should be enlarged so that the decoder can speed up the convergence of decoding (LLR) messages for the puncturing VN blocks. This characteristic is not good for a row orthogonal design to reduce the layer number. In our experiences, aggressively reducing the layer number would degrade the performance. In Figure 2, we can observe that there is obvious degradation of SNR gap if we try to reduce the layer number from 34 to 13. Therefore, we propose to design the protomatrix in which rows are orthogonal to each other within the same group excluding the puncturing VN blocks. This relaxed version of row orthogonal protomatrix as in Figure 4 we refer to as a quasi row orthogonal protomatrix.
 (
Puncturing
 Column
s
)[image: ]
[bookmark: _Ref471657766]Figure 4: Layer partition of the proposed LDPC code in quasi-row orthogonal sense

In Figure 5, a block diagram of a row parallel decoder to support quasi-row orthogonal protomatrix is shown. The decoder is modified from a generic row parallel decoder where the puncturing VN blocks would be processed in a flooding schedule in each cycle.


[bookmark: _Ref471155896]Figure 5: Block diagram of a quasi-row parallel decoder
The hardware overhead to support a quasi row orthogonal is marked as yellow in Figure 5 and is designed to update all extrinsic information from all CN blocks within the same row group in one cycle. The extra implementations are only 3 segments of adders as in Figure 6 based on the proposed protomatrix [1]. Compared to a row parallel decoder for a non row orthogonal LDPC code, the extra cost is very small while the throughput enhancement from layer reduction is very significant. This small increased area can be ignored in a memory-dominated design. 
[image: cid:image004.jpg@01D26A7C.E25A8DC0]
[bookmark: _Ref471736089]Figure 6: Quasi row orthogonal hardware overhead
Observation 10: The overhead of a row parallel decoder to support a quasi row orthogonal protomatrix is small.
There is one criterion on the quasi row orthogonal protomatrix which is that no cycle is allowed within puncturing columns in the same row group. This is because a cycle within puncturing columns would result in memory access problems. The memory access arises because different shift values correspond to different memory address. In Figure 7, the two columns marked by red are the puncturing columns. When two CN block connect to the same two puncturing VN blocks and the shift values are designed independently, two accesses are required to the same VN block, which will reduce the throughput.
[image: ]
[bookmark: _Ref471130583]Figure 7: Restriction on quasi row orthogonal protomatrix

Observation 11: For a quasi-row orthogonal protomatrix, there cannot be any cycle within the puncturing columns in the same row group.
Proposal 4: Quasi-row orthogonal LDPC codes should be considered as one NR channel coding feature to reduce the layer number and increase the throughput.
[bookmark: _Ref471674039]Single Compact Protomatrix
As in the discussion in [2], when the number of LLR memory slices is larger than the input number of check node units (CNU), some multiplexers (MUX) are needed to route the LLR memory to the input of CNUs. These MUXs are called the routing network. Intuitively, when the mismatch between number of memory slices and input number of CNU is larger, the routing network would be more complicated. In the following discussion, we consider only the routing from the LLR memory to the CNU input. If we want to process several CN blocks in one cycle, some additional routing might be required inside the CNU.
In Figure 4, the layer partition of a protomatrix of the proposed LDPC code [1] is shown.  The CNU can be designed with 22 inputs corresponding to the maximal group row weight. The number of memory slices can be 23 in which 19 memory slices corresponding to VN0~VN18 and 4 memory slices corresponding to the raptor parity VN blocks. The number of 4 comes from the maximal grouped row size and this is because we need to access 4 raptor parity VNs in one cycle. So the routing problem is to route 23 memory slices to 22 check node inputs. 
The solution is easy and is illustrated in Figure 8. Only one segment of MUXs is needed.


[bookmark: _Ref471154722]Figure 8
In the LDPC code [4], the CNU can be designed with 37 inputs which corresponds to the maximal group row weight. The number of memory slices can be 45 in which 38 memory slices corresponding to VN0~VN37 and 7 memory slices corresponding to the raptor parity VN blocks. So the routing problem is to route 45 memory slices to 37 check node inputs. 
The routing complexity would depend on the exact design of the protomatrix and is hard to quantify from simple parameters of the protomatrix. The routing complexity of LDPC code [4] is analyzed in [2]. Intuitively, the routing problem of the proposed LDPC code in [1] would be much easier than the LDPC code proposed in [4].
The larger the row number the more complicated the routing network becomes because the routing needs to fulfill more connections between CN blocks and VN blocks. As you can see, the proposed LDPC code in [1] has only 34 rows to be routed while the LDPC code in [3] has 66 rows to be routed. 
Moreover, when an LDPC codebook is composed of several protomatrices, the routing complexity would become even more complicated because the routing network needs to overlay the routing of all these matrices.
Observation 12: A single compact protomatrix can result in better routing network area efficiency.
In addition to the routing complexity, the memory area efficiency is also a consideration. The basic idea is that when the memory size is the same, less memory slice number would result in better area efficiency. So if comparing area efficiency of LLR memory between [1] and [3], we can expect that the memory slice number of [1] is less and it has better area efficiency. Here we try to quantify the area based on synthesis result of 28HPM process node such that we can have a sense of how a compact protomatrix can affect the memory efficiency. Based on the assumption of CBS=6144 and CR=1/3, we use the parameters in Table 4 to predict the area of the LLR memory. The parallelism of these two decoders is selected based on an equal throughput assumption and its ratio is the same as the ratio of.
[bookmark: _Ref471646644]Table 4
	Reference LDPC code
	[1]
	[3]

	LLR bit width
	8
	8

	Lifting Factor
	384
	192

	# of layers
	12
	16

	# of non-raptor VN
	19
	38

	# of raptor VN
	31
	60

	Largest Group Size
	4
	7



With the parameters of Table 4, we present a prediction of the memory area in Table 5.
Although the LLR memory requirement is roughly the same, the memory area efficiency of compact protomatrix [1] can be 20% better than that of [3].
[bookmark: _Ref471647599]Table 5: LLR Memory area prediction based on 28HPM
	[1]
	# of VN
	# of memory slices
	depth
	width
	area(um^2)
	Total Area(um^2)

	non-raptor VN
	19
	19
	64
	48
	3001
	112361

	raptor VN
	31
	3
	512
	48
	14186
	

	
	
	1
	448
	48
	12784
	

	
	
	
	
	
	
	

	[3]
	# of VN
	# of memory slices
	depth
	width
	area(um^2)
	Total Area(um^2)

	non-raptor VN
	38
	38
	48
	32
	1950
	133930

	raptor VN
	60
	4
	432
	32
	8902
	

	
	
	3
	384
	32
	8074
	



[bookmark: _Ref471636358]Observation 13: A compact protomatrix can result in better memory area efficiency.
Proposal 5: A single compact protomatrix should be considered as one NR channel coding feature to reduce the routing complexity and enhance the memory area efficiency.
Quantitative Metric for Area Efficiency
In order to do objective down selection on NR channel coding candidates, it is meaningful to find some simple quantitative metric to represent the area efficiency among row parallel decoders of different LDPC codes.
For the LLR memory and routing network, we do not find a simple quantitative metric for its area efficiency although compact protomatrix is good for both of them as discussed in 3.3.
For the check node unit (CNU) and shift network, the area is proportional to, where n is the input number of check node unit and p is the parallelism within one CN block.
For the throughput, it is inversely proportional to.
So the CNU and shift network area efficiency is proportional to.
Where  is number of information VN blocks,
   is the layer number,
   is the maximal group row weight. 

Proposal 6: The NR LDPC code should maximize the area efficiency based of a row parallel decoder while still fulfilling the NR eMBB performance requirements.
Proposal 7: The CNU shift network area efficiency of a row parallel decoder can be quantified by 
Observation 14: The row parallel decoder of the proposed LDPC code [1] has good routing complexity, LLR memory efficiency and CNU shift network area efficiency.

Conclusion
High efficiency LDPC code features are proposed.
The following summarizes the observations and proposals in this contribution.
Observation 1: Compact protomatrix which has smaller number of information VN blocks can have larger parallelism.
Observation 2: Large parallelism can result in better area efficiency.
Observation 3: The logarithm term of the complexity of the shift network can be ignored not only because the shift network only occupies a small portion of whole decoder (5.5%) but also because the complexity deviation considering it is in itself small (12%).
Proposal 1: It is reasonable to ignore the logarithm term in the area analysis of the shift network to provide a simple quantitative metric for area efficiency.
Observation 4: Less normalized edge block number can result in higher throughput.
Observation 5: A small maximal row weight can result in smaller memory size.
Observation 6: Logic area efficiency can be assumed to be the same among block parallel decoders of different LDPC codes.
Observation 7: Memory area efficiency depends on compactness, normalized edge block number and maximal row weight. 
Proposal 2: The NR LDPC code should maximize the area efficiency of a block parallel decoder while still fulfilling the NR eMBB performance requirements.
Proposal 3: The area efficiency of a block parallel decoder can be quantified as 
Observation 8: The lifting factor can be carefully designed such that a row parallel decoder can process in parallel while not limiting throughput by any memory access problems.
Observation 9: Several rows should be grouped and processed in parallel to reduce the cycle counts of a row parallel decoder and therefore result in higher throughput.
Observation 10: The overhead of a row parallel decoder to support a quasi row orthogonal protomatrix is small.
Observation 11: For a quasi-row orthogonal protomatrix, there cannot be any cycle within the puncturing columns in the same row group.
Proposal 4: Quasi-row orthogonal LDPC codes should be considered as one NR channel coding feature to reduce the layer number and increase the throughput.
Observation 12: A single compact protomatrix can result in better routing network area efficiency.
Observation 13: A compact protomatrix can result in better memory area efficiency.
Proposal 5: A single compact protomatrix should be considered as one NR channel coding feature to reduce the routing complexity and enhance the memory area efficiency.
Proposal 6: The NR LDPC code should maximize the area efficiency based of a row parallel decoder while still fulfilling the NR eMBB performance requirements.
Proposal 7: The CNU shift network area efficiency of a row parallel decoder can be quantified by 
Observation 14: The row parallel decoder of the proposed LDPC code [1] has good routing complexity, LLR memory efficiency and CNU shift network area efficiency.
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