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In this contribution we consider Quasi-Cyclic (QC) LDPC codes with QC parity-check matrices as shown in [12] to illustrate the throughput using one and multiple cores for decoding. 

General Description for LDPC rate matching
Single parity check (SPC) extension is a common method for LDPC to realize rate matching which is called Raptor-like structure or Nested Base graph structure [4]. This method has been used in [1][2][3]. It usually starts from a high rate LDPC matrix with dual-diagonal or lower triangular structure. To achieve lower rate, the high rate matrix is extended with one single parity check equation and one parity bit at a time. By doing this, low code rates are obtained. 

Throughput and complexity
In this section we compare different solutions in terms of complexity and the throughput. 
LDPC decoder architectures are row parallel and block parallel ones. As it is shown in [11], row parallel architecture for a large parity check matrix (PCM) is not practical to use because of complex routing network needed for parallel processing of several PCM rows. In the analysis below we consider block-parallel decoder architecture with layered schedule similar to the architecture analysed in [7][8][11]. This architecture is suitable for both the Layered Offset Min-Sum and the Adjusted Min-Sum decoding algorithms. Block parallel architecture is obtained by partitioning the processing of a layer into multiple cycles. A layer may consist of one circulant row or, if a matrix has quasi row orthogonal (QRO) structure, a layer may include several non-overlapping groups of rows.  For block paralleled decoder, the following equation (1) from [11] can be used to calculate throughput:      

       (1)
where
· 
  denotes the number of iterations (15 is used by default);
· 
 denotes the number of information bits (8000 is used);
· Z   denotes the circulant size;
· 
 denotes the parallelism level which may be smaller or bigger than Z;
· 

 denotes the operating frequency. Here, we assume GHz;
· 
 denotes the codeword length (including the punctured nodes);
· 
denotes the average variable node degree (including the punctured and weight 1 nodes).
If parallelism level P is greater than Z (for example, P=C∙Z where C is some positive integer), the decoder may process several circulants in parallel. We suppose that this is done in the decoder by several (C) different check-node update (CNU) units, which we call cores, and each such core can process one circulant block in the PCM per one clock cycle using  pipeline stages (for example, ).  For example, C=2 cores is used in [8].  We will call such decoding architecture a C-core block parallel decoder.
Another way for increasing the parallelism level is using several decoders running in parallel, but this doubles the memory needed to store c2v and v2c messages.
Increasing number of cores C linearly increases the throughput. Thus the larger the maximal circulant size  of the matrix is, the smaller number of cores is needed to achieve the required throughput. At the same time, the smaller the number of cores is, usually the better the core utilization (percentage of time when the core is not in the pause state) can be achieved. 
[image: ]
[bookmark: _Ref470822039]Figure 1. Example of a conflict
For a multi-core decoder, the circulant rows of the PCM are processed by a certain order during the decoding iteration, and several cores process different circulant rows simultaneously to increase the throughput. In such multi-core case (C>1) when the input data (the sum of channel LLR and the c2v messages) for one core (core A) is not ready because another core (core B) haven’t yet finished its work on the previous circulant row, a situation which we call a conflict (see Figure 1) occurs. One should note that in a practical implementation A and B will be the same CNU, but this does not resolve the conflict itself.
The conflict can be resolved in two different ways. 
First workaround: core A can wait (up to p-1 clock cycles, where p is a CNU pipeline length) until core B finishes its work and the corresponding input data for core A is ready.  In this case if some layer contains multiple conflicts with the previous layer, the same p-1 clocks are needed to be waited regardless what number of cores is used. Thus, total number of clock cycles spent to resolve all conflicts is up to (p-1)*Nc where Nc denotes the number of layers that have at least one conflict with the previous layer (hereinafter we call them conflict layers).
Second workaround: core A can use the information from the previous iteration as its input. 
If using the first workaround, the throughput of the decoder will decrease, while in the second case the error correction performance will be worse. 
If conflicts are resolved in a second way, formula (1) with P=C∙Z can still be used to estimate the throughput. For a C-core (C>1) block parallel decoder and PCM with conflicts, the following equation (2) can be used to calculate the real throughput of decoding the given PCM: 
       (2)                   
where
· 
  denotes the number of iterations (I=15 is used in the below estimations);
· 
 denotes the number of information bits (K=8000 is used in the below estimations);
· Z   denotes the maximal circulant size;
· C   denotes the number of CNU cores (thus, parallelism level P is P=CZ);
· p   denotes the CNU pipeline length (p=3,4,5 is used below);
· 

 denotes the operating frequency. Here, we assume GHz;
· 
 denotes the codeword length (including the punctured nodes);
· 
denotes the average variable node degree (including weight 1 and punctured nodes);
·   denotes the total number of conflict layers in the PCM.
It can be shown via simulations that the performance degradation is negligible if all the conflicts occur only in the HW columns of the PCM. We indicate such a matrix as non-conflict code (NC). It is easily seen that in a matrix with NC-QRO structure all conflicts inside one layer can only occur in HW circulant columns. An example of NC-QRO matrix is shown in the Figure 2 in [12]. A more comprehensive example of such NC matrix with QRO property can be found in Appendix 1 in [12]. 
In the tables below we compare the number of conflicts Nc (not taking into account conflicts occurring in the HW columns) and the corresponding throughput for this matrix, the matrix A, proposed in R1-166388 and the matrix B, proposed in R1-167889.   For the peak throughput we use formula (1) and thus do not take into account the conflicts and suppose that each circulant block is processed one clock by one core (in pipeline). For estimating the real throughput we use formula (2) and thus take into account the conflicts that occur outside HW circulant columns.
Table 1. Throughput estimations (Gbit/s), proposed code and code A, p=3, 4, 5
	Rate
	NC QRO code (66x82,Zmax=500), p=3
	Code A (158x188,Zmax=320), p=3

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.7
	16.2
	23.2
	28.1
	33.3
	2
	2.9
	5.0
	9.9
	14.8
	19.8
	24.2
	4.6
	8.3
	11.6
	14.4
	16.7
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	7.1
	13.3
	19.0
	24.2
	28.1
	2
	3.2
	4.5
	8.9
	13.3
	17.8
	22.2
	4.1
	7.4
	10.3
	12.7
	14.8
	6
	3.1

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.9
	11.1
	16.2
	20.5
	24.2
	2
	3.6
	3.4
	6.8
	10.3
	13.7
	16.7
	3.1
	5.6
	7.6
	9.4
	10.7
	9
	3.7

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	5.0
	9.7
	14.0
	17.8
	21.3
	2
	3.9
	2.8
	5.5
	8.2
	10.9
	13.7
	2.5
	4.5
	6.1
	7.5
	8.7
	11
	4.1

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.5
	6.8
	9.9
	12.7
	15.7
	2
	4.4
	1.9
	3.7
	5.6
	7.4
	9.2
	1.7
	3.0
	4.1
	5.0
	5.8
	17
	4.6

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.8
	5.4
	8.0
	10.3
	12.7
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.3
	2.4
	3.3
	4.0
	4.7
	20
	4.7

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.6
	6.8
	8.7
	10.9
	2
	4.5
	1.2
	2.4
	3.7
	4.9
	6.1
	1.1
	2.1
	2.9
	3.6
	4.2
	20
	4.7

	1/5
	1.5
	3.0
	4.5
	6.0
	7.5
	1.5
	2.9
	4.3
	5.7
	7.1
	2
	4.3
	0.8
	1.6
	2.4
	3.3
	4.1
	0.8
	1.4
	2.1
	2.6
	3.1
	21
	4.3



	
Rate
	NC QRO code (66x82,Zmax=500), p=4
	Code A (158x188,Zmax=320), p=4

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.5
	15.2
	21.3
	25.4
	29.6
	2
	2.9
	5.0
	9.9
	14.8
	19.8
	24.2
	4.4
	7.7
	10.5
	12.7
	14.4
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	6.9
	12.7
	17.8
	22.2
	25.4
	2
	3.2
	4.5
	8.9
	13.3
	17.8
	22.2
	3.9
	6.8
	9.2
	11.1
	12.7
	6
	3.1

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.7
	10.7
	15.2
	19.0
	22.2
	2
	3.6
	3.4
	6.8
	10.3
	13.7
	16.7
	2.9
	5.1
	6.8
	8.1
	9.0
	9
	3.7

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	4.9
	9.4
	13.3
	16.7
	19.8
	2
	3.9
	2.8
	5.5
	8.2
	10.9
	13.7
	2.4
	4.1
	5.4
	6.5
	7.4
	11
	4.1

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.4
	6.6
	9.5
	12.1
	14.8
	2
	4.4
	1.9
	3.7
	5.6
	7.4
	9.2
	1.6
	2.7
	3.6
	4.3
	4.9
	17
	4.6

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.7
	5.3
	7.7
	9.9
	12.1
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.3
	2.2
	2.9
	3.5
	4.0
	20
	4.7

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.5
	6.6
	8.5
	10.5
	2
	4.5
	1.2
	2.4
	3.7
	4.9
	6.1
	1.1
	1.9
	2.6
	3.2
	3.6
	20
	4.7

	1/5
	1.5
	3.0
	4.5
	6.0
	7.5
	1.5
	2.9
	4.3
	5.6
	6.9
	2
	4.3
	0.8
	1.6
	2.4
	3.3
	4.1
	0.7
	1.4
	1.9
	2.3
	2.7
	21
	4.3



	Rate
	NC QRO code (66x82,Zmax=500), p=5
	Code A (158x188,Zmax=320), p=5

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.2
	14.4
	19.8
	23.2
	26.7
	2
	2.9
	5.0
	9.9
	14.8
	19.8
	24.2
	4.2
	7.2
	9.5
	11.3
	12.7
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	6.8
	12.1
	16.7
	20.5
	23.2
	2
	3.2
	4.5
	8.9
	13.3
	17.8
	22.2
	3.7
	6.3
	8.3
	9.9
	11.1
	6
	3.1

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.6
	10.3
	14.4
	17.8
	20.5
	2
	3.6
	3.4
	6.8
	10.3
	13.7
	16.7
	2.8
	4.7
	6.1
	7.1
	7.8
	9
	3.7

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	4.8
	9.0
	12.7
	15.7
	18.4
	2
	3.9
	2.8
	5.5
	8.2
	10.9
	13.7
	2.3
	3.8
	4.9
	5.7
	6.4
	11
	4.1

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.4
	6.4
	9.2
	11.6
	14.0
	2
	4.4
	1.9
	3.7
	5.6
	7.4
	9.2
	1.5
	2.5
	3.3
	3.8
	4.2
	17
	4.6

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.7
	5.2
	7.5
	9.5
	11.6
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.2
	2.0
	2.6
	3.1
	3.5
	20
	4.7

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.4
	6.4
	8.2
	10.1
	2
	4.5
	1.2
	2.4
	3.7
	4.9
	6.1
	1.0
	1.8
	2.4
	2.8
	3.2
	20
	4.7

	1/5
	1.5
	3.0
	4.5
	6.0
	7.5
	1.5
	2.9
	4.2
	5.5
	6.8
	2
	4.3
	0.8
	1.6
	2.4
	3.3
	4.1
	0.7
	1.3
	1.8
	2.2
	2.5
	21
	4.3



Table 2. Throughput estimations (Gbit/s) , proposed code and code B, p=3, 4, 5
	Rate
	NC QRO code (66x82,Zmax=500), p=3
	Code B (66x82,Zmax=250), p=3

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.7
	16.2
	23.2
	28.1
	33.3
	2
	2.9
	4.7
	9.4
	14.0
	18.4
	23.2
	4.3
	8.0
	11.1
	13.7
	16.2
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	7.1
	13.3
	19.0
	24.2
	28.1
	2
	3.2
	4.0
	7.8
	11.9
	15.7
	19.8
	3.6
	6.7
	9.4
	11.6
	13.7
	6
	3.3

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.9
	11.1
	16.2
	20.5
	24.2
	2
	3.6
	3.3
	6.5
	9.7
	13.0
	16.2
	3.0
	5.6
	7.7
	9.7
	11.3
	7
	3.6

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	5.0
	9.7
	14.0
	17.8
	21.3
	2
	3.9
	2.7
	5.4
	8.1
	10.7
	13.3
	2.5
	4.6
	6.5
	8.1
	9.5
	8
	3.9

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.5
	6.8
	9.9
	12.7
	15.7
	2
	4.4
	1.9
	3.8
	5.6
	7.5
	9.4
	1.8
	3.3
	4.7
	6.0
	7.1
	9
	4.3

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.8
	5.4
	8.0
	10.3
	12.7
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.4
	2.6
	3.8
	4.8
	5.7
	10
	4.4

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.6
	6.8
	8.7
	10.9
	2
	4.5
	1.2
	2.4
	3.6
	4.8
	6.1
	1.2
	2.2
	3.2
	4.1
	4.9
	10
	4.5



	Rate
	NC QRO code (66x82,Zmax=500), p=4
	Code B (66x82,Zmax=250), p=4

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.5
	15.2
	21.3
	25.4
	29.6
	2
	2.9
	4.7
	9.4
	14.0
	18.4
	23.2
	4.2
	7.4
	10.1
	12.1
	14.0
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	6.9
	12.7
	17.8
	22.2
	25.4
	2
	3.2
	4.0
	7.8
	11.9
	15.7
	19.8
	3.5
	6.2
	8.5
	10.3
	11.9
	6
	3.3

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.7
	10.7
	15.2
	19.0
	22.2
	2
	3.6
	3.3
	6.5
	9.7
	13.0
	16.2
	2.9
	5.2
	7.0
	8.6
	9.9
	7
	3.6

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	4.9
	9.4
	13.3
	16.7
	19.8
	2
	3.9
	2.7
	5.4
	8.1
	10.7
	13.3
	2.4
	4.3
	5.9
	7.2
	8.3
	8
	3.9

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.4
	6.6
	9.5
	12.1
	14.8
	2
	4.4
	1.9
	3.8
	5.6
	7.5
	9.4
	1.7
	3.2
	4.4
	5.4
	6.3
	9
	4.3

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.7
	5.3
	7.7
	9.9
	12.1
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.4
	2.5
	3.5
	4.4
	5.2
	10
	4.4

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.5
	6.6
	8.5
	10.5
	2
	4.5
	1.2
	2.4
	3.6
	4.8
	6.1
	1.1
	2.1
	3.0
	3.8
	4.5
	10
	4.5



	Rate
	NC QRO code (66x82,Zmax=500), p=5
	Code B (66x82,Zmax=250), p=5

	
	Peak throughput
	Real throughput
	Nc
	Dv
	Peak throughput
	Real throughput
	Nc
	Dv

	
	Number of cores (C)
	
	
	Number of cores (C)
	
	

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5
	
	

	8/9
	9.4
	18.4
	28.1
	35.6
	44.4
	8.2
	14.4
	19.8
	23.2
	26.7
	2
	2.9
	4.7
	9.4
	14.0
	18.4
	23.2
	4.0
	6.9
	9.2
	10.9
	12.4
	5
	3.0

	5/6
	7.5
	14.8
	22.2
	29.6
	35.6
	6.8
	12.1
	16.7
	20.5
	23.2
	2
	3.2
	4.0
	7.8
	11.9
	15.7
	19.8
	3.4
	5.8
	7.7
	9.2
	10.5
	6
	3.3

	3/4
	6.1
	12.1
	18.4
	24.2
	29.6
	5.6
	10.3
	14.4
	17.8
	20.5
	2
	3.6
	3.3
	6.5
	9.7
	13.0
	16.2
	2.8
	4.8
	6.4
	7.7
	8.7
	7
	3.6

	2/3
	5.2
	10.5
	15.7
	20.5
	25.4
	4.8
	9.0
	12.7
	15.7
	18.4
	2
	3.9
	2.7
	5.4
	8.1
	10.7
	13.3
	2.3
	4.1
	5.4
	6.5
	7.4
	8
	3.9

	1/2
	3.6
	7.1
	10.7
	14.0
	17.8
	3.4
	6.4
	9.2
	11.6
	14.0
	2
	4.4
	1.9
	3.8
	5.6
	7.5
	9.4
	1.7
	3.0
	4.1
	5.0
	5.7
	9
	4.3

	2/5
	2.8
	5.6
	8.5
	11.1
	14.0
	2.7
	5.2
	7.5
	9.5
	11.6
	2
	4.5
	1.5
	2.9
	4.4
	5.8
	7.3
	1.3
	2.4
	3.3
	4.0
	4.7
	10
	4.4

	1/3
	2.4
	4.7
	7.1
	9.4
	11.9
	2.3
	4.4
	6.4
	8.2
	10.1
	2
	4.5
	1.2
	2.4
	3.6
	4.8
	6.1
	1.1
	2.1
	2.9
	3.6
	4.2
	10
	4.5



Obviously we can find that the real throughput of NC-QRO code is much more than the other codes, taking into account of larger parallelism and fewer conflicts. If p=4, proposed code can reach 20Gbps using 3 cores, while the other codes cannot meet the requirement of such peak throughput even using more cores. Besides, the reduction from ideal throughput to real throughput due to conflicts is less for proposed codes. For instance, given the code rate 1/2 and p=5, the throughput reduction of NC-QRO code is (14-11.6)/14 = 17.1%. In contrast, throughput of Code A reduces by (7.4-3.8)/7.4 = 48.6% from ideal to real. To be mentioned, the performance is not impacted by the limitation of NC-QRO structure, as observed in [13]. 
Observation 1: LDPC code with NC-QRO matrix can reduce conflicts when using multiple cores and improve throughput without performance degradation.
To estimate the complexity we used an approach similar to the one used in [8]. The memory structure is the following: 
· The memory for LLRs:  bits. This memory is initialized with the channel LLRs and then is used to store the sum of the channel LLRs with the current c2v messages and is updated during the decoding. We suppose that 6 bits are used for the absolute value plus one additional bit is used for the sign.
· The check-to-variable (c2v) messages memory:  bits. The c2v messages are stored in the compressed form (4 bits for min1 and min2; 5 bits for the index; 1 bit for sign)
· The memory for signs: , where  is the number of non-zero circulant blocks in the PCM. 
To support a fine granularity in the length adaptation of the LDPC code the decoder should use a shift network that can circularly shift values for different circulant sizes.  QC-LDPC Shift Network (QSN) [9][10] can be used for this. Another approach is to restrict the possible circulant sizes to some small set of values and use a specialized shift network (e.g., Banyan network) that can support only those circulant sizes. However as it was estimated in [7][8] the area of the QSN is less than 7% of the total decoder area for the maximal circulant size Z=320. Hence it doesn’t affect the total area very much. Moreover, very big restriction on the possible circulant sizes usually causes performance degradation for some particular information length and rates due to large shortening and puncturing.
Observation 2: QSN can be applied for block-parallel implementation to support flexible lifting value.
The number of 2:1 7-bit MUXs required to implement one QSN can be estimated [10] by the following formula (3):
             (3)
where .
We suppose that the complexity of one check-node update (CNU) unit is  7-bit. Here we also suppose that the complexity of the -bit adder and the -bit comparator is approximately the same. One core contains one CNU unit and one QSN. If we suppose that the gate count of one -bit MUX and one -bit adder is , we obtain the following formula (4) for the gate count of one core:
            (4)
[bookmark: _GoBack]In the Table 3 and 4 below you can find the complexity estimation for NC-QRO matrix and the codes A and B.

Table 3. Complexity estimations for the proposed code and code A
	
	Proposed Code
	Code A

	
	Number of cores (C)
	Number of cores (C)

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5

	Memory (millions)
	0.905
	0.905
	0.905
	0.905
	0.905
	0.937
	0.937
	0.937
	0.937
	0.937

	MUXes (millions)
	0.059
	0.119
	0.178
	0.237
	0.297
	0.035
	0.071
	0.106
	0.142
	0.177

	ADDERs (millions)
	0.035
	0.070
	0.105
	0.140
	0.175
	0.022
	0.045
	0.067
	0.090
	0.112

	Total gates (millions)
	1.189
	1.472
	1.755
	2.038
	2.321
	1.110
	1.284
	1.457
	1.631
	1.804



Table 4. Complexity estimations for the proposed code and code B
	
	Proposed Code
	Code B

	
	Number of cores (C)
	Number of cores (C)

	
	1
	2
	3
	4
	5
	1
	2
	3
	4
	5

	Memory (millions)
	0.504
	0.504
	0.504
	0.504
	0.504
	0.502
	0.502
	0.502
	0.502
	0.502

	MUXes (millions)
	0.059
	0.119
	0.178
	0.237
	0.297
	0.026
	0.052
	0.079
	0.105
	0.131

	ADDERs (millions)
	0.035
	0.070
	0.105
	0.140
	0.175
	0.018
	0.035
	0.052
	0.070
	0.087

	Total gates (millions)
	0.787
	1.070
	1.353
	1.636
	1.919
	0.633
	0.764
	0.895
	1.026
	1.157



To compare the proposed code with the Code B, for both codes lower rate is limited by Rate=1/3 as the code B does not natively support rates lower than 1/3.
Figure 2 shows a trade-off between throughput (represented as decoding latency measured in ns, the greater the worse) and hardware complexity (measured in gates, the greater the worse) for different decoding rates. Both peak and real throughputs for both NC-QRO code and Code A are shown.
[image: ]
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Figure 2. Throughput vs. Hardware Complexity Trade-off (the proposed NC-QRO code vs. code A).

Figure 3 shows a trade-off between throughput (represented as decoding latency measured in ns, the greater the worse) and hardware complexity (measured in gates, the greater the worse) for different decoding rates. Both peak and real throughputs for both NC-QRO code and Code B are shown.
[image: ]
[image: ]
[image: ]
Figure 3. Throughput vs. Hardware Complexity Trade-off (the proposed NC-QRO code vs. code B).

Observation 3: Compact NC-QRO base-matrix has benefits in terms of throughput and hardware complexity trade-off.

Conclusions
This contribution describes a design of QC LDPC code for eMBB. It is shown that the proposed LDPC code has good performance and supports the fine-granularity rate-matching scheme for all scenarios of eMBB channel. 
In summary, the proposed design has the following characteristics: 

Observation 1: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve throughput without performance degradation.
Observation 2: QSN can be applied for block-parallel implementation to support flexible lifting value.
Observation 3: Compact NC-QRO base-matrix has benefits in terms of throughput and hardware complexity trade-off.
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