	
[bookmark: _Hlk477981674]3GPP TSG RAN WG1 #88bis 	R1-1706101
Spokane, WA, 3rd – 7th April 2017
[bookmark: Source]Agenda item:	8.1.4.1.2
Source: 	Samsung
Title: 	HW Complexity of LDPC Decoder According to Parallelism
[bookmark: DocumentFor]Document for:	Discussion and Decision
Introduction
In the RAN1 #88 meeting [1], the following conclusion is made on the largest info block size and the largest shift size.
	
Agreement:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {FFS near 8192, 320}

[bookmark: _GoBack]In this contribution, we analyze hardware complexity of LDPC decoders according to decoding parallelism for both the largest shift size Zmax equal to 256 and 512. We show that the LDPC decoder for Zmax =256 is more efficient than that with Zmax = 512, with respect to decoder complexity. It should be noted that hardware implementation has a bunch of variety. There is a possibility to improve further implementation efficiency.

Consideration on Hardware Complexity
In this section, we present an LDPC decoder architecture with Zmax or multiple of Zmax parallelism for layered offset min-sum decoding algorithm. In iterative decoding algorithm, the result of the decoder for each codeword bit cn is an iteratively improving estimate of the respective a-posteriori LLR value as L-values Ln.

where l is channel LLR which indicates whether the corresponding coded bit cn is more likely a 0 or 1. For updating Ln, two more messages, Qn,m and Rn,m can be defined by message passing algorithm as shown in Fig. 1. Qn,m is the message passing from the n-th variable node (VN) to the m-th check node (CN). The message passing from the m-th CN to the n-th VN is defined by R-message. With respect to practical decoder implementations with offset min-sum algorithm, the R message can be updated as a message vector Rm = (min1, min2, minIdx) for the m-th CN. The details message passing algorithm will be introduced in following sections.

[image:]

Figure 1. Example of message passing algorithm based on factor graph

1.1 LDPC Decoder Architecture with Zmax Parallelism
In this section, we present an LDPC decoder architecture with Zmax parallelism. A high-level description for decoding algorithm is given as follows:
Algorithm 1: Algorithm for LDPC Decoder (Zmax Parallelism)
	Initialization step
· Ln channel LLR message

Iteration step i+1
· Qn Ln – R’
where R’ = sign(i)∙max(min2(i) – offset, 0), if currIdx = minIdx(i);
= sign(i)∙max(min1(i) – offset, 0), otherwise
· sign(i+1) sign(i)∙sign(Qn)
· (min1(i+1), min2(i+1), minIdx(i+1)) (1st min, 2nd min, 1st min index) from (min1(i+1), min2(i+1), |Qn|)
· R:= (sign(i+1), min1(i+1), min2(i+1), minIdx(i+1))
· Ln Qn + R’
where R’ = sign(i+1)∙max(min2(i+1) – offset, 0), if currIdx = minIdx(i+1);
 = sign(i+1)∙max(min1(i+1) – offset, 0), otherwise

Fig. 2 shows high-level block diagram of the block parallel decoder with Zmax parallelism. Note that it is a decoder architecture modified from reference [2]. This architecture requires three kinds of memories; L-memory, Q-memory, and R-memory. L-memory stores Ln values for n-th VN, Q-memory stores Qn values for n-th VN with degrees of larger than one, and R-memory stores a sign bit, the first minimum (min1), the second minimum (min2) and index of first minimum value among the Qn values connected to the m-th CN (minIdx). This architecture further comprises Zmax core logics and routing logics (i.e., shift network) between L-memory and cores. At the beginning of decoding, the L-memory is initialized by the channel LLRs ln. Then, for each iterations, the CN updating and VN updating is processed according to layer by layer, and associated messages, Ln, Qn and Rm, are updated.

 [image:]
Figure2. High-Level Block Diagram for LDPC Decoder with Zmax Parallelism
The details of core unit, namely A-core, are depicted in Figure 3 as an example. Each core unit follows a two-step procedure, MIN step processed in MIN unit and SEL step processed in SEL unit. During the MIN step, the minimum and second minimum of the Q-messages is computed based on previous L-values and R-messages. The ‘3 input 2 output Compare Select’ in the MIN unit requires two compare logics and three MUXs which can be done in two steps as depicted in Figure 4. In the SEL step, the proper minimum value is selected and then R-message is updated with offset value beta. By following this, the L-value can be updated during the SEL step.
In the MIN unit, there are registers to store (sign, min1, min2, minIdx) for the current step in i-th layer. Additional registers are required between MIN unit and SEL unit to store R for i-th layer in order to start SEL unit after the last check node update process is finished in MIN unit.
[image:]
Figure 3. Example of details of A-Core

[image:]
Figure 4. Example of ‘3 Input 2 Output Compare Select Logic’

1.2 LDPC Decoder Architecture with 2Zmax Parallelism
In this section, we discuss an LDPC decoder architecture with 2xZmax parallelism. A high-level description of decoding algorithm is described as Algorithm 2 which is a modification of Algorithm 1. It can support 2xZmax parallelism without any loss of performance.

Algorithm 2: Algorithm for LDPC Decoder (2xZmax Parallelism)
	Initialization step: k = 1, 2
· Ln(k) channel LLR message k
Iteration step i+1: k = 1, 2
· Qn(k) Ln(k) – R’(k)
where R’(k) = sign(i)∙max(min2(i) – offset, 0), if currIdx(k) = minIdx(i);
= sign(i)∙max(min1(i) – offset, 0), otherwise
· sign(i+1) sign(i+1)∙sign(Qn(1)) ∙sign(Qn(2))
· (min1(i+1), min2(i+1), minIdx(i+1)) (1st min, 2nd min, 1st min index) from (min1(i+1), min2(i+1), |Qn(1)|, |Qn(2)|)
· R:= (sign(i+1), min1(i+1), min2(i+1), minIdx(i+1))
· Ln(k) Qn(k) + R’(k)
where R’ (k) = sign(i+1)∙max(min2(i+1) – offset, 0), if currIdx(k) = minIdx(i+1);
= sign(i+1)∙max(min1(i+1) – offset, 0), otherwise

Given Algorithm 2, an example of high-level block diagram of the block parallel decoder with 2Zmax parallelism is given in Figure 5. As similar to decoder with Zmax parallelism in Figure 2, there are three kinds of memories; L-memory, Q-memory, and R-memory. L-memory and Q-memory are consisted two memories conceptually. It is conceptual description since the number of memory slicing is depending on implementation. More details are discussed in Section 3.
This architecture further comprises Zmax core logics and routing logics (i.e., shift network) between L-memory and cores. Note that not 2Zmax but Zmax core logics are required since each core can process two L-value inputs simultaneously. We call it as B-core. Two values corresponding two different blocks are processed in each core to support 2Zmax parallelism with Zmax core as shown in Figure 6. To process two inputs at the same time in MIN unit, ‘4 input 2 output Compare Select’ logic is introduced, which requires four compare logics and five MUXs which can be done in two steps as depicted in Figure 7. Note that in this example, ‘4 input 2 output Compare Select’ logic requires smaller number of logics compared to two times of ‘3 input 2 output Compare Select’ logic. It can be extended to multiple blocks processing for multiple Zmax parallelism with Zmax cores.

 [image:]
Figure 5. High-Level Block Diagram for LDPC Decoder with 2xZmax Parallelism

[image:]
Figure 6. Details of B-Core

 [image:]
Figure 7. Example of ‘4 Input 2 Output Compare Select Logic’

Comparison of Two Decoders with the Same Parallelism
In this section, we compare hardware complexity component by component between the following options with the same parallelism:

Option 1) LDPC code with Zmax=256 in [3], decoder architecture with 2xZmax (=2x256) parallelism
Option 2a) LDPC code with Zmax=512 in [4], decoder architecture with Zmax (=512) parallelism
Option 2b) LDPC code with Zmax=512 in [5], decoder architecture with Zmax (=512) parallelism

Obviously, the parallelism of all options is identity as 512.

1.3 Memory
The memory area can be predicted by available width, depth and number of memory slicing based on certain memory configurations. However, it is just one of example for the discussion since memory configurations are various by implementation. Memory configuration can be designed by taking into account chip size and specification requirements. Therefore, discussion on the total number memory bits is more reasonable approach for comparison rather than memory area based on certain memory configuration. Nevertheless, we will present required total number of bits and memory area based on 28nm technology for each option.

Let’s assume that the bit-width of each messages as follows:
	
	L value
	R value
	Q value

	Bit-width
	8
	16
	6

Note that R value consists of sign (1 bit), min1 (5 bit), min2 (5 bit), and minIdx (5 bit). Herein, minIdx value consists of only 5 bits since maximum check node degree of LDPC codes in [3], [4], [5] is less than 25.

For each option, total required memory bits are summarized as follows:
Table 1: Total Required Memory Bits
	
	L-memory
	R-memory
	Q-memory

	
	1)
	2a), 2b)
	1)
	2a), 2b)
	1)
	2a), 2b)

	Addresses
	98
	50
	66
	34
	38
	19

	Bits per address
	256x8
	512x8
	256x16
	512x16
	256x6
	512x6

	Total bits
	200704
	204800
	270336
	278528
	58368
	58368

Observation 1: Total required memory bits for LDPC code with Zmax=256 is smaller than LDPC codes with Zmax=512 .

We also discuss possible memory configuration as an example, although comparison based on total required number of memory bits is more reasonable. Due to the chip layout flexibility, memory width should be limited to certain number. In this contribution, the maximum memory width is assumed as 128. Memory width means number of bits which can be accessed concurrently in one memory slice. Therefore, required memory slices can be determined by bit-level parallelism divided by memory width. According to given options, we calculate the required memory slices, depths, and areas in Table 2.
Table 2: Memory Slices, Depth, Width, Area Prediction based on 28nm technology
	
	L-memory
	R-memory
	Q-memory

	
	1)
	2a), 2b)
	1)
	2a), 2b)
	1)
	2a), 2b)

	Parallelism (bit level)
	2x256x8
	512x8
	256x16
	512x16
	2x256x6
	512x6

	Req. memory slices
	16+16
	16 + 16
	32
	64
	12 + 12
	24

	Memory width
	128
	128
	128
	128
	128
	128

	Req. memory depth
	49
	50
	66
	34
	19
	19

	Available depth
	64
	64
	128
	64
	32
	32

	Area prediction
	219k um2
	219k um2
	275k um2
	438k um2
	143k um2
	143k um2

Observation 2: Both options have the same memory slice number, but option 1) has smaller required memory depth than option 2a) and 2b) for L-memory.
Observation 3: Option 1) has smaller number of memory slices and memory area than Option 2a) and 2b) for R-memory.
Observation 4: Both options have the same memory slice number and depth for Q-memory.

1.4 Shift Network
As shown in Section 2, shift network is required to route the blocks of Z values in L-memory to MIN unit in core. For discussion on complexity of shift network, the maximum size and granularity of Z should be considered. With respect to maximum size, that for option 1) and 2a), 2b) is 256 and 512, 512, respectively. Granularity of Z which can be expressed as c∙2d is given as follows:
Option 1) c = {1,2,3,4,5,6,7,8}, d = {0,1,2,3,4,5}
Option 2a) c = {1,2,3,4,5,6,7,8}, d = {0,1,2,3,4,5,6}
Option 2b) c = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}, d = {0,1,2,3,4,5}

Above Z granularity can be supported by a combination of QSN and Banyan as shown in Figure 8-10. QSN and Banyan is composed of 2-input MUXs. In Table 3, we summarized total number of MUXs in shift network for each configuration.

Figure 8. Shift Network for Option 1

Figure 9. Shift Network for Option 2a)

Figure 10. Shift Network for Option 2b)

Table 3: MUXs in Shift Network
	
	1)
	2a)
	2b)

	# MUX for a QSN (A)
	32∙(2∙8∙log28)
	64∙(2∙8∙log28)
	32∙(2∙16∙log216)

	# MUX for a Banyan (B)
	8∙(32∙log232)
	8∙(64∙log264)
	16∙(32∙log232)

	Bit Width (C)
	8
	8
	8

	# Shift Network (D)
	2
	1
	1

	Total MUX (=(A+B)*C*D)
	45056
	49152
	53248

Observation 5: Option 1) has 10% ~ 20% less MUXs than Option 2a) and 2b) for shift networks

1.5 Core

According to Figures 3, 4, 6, and 7, 256 B-Cores for Option 1) and 512 A-Cores for Option 2a) and 2b) are compared in Table 4.
Table 4: Comparison of Core Logic and Register
	Adder, Compare Logic
	Same

	MUX
	Option 1) has less MUXs than Option 2a), 2b)

	Register
	Option 1) has less Registers than Option 2a), 2b)

Observation 6: Option 1) has less complexity for core logic and register than option 2a) and 2b).
Conclusion
In this contribution, we analyzed the hardware complexity of LDPC decoders according to the largest decoding parallelism. Following options were compared.

Option 1) LDPC code with Zmax=256 in [3], decoder architecture with 2xZmax (=2x256) parallelism
Option 2a) LDPC code with Zmax=512 in [4], decoder architecture with Zmax (=512) parallelism
Option 2b) LDPC code with Zmax=512 in [5], decoder architecture with Zmax (=512) parallelism

Based on our analysis, following observations were obtained.

Observation 1: Total required memory bits for LDPC code with Zmax=256 is smaller than LDPC codes with Zmax=512 .
Observation 2: Both options have the same memory slice number, but option 1) has smaller required memory depth than option 2a) and 2b) for L-memory.
Observation 3: Option 1) has smaller number of memory slices and memory area than Option 2a) and 2b) for R-memory.
Observation 4: Both options have the same memory slice number and depth for Q-memory.
Observation 5: Option 1) has 10% ~ 20% less MUXs than Option 2a) and 2b) for shift networks
Observation 6: Option 1) has less complexity for core logic and register than option 2a) and 2b).

According to the observations, we conclude that option 1) is much more efficient than option 2a) and 2b) in hardware implementation of LDPC decoders. Table 5 describes summary on this contribution and companion contributions [3], [6].

Table 5: Summary
	
	Zmax=256
	Zmax=512

	Performance [3]
	Coding gain
	Better
	Worse

	
	Error Floor
	No error floor
	Severe error floor

	Hardware Complexity
	Memory
	Lower Complexity
	Higher Complexity

	
	Shift Network
	Lower Complexity
	Higher Complexity

	
	Core Logic
	Lower Complexity
	Higher Complexity

	
	Core Register
	Lower Complexity
	Higher Complexity

	Latency [6]
	Clock Cycles per Iter
	Faster
	Slower

	
	Average Iteration
	Faster
	Slower

1
2
References
[1] Chairman’s Notes, RAN1 #88, RAN1 Chairman, Feb., 2017
[2] C. Roth, P. Meinerzhagen, C. Studer, A. Burg, " A 15.8 pJ/bit/iter quasi-cyclic LDPC decoder for IEEE 802.11n in 90 nm CMOS," 2010 IEEE Asian Solid-State Circuits Conference, 2010.
[3] R1-1706142, Samsung, “Performance evaluation of LDPC code,” 3GPP TSG RAN WG1 #88bis, April, 2017.
[4] R1-1702733, MediaTek, “Compact QC-LDPC design,” 3GPP TSG RAN WG1 #88, Feb., 2017
[5] R1-1704457, MediaTek, “A multi-codebook embedded compact QC-LDPC design”, 3GPP TSG RAN WG1 #88bis, April, 2017
[6] R1-1706107, Samsung, “LDPC decoding latency according to protomatrix,” 3GPP TSG RAN WG1 #88bis, April, 2017.
image2.emf
L-memory

Shift Network

Core pool

R-memory

Q

-

m

e

m

o

r

y

A-Core 1

MIN SEL

A-Core Z

max

MIN SEL

...

image3.emf
-

+

L

Q

currIdx currIdx

MUX

XOR

L

min1

min2

minIdx

sign

MIN unit A

SEL unit

R

e

g

i

s

t

e

r

Q

PPC

unit

p

A==B

sign(Q)

sign

|Q|

min1

3 input

2 output

Compare

Select

minIdx

min2

minIdx

R’calculation

min1

min2

sign

+

+

R

minIdx

min1

min2

sign

offset

R’calculation

image4.emf
Compare

(|Q| > min1)

|Q|

Compare

(a> min2)

a

M

U

X

1

0

min2

M

U

X

1

0

M

U

X

1

0

min1

|Q|

Step 1 Step 2

image5.emf
L-memory 1

SN

Core pool

Q

-

m

e

m

o

r

y

1

B-Core 1

MIN SEL

B-Core Z

max

MIN SEL

...

L-memory 2

Q

-

m

e

m

o

r

y

2

SN

R-memory

image6.emf
currIdx1

min1

min2

minIdx

sign

currIdx2

-

+

L2

+

-

L1

XORx2

sign

sign(Q1)

sign(Q2)

|Q1|

|Q2|

Q2

Q1

R

e

g

i

s

t

e

r

minIdx

min1

min2

sign

currIdx1

SEL unit

Q1

SEL unit

currIdx2 Q2

L1

PPC

unit

L2

p

R

MIN unit B

min1

4 input

2 output

Compare

Select

minIdx

min2

R’1 calculation

R’2 calculation

image7.emf
Step 1

Compare

(|Q1| > min1)

Compare

(|Q1| > |Q2|)

min1

M

U

X

0

1

Compare

(|Q2| > min1)

|Q2|

|Q1|

M

U

X

1

0

M

U

X

0

1

M

U

X

0

1

|Q2|

|Q1|

a

Compare

(a> min2)

M

U

X

1

0

min2

Step 2

image8.emf
Banyan pool QSN pool

Banyan 1

32x32

QSN 1

8x8

QSN 32

8x8

Banyan 8

32x32

.

.

.

.

.

.

.

.

.

oleObject1.bin
Banyan 1
32x32

QSN 1
8x8

Banyan 8
32x32

QSN 32
8x8

...

...

QSN pool

Banyan pool

.
.
.

image9.emf
Banyan pool QSN pool

Banyan 1

64x64

QSN 1

8x8

QSN 64

8x8

Banyan 8

64x64

.

.

.

.

.

.

.

.

.

oleObject2.bin
Banyan pool

QSN pool

Banyan 1
64x64

QSN 1
8x8

QSN 64
8x8

Banyan 8
64x64

...

...

.
.
.

image10.emf
Banyan pool QSN pool

Banyan 1

32x32

QSN 1

16x16

QSN 32

16x16

Banyan 16

32x32

.

.

.

.

.

.

.

.

.

oleObject3.bin
Banyan pool

QSN pool

Banyan 1
32x32

QSN 1
16x16

QSN 32
16x16

Banyan 16
32x32

...

...

.
.
.

image1.emf
VN1 VN2 VN3 VN4 VN5

CN1 CN2

CN3 CN4

Q

1,2

l

1

R

2,1

L

1

l

2

L

2

l

3

L

3

l

4

L

4

l

5

L

5

