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Unlike a convolutional code with every of its bit position having equal reliability, some bit positions or sub-channels of a polar code are much more reliable than others. When constructing a polar code, we need an ordered sequence of the bit positions based on reliabilities so that the information and parity-check bits could be placed on the more reliable bit positions and frozen bits on the remaining less reliable ones. 
It is true that an ordered sequence is derived from Arikan’s kernel for BEC (binary erasure channel) or BMC (binary memory-less channel) to maximize its channel capacity [1]. However, a polar code is supposed to work at least with Gaussian channels and a finite mother code length N in practice. For this purpose, [2] proposes the GA (Gaussian-Approximation)-DE (density-evolution) algorithm that computes the reliabilities of each bit positions given an SNR input and block length N and sorts them for an ordered sequence. As a result, if an ordered sequence generated with an SNR-x input was directly applied to different construction with an SNR-y input, its coding gain would degrade due to the offset from x to y. Otherwise, a new ordered sequence should be generated again by the GA-DE method but with the right SNR-y input. Since a fine granularity is requested in NR, it is infeasible to have an on-the-fly GA-DE implementation for a low-latency encoder/decoder. 
For eMBB control channel, [3], [4], [5] and [6] have proposed some reliability-based ordered sequences of the bit positions. All of them assume that the code constructions with the same N share a common ordered sequence of length N. To have a single ordered sequence for different coding SNR, they are usually searched and generated from the synthesis of a set of multi-SNR Gaussian channels. Moreover, [3], [6], and [4] suggested that the ordered sequences of different block length could be nested, i.e., the order of a bit position pair (x,y) should remain unchanged from N to 2*N so that an ordered sequence of N can be easily obtained from that of 2*N. At last, [3] proposes a β-expansion formula with constant value to generate an ordered sequence. The simulation exhibits a comparable decoding performance with this β expansion formula as that with a GA-DE method [3]. 
After studying these ordered sequences published by different companies [3], [4], and [5], researchers may notice not only certain similarity among these sequences of the same length N but also a higher resemblance for N ≤ 64. Furthermore, through the simulations, some may have the inkling that some orders between two or several bit positions are more important than others for the coding gain. For example, it is observed that some alternation on a portion of the orders may lead to noticeable performance change. 
Besides, a compressed storage is supported by the sequence generated from β-expansion formula [3] because of its symmetric geometry characteristic. Recursive generation is supported by [4] and β-expansion formula [3] too.    
In this contribution, we will provide a brief introduction of our observations on the design of the β-expansion formula. 
Discussion 
Universal Partial Order (UPO)
As proved in [7] and [12] and further analised in [11], there is a universal order of reliability over a part of bit positions for a polar code. These orders are “universal” in the sense that they hold for any channel, and in particular for any SNR of the AWGN channel.. They are “partial” because the relations order only a subsets of all indices, but they are insufficient to define a full order of the whole sequence covering all N bit positions.  
In the following we assume that the binary representation of a bit position has the MSB on the left. We further use the notation #a < #b if position a is less reliable than position b.
Given any two bit positions x, y, 0 ≤ x, y < N, their relative order with respect to their reliability can be determined with the following  three conditions. Here 
1. If a binary representation of a bit position is (a,b,c,0), then it must be less reliable than the bit position whose binary representation is (a,b,c,1). Such #1>#0 pattern can happen on any bit and on multiple bits:  
· e.g. #2 (010) < #3 (011), #5 (1,0,1) < #7 (1,1,1), #9 (1,0,0,1) < #15 (1,1,1,1)
2. If a binary representation of a bit position is (a,0,1,b,c), then it must be less reliable than the bit position whose binary representation is (a,1,0,b,c). The #01<#10 pattern can occur multiple times, and the pattern do not need to be next to each other.
· e.g. #2 (010) < #4 (100), #13 (01101) < #22 (10110), #12 (01100) < #24 (11000)
3. Combination of the patterns in constraint 1 and 2 also give fixed order, e.g., #21 (10101) > #10 (01010)
If a pair of (x,y) meets none of the above constraints, their order is not universal, i.e., their order is not fixed for any channel or any SNR but is specific to the respective channel model. 
Following the three constraints, we draw the Hasse diagrams for N = 2, 4, 8, 16, 32, as shown in Figure 1. 
 (
UPO-2:
UPO-4:
UPO-8:
UPO-16:
UPO-32:
)[image: ]
[bookmark: _Ref477880351]Figure 1	 Hasse-Diagram of UPO for a polar code of length N = 2/4/8/16/32
In the Hasse-Diagram, the directed arrow between two nodes (or equivalently bit positions) indicates that the source node has lower reliability than the destination node for an arrow.    
Their Hasse diagrams have two important properties: 
· Nested property: the orders determined in N remain unchanged in 2*N. For example, the order of #2<#3 is decided in N = 4 but strictly kept in any N >= 4.  
· Symmetric property: an order of #x<#y and an order of #(N-1-x) > #(N-1-y) are twin pairs in N. For example, if an order of #1<#2 is decided, then the order of #6 (=7-1)>#5(=7-2) is determined immediately in N = 8.
The two properties enable a recursive way to generate the Hasse diagram or a set of UPO given 2*N from that of N: 
· Recursive-1: if #x>#y in N, then #(N+x) > #(N+y) in 2*N. For example, 1<2 in N = 8 results into #9 (=8+1)<#10(=9+1) in N = 16. Thus, from N to 2*N, the partial orders for bit positions 0~N-1 remain the same as those for N~2*N-1.
· Recusive-2: if #x>#y in N, then #(2*x)>#(2*y) and #(2*x+1)>#(2*y+1). For example, 1<2 in N = 8 results into #2(2*1)<#4(2*2) and #3(2*1+1)<#5(2*2+1) in N = 16. 
Observation-1: Universal partial order is a fundamental phenomenon of polar code construction regardless of channel type and SNR. It has nested and symmetric properties and can be generated in a recursive way. 
β-Expansion 
Since both the constraints of the UPOs are related to the binary representation of the bit position index, it is straightforward to use the β expansion formula as its equivalent reliability measure function: 
Consider a bit position index x, and let B = (Bn-1, Bn-2,…, B0) be its binary expansion over n=log2(N) bits with the MSB (most-significant-bit) at the left. Its β-expansion is defined as polarization weight (PW): PW(x) = ,  to ensure that the UPO constraints are satisfied using  -expansion. 
Any  value in this range (1,∞) would lead two reliability metrics of any pair of bit positions to follow the constraints of the universal partial order. 
Observation-2: β-expansion with  always respects the universal partial orders of polar code construction.
Gaussian Universal Partial Order (GUPO) N≤32
 (
GUPO-2:
GUPO-4:
GUPO-8:
GUPO-16:
GUPO-32:
)As shown previously, UPO is a fundamental nature of polar code construction regardless of channel type and SNR. A natural question is how the UPOs (in Figure 1) would change when a specific channel type is introduced (for example Gaussian channel). From GA-DE, we show in Figure 2 the UPO under assumption of Gaussian channel for a polar code of length N=1/2/4/8/16/32. We name the UPO for the Gaussian channel as Gaussian Universal Partial Order (GUPO).
[bookmark: _Ref477880357][image: ]
Figure 2	 Hasse-Diagram of GUPO for a polar code of length N = 2/4/8/16/32
If we compare the Hasse diagram of UPO in Figure 1 and GIPO in Figure 2: 
· GUPO diagram with N<= 32 is “thinner” than UPO ones -> narrower β range; 
· GUPO diagram is reduced to a chain when N=4/8/16; 
· N=32 GUPO diagram has one anti-chain, (7, 24); 
After running an exhaustive simulation for N<=1024, we verify that there’s no conflict between UPO and GUPO. 
Observation-3: When Gaussian channel is considered, polar code construction of length 2/4/8/16 is a single chain for any SNR. 
In the following recursive steps, we see how the range of β decreases. 
N = 4
In case of N=4, both N=4 GUPO and N=4 UPO diagrams are reduced to one chain: #0 < #1 <# 2 <# 3.  
N = 8
In Figure 3, an ordered sequence of N=8 is constructed from two N=4 GUPO where 
· The first sequence is GUPO-4 itself and the second sequence is GUPO-4 with index + 4. 
·  (
GUPO-4:
GUPO-8:
)The even sequence is GUPO-4 with index x 2 and odd sequence is GUP) with index x 2 +1. 
[image: ]
Recursive-1: (0 ▬ 1 ▬ 2 ▬ 0+4 ▬ 3 ▬ 1+4 ▬ 2+4 ▬ 3+4)
Recursive-2: (0*2 ▬ 0*2+1 ▬ 1*2 ▬ 2*2 ▬ 1*2+1 ▬ 2*2+1 ▬ 3*2 ▬ 3*2+1)
[bookmark: _Ref477881482]Figure 3 Sequence construction of polar codes from N = 4 to N = 8
Although only the order of (3,4) is unknown to UPO-8 (#0<#1<#2<#(3,4)<#5<#6<#7) in Figure 1, this order is known to N=8 GUPO in Figure 2 (as “#4<#3”) and the rest orders are known by the N=8 UPO. It is confirmed by analysis with GA-DE in Figure 4 that the bit position of #3 is always more reliable than that of #4 for any SNR input.
[image: ]
[bookmark: _Ref477785885]Figure 4	  Bhattacharyya parameters vs SNR for the pair (3,4) (code length N=8)
Accordingly, the β range is reduced as in [3]: 
	GUPO Pairs N =8 
	Range of β

	(3, 4) 
	<1.618043


Observation-4: N=8 GUPO and N=8 UPO together generates an ordered sequence #0<#1<#2<#4<#3<#5<#6<#7 for any SNR value. Accordingly, the range of β value in β-expansion is reduced from  to . 
[bookmark: _Ref477329261] (
GUPO-8:
GUPO-16:
)N = 16
		[image: ]
Recursive-1: (0▬ 1▬ 2▬ 4▬ 0+8▬ 3▬ 5▬ 6▬ 1+8▬ 2+8▬ 4+8▬ 7▬ 3+8▬ 5+8▬ 6+8▬ 7+8)
Recursive-2: (0*2▬ 0*2+1▬ 1*2▬ 2*2▬ 4*2▬ 1*2+1▬ 2*2+1▬ 3*2▬ 4*2+1▬ 5*2▬ 6*2▬ 3*2+1▬ 5*2+1▬ 6*2+1▬ 7*2▬ 7*2+1)
Figure 5 Sequence construction of polar codes from N= 8 to N= 16
The following pairs: (6, 9), (3,8), and (7,12), are unknown to N=16 UPO but known to N=16 GUPO as in Figure 6: Their reliability orders, #9>#6, #3>#8, and #7>#12,  is holed for any SNR.
[image: ] [image: ]	[image: ]
[bookmark: _Ref477787071]Figure 6	 Bhattacharyya parameters vs SNR for the pairs (6 9), (3 8) and (7 12) (code length N=16)
Accordingly, the β range is reduced to: 
	GUPO Pairs N =16 
	Range of β

	(6, 9) 
	>1

	(3,8)
	<1.324718

	(7,12)
	<1.324718


Observation-5: N=16 GUPO and N=16 UPO together generates an ordered sequence #0<#1<#2<#4<#8<#3<#5<#6<#9<#10<#12<#7<#11<#13<#14<#15 for any SNR value. Accordingly, the range of β value in β-expansion is reduced from  to . 
N = 32
The following pairs: (28,15), (14,19), (24,13), (24,11), and (24,7) are unknown to N=32 UPO. Among them (28,15), (14,19), (24,13), and (24,11) are known to N=32 GUPO. Accordingly, the β range is reduced to: 
	GUPO Pairs N=32
	Range of β

	(28, 15) 
	<1.220744

	(14,19)
	<1.324718

	(24,13)
	<1.272020

	(24,11)
	<1.220744



[image: ]
Figure 7 Bhattacharyya parameters vs SNR for the pair (7 24) (code length N=32)
As the pair (24,7) is unknown to N=32 GUPO, a greedy simulations (Figure 7) tell us the order of #24>#7 has an overall better performance than that of (#24<#7) for all the interested SNR values. Therefore,
	Pairs N=32
	Range of β

	(24, 7) 
	>1.178724


 Observation-6: For a polar code of length N≧32, the sequence order is in general SNR-dependent in Gaussian channel. Accordingly, the range of β value in β-expansion is .
Synthesized Gaussian Channels and Constant β value N>32
In case of N>32, more pairs (<20% of total orders) are unknown to UPO and GUPO. An ordered sequence should consider the synthesis of their orders on the assumption of Gaussian channels. 
	N  2N
	# of new pairs need to be synthesized 

	16  32
	5 

	32  64
	10

	64  128
	~30

	128  256
	~50

	256 512
	~90

	512  1024
	~ 200


[bookmark: _Ref477348266]Table 1	Number of Pairs needs to be decided when generating N/2 from N
We will explore two different methods to reduce the range of β values:    
· Numeric synthesis: Decisions of the orders are based on the synthesis of various SNR-input Gaussian channels for an overall good performance [8]. As shown in Table 2, the range of β value converges towards a constant value of 1.1892 after N≥128.  
	N  2N
	Range of β values

	16  32
	(1.1787 1.221)

	32  64
	(1.1787 1.194)

	64  128
	(1.185 1.190)

	128  256
	(1.1885 1.190)

	256 512
	(1.18875 1.18952)

	512  1024
	(1.189 1.18932)


[bookmark: _Ref477350695]Table 2	Convergence of β range from N to 2*N
· Heuristic approximation: When N increases, the number of the undetermined pairs increases as shown in Table 1. In a general sense, B = (B1, B2,…) tends to be a sequence of independent binary random variables satisfying
Pr {Bi = 1} = Pr {Bi = 0} = 0.5,   for all i
Thus, the problem of studying distributions of the β-expansion can be transformed to another concept called Bernoulli convolution [9][10],which defines a probability measure

It is proved that the measure  is either absolutely continuous or singular [9]. Clearly, we need the property of continuous measure for  to be able to fully rank the reliability of infinite number of sub-channels. It is further proved in [10] that if  = , where k is integer ≥1 , then  is absolutely continuous. When k = 4, i.e. β = 1.1892, we get the best coding performance. 
Observation-7: Both numeric synthesis and heuristic approximations converge into one ordered sequence with a constant β value of 1.1892 (=21/4) of β-expansion formula.
Conclusion 
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Observation-1: Universal partial order is a fundamental phenomenon of polar code construction regardless of channel type and SNR. It has nested and symmetric properties and can be generated in a recursive way. 
Observation-2: β-expansion with  always respects the universal partial orders of polar code construction.
Observation-3: When Gaussian channel is considered, polar code construction of length 2/4/8/16 is a single chain for any SNR. 
Observation-4: N=8 GUPO and N=8 UPO together generates an ordered sequence #0<#1<#2<#4<#3<#5<#6<#7 for any SNR value. Accordingly, the range of β value in β-expansion is reduced from  to . 
Observation-5: N=16 GUPO and N=16 UPO together generates an ordered sequence #0<#1<#2<#4<#8<#3<#5<#6<#9<#10<#12<#7<#11<#13<#14<#15 for any SNR value. Accordingly, the range of β value in β-expansion is reduced from  to . 
Observation-6: For a polar code of length N≧32, the sequence order is in general SNR-dependent in Gaussian channel. Accordingly, the range of β value in β-expansion is .
Observation-7: Both numeric synthesis and heuristic approximations converge into one ordered sequence with a constant β value of 1.1892 (=21/4) of β-expansion formula.
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