[bookmark: OLE_LINK5][bookmark: OLE_LINK6]3GPP TSG RAN WG1 Meeting #88bis R1- 1704592
Spokane, USA, 3rd - 7th April 2017

Source:	CATT
Title:	Offset optimization on base matrices of eMBB LDPC codes
Agenda Item:	8.1.4.1.2
Document for:	Discussion

Introduction
At the 3GPP TSG RAN1 meetings, the following agreements [1]-[2] have been reached on support of LDPC codes for eMMB data channels.
Agreement: [RAN1 #85]
· For the purpose of study and comparisons, quasi-cyclic like LDPC codes are defined as follows:
· The Parity check matrix of Quasi-cyclic like LDPC Codes is defined at least by a matrix H of size (mb×z)×(nb×z), which consists of sub-block matrices of size z×z, where each sub-block matrix is composed by circularly shifted matrices or zero matrices. Wherein, mb, nb and z are integers larger than 1.
· The values of mb, nb and z are FFS.

Agreement: [RAN1 #88]
· For at least one base graph,
· the parity check matrix consists of five sub-matrices (A, B, C, D, E)
 (
A
C
D
E
B
)
· A may contain systematic and parity bits
· B:
· B is not necessarily square
· One of the columns has weight-three
· The columns of B after the weight-three column have a dual diagonal structure, e.g.:
[image:]
· C is a zero matrix
· E is an identity matrix for the above base graph
· Other structures can be considered for other base graph(s), if any
· Can be revisited if another structure is shown to be superior in performance and complexity
In this contribution, we further optimize the compact QC-LDPC code with output of two versions of LDPC codes. The first one is a QC-LDPC code without quasi-row orthogonal characteristic. The second one is a QC-LDPC code with quasi-row orthogonal characteristics. We analyze and evaluate the performance of these two versions of LDPC codes.
Discussion
1.1 QC-LDPC code
Many practical LDPC codes are constructed as QC-LDPC codes, which can provide high parallelism in decoder to achieve the desired throughput. A QC-LDPC code is realized by lifting processing based on a base matrix and a lift size Z.
An H matrix of a QC-LDPC code is composed of multiple small matrices. If the information block length m=mb*Z and the code block length n=nb*Z(without considering padding), the base matrix will consist of nb columns and nb-mb rows. In a base matrix of a LDPC code, a row represents a row block in its H matrix and a column represents a column block in its H matrix. Each small matrix is either zero matrix or a cyclic shifted identity matrix, i.e. CPM, with a permutation size namely “offset”. In the expression of a base matrix, the element -1 or blank represents a zero matrix. Other values represent a CPM with the exact number as its offset, which should be in a range from zero to Z-1.
It is common understanding that the hardware structure of a LDPC decoder depends on the base matrix. The position of the identity matrices in the base matrix decides complexity of routing network. The lifting size Z decides the complexity of shifting network. The complexity of decoder can still achieve a depression by offset adjustment method to help cutting down decoding latency even settling all varieties.
In a typical decoder, data from variable nodes is read from the RAM and shifted by shifting network before sent to the corresponding check nodes. One clock cycle for one shifting processing will cause accumulation which would have the results of increasing the decoding latency, and thus impacting the decoder throughput and complexity directly.
1.2 Optimization on the first offset row
In a base matrix, the offsets of the first CPM of each column block are called the first offsets. Generally, the first offsets are not uniformed after a specified LDPC code designed, which implies that they are usually variant from zero to Z-1.
To reduced decoding latency as much as possible, the shifting process of first CPM can be omitted by matrix transformation. Specifically, applying elementary transformation of columns within a column block and eventually setting the first offset into zero will consequently help drop one clock cycle for this CPM on shifting process. With this optimization method adopted, nb clock cycles will be saved one iteration under a block parallelism decoder structure [3].
Figure 1 shows an example of optimization method. The elements in a base matrix are given by hij, where -1 represents a zero matrix and other values represent the offsets of CPMs. In Figure 1, zero matrices are indicated with no color, first CPMs are colored in orange and other CPMs are colored in grey. A column-block with a first offset h is supposed to be circularly shifted on a size of h. Figure 1(a) is the original base matrix and (b) is the termination after adjustment on first offsets.
 (
(a)
(b)
)
Figure 1 Optimization method and result on a base matrix
The code with a H matrix after elementary transformation of columns will show no difference in performance compared to the one with the H matrix originally designed. Furthermore, this method is pervasive for all QC-LDPC codes.
[image:]
Figure 2: Shift Coefficient Table for Z=512 of the proposed LDPC base matrix with quasi-row orthogonality
As shown in Figure 2, the base matrix proposed in [4] contains a special dual diagonal structure. This structure will not be changed under this optimization method.
Figure 3 gives the result of the base matrix above after optimized on the first offset rows. As you can see, the dual diagonal structure remains the same as the origin.
[image:]
Figure 3 The first-offsets-optimized Shift Coefficient Table for Z=512
Observation 1: Setting the offset in the first row into zero will help drop one clock cycle on shifting process. With this optimization method adopted, nb clock cycles will be saved in one iteration under a block parallelism decoder structure.
Observation 2: This optimization adjustment method on QC-LDPC code’s H matrix will show no difference in performance and completely pervasive for all QC-LDPC codes.
Observation 3: This optimization adjustment method on QC-LDPC code’s H matrix will show no influence on the dual diagonal structure.
1.3 Data conflict in layered decoding
In layered decoding of LDPC codes, LLRs are updated layer by layer, i.e., the LLR of current layer is updated by that of previous layers. The situation that the LLRs used by current layer does not receive the output from previous layers yet is called data conflict. When pipeline structure is applied to the decoder, adjacent CPMs in H matrix will cause waiting time for the new updated LLRs by introducing extra clock cycles to avoid data conflict.
Layered decoding can be realized by inner-layer parallelism structure or inter-layer parallelism structure. The inner-layer parallelism structure demands a comparatively sparse basic matrix. It assumes that it would take clock cycles for a CN to accumulate updated LLRs, which leads to latency clock cycles for a layer waiting for a previous layer that has a distance of above it outputting updated LLRs. As a consequence, a sparser base matrix will result in less decoding latency while the decoder is based on this structure. However, some well designed base matrices contain tightly overlapped CPMs, which provide rare space for matrix optimization on raising the distance . Regardless of the CPMs’ position in basic matrix, an adjustment method focusing on the offsets of inter-layer parallelism structure is proposed and introduced below.
1.4 Optimization on adjacent offsets
When applying inter-layer parallelism structure, mb rows are selected from each layer to compose a group and participate in CN updating at the same time. Extra latency clock cycles are still needed to avoid data conflict in particular cases when CN requires time to compute the updated LLRs. The optimization method is to keep the difference between the two offsets of adjacent CPMs in the same column block more than , where is their distance. As a consequence, data conflict is avoided and latency clock cycles saved [3].
Figure 4 shows an example of optimization on adjacent offset. The elements in a base matrix are given by . There are two elements and , where and , and . We find a circulant shift size for layer to ensure . This step will save latency clock cycles.
 (
(a)
(b)
)
Figure 4： Optimization method and result on a base matrix
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Only elementary transformation of rows is required to meet the demand with no performance loss. Furthermore, this method is pervasive for all QC-LDPC codes.
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]This optimization can be applied on the matrix shown in Figure 2. Figure 5 shows the base matrix in figure 3 with the adjacent offset pairs to be optimized being marked on it.
[image:]
Figure 5: Shift Coefficient Table for Z=512 of the proposed LDPC base matrix with quasi-row orthogonality
It is obvious that in all non-orthogonal cases, the optimization on adjacent offsets is effective in reducing decoding clock delay. Especially in middle or high code rate cases, it is difficult to construct an absolute orthogonal base matrix. This method will be apparently efficient as it shows aforementioned. In some low code rate cases, there will be overlapped CPMs. The optimization method can be still effective when applied on the adjacent offsets which have narrow distances.
Observation 4: If two CPMs have the distance and the difference between their offsets less than , the optimal offset adjustment will save latency clock cycles when CN requires clock cycles to accumulate updated LLRs.
Observation 5: This optimization adjustment method on QC-LDPC code’s H matrix will show no performance degradation and completely pervasive for all QC-LDPC codes.
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Observation 6: This optimization adjustment method is effective on non-orthogonal rows of base matrix of LDPC codes.
Conclusion
The above discussion is summarized with following observations and proposals:
Observation 1: Setting the first offset into zero will help drop one clock cycle on shifting process. With this optimization method adopted, nb clock cycles will be saved in one iteration under a block parallelism decoder structure.
Observation 2: This optimization adjustment method on QC-LDPC code’s H matrix will show no difference in performance and completely pervasive for all QC-LDPC codes.
Observation 3: This optimization adjustment method on QC-LDPC code’s H matrix will show no influence on the dual diagonal structure.
Observation 4: If two CPMs have the distance , and the difference between their offsets less than , the optimal offset adjustment will save latency clock cycles when CN requires clock cycles to accumulate updated LLRs.
Observation 5: This optimization adjustment method on QC-LDPC code’s H matrix will show no performance degradation and completely pervasive for all QC-LDPC codes.
[bookmark: _GoBack]Observation 6: This optimization adjustment method is effective on non-orthogonal rows of base matrix of LDPC codes.
Proposal 1: In a well-designed QC-LDPC code’s H matrix, the first offsets can be set to zero by matrix transformation, introducing no performance loss of the code. This method helps cut clock cycles and is completely pervasive for all QC-LDPC codes.
Proposal 2: In a well designed LDPC code’s basic matrix, the difference of the adjacent offsets can be raised by elementary transformation of rows with no performance loss. This method helps to cut clock cycles and is completely pervasive to all QC-LDPC codes.
References
[1] 3GPP RAN1#85 chairman notes.
[2] 3GPP RAN1#88 chairman notes.
[3] “Offset optimization on base matrices of QC-LDPC codes”. Q. Huang and X. Zhang.
[bookmark: _Ref474189011][4] R1-1702733, “Compact QC-LDPC design”, Mediatek.

image3.emf

image4.png
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

17

16

S 10 11 12 13 14 15

8

o 2] e[z6s] s8] 12| 10| 5] 220] ase| s1¢ a7a] | e2] 224]

EEE R RN NN E R R

o AR EEEEE R EEEEE R

o =R EEEEEEEE R EEEEE R

oA EEEEE R EEEEE R

Sl AR EEEEE R EE R

SRR E R E R EE R

SRR E R E R EE R

SRR E R EEEEEEEEE R

SRR E R EEEEE R EE R

SRR E R

SRR EEEEEEEEE R

SRR EEEEEEEEE R

SRR EEEEE R EE R

SRR E R EEEEE R

SRR E R E R

SRR AR E R

A EEEEEEEEEEE R R E R

SRR EEEEEEEE R R E R
S EEEEEEEEEEE R E R
SRR EEEEEEEE R E R
SRR EEEEEEEE R E R E R
SRR EEEEEEEE R R
SR EEEEEEEE R EE R E R
SRR EE R R
SRR EEEEEEEE R E R R
SRR EEEEEEEE R EEEEE R
SRR EEEEE R

wel AR

AR EEEEE R E R
SRR EEEEEEEEEEE AR
SRR EEEEEEEE R EEEEE R
SRR EEEEEEEEE R

q

9
B
B
B
B
B
B
B
B

B
B

B
B

s AR R E R

B
B
B
B

B
B

B
B
B

sl AR E R E R R]

B

B
B

q
1
9

B

B

B
B

1|

B

1|1}

B

1]

1[2es)

B
B

[es)

i

B

1[5

1[54]

B

11| =]

B
B
B

1 [[20s|

B

1| e

[T

B

B

B

B

1[2ss]

1| os[7y

B
B

B

B

B

B

i[es7]73]

BETED

B

B

1| o]

1 [2e]

B

12|

B

B

B
B

B

B

BT

B

B
B

1[as]se]

~1[0q}

B
B

1 [[2es]

B
B
B

B

B

B

B

B
B

9
B
B
B
B

B

B

BED

B

B

B

B

B

B

B
B

B

1]

1o

B

1l 7

B

1]

-1 [[2ss)

B

I FEE
[2z

B

1[5

B
B

1|2

B
B
B

1| es)

B

B

B

B

B

B

B
B
B
B
B

B
B

B
B

1)

B

B

B
B

B

1[=]

B

B

B

B

B

B

B

6| 66| s55| 76 35| 271] 132 284] 20| 232 29|

1[esa]

1]

BED

B

1[si]

B

1[5

B
B

B

B

B

BET

B
B

1 [as)

B

1 [e0]

B
B

B
B

BET

B

B

B

B

B

EE

1| 206 5]

B

1[2ss)
B
B
B

B

B
B

B
B

B

B

1]

B

1 [50d]

B
B

B
B

B
B

1 [259]

B
B

B
B

B
B

B
B

-1|[a08]

[1e6[o[259]

-1}

1[50}

B

1 [[s01]

B

B

B

1[112]207]

B

B

B

1[feed]

1| 256 122] 08| s07[21| 7] 280] 287 237] 15| 108| 210] 256] s7] 215}

1[5 59|

1[[250] 4]

1]

1[5}

1[200]

1| 121] 505 24|

-1}

BN

E

5[33¢[203}

<[az3[ere 79|

5|20

7|2
E

EEnET
10[20]

11[so 20|

1

15[
1

15[a73 &

17[387] o}

1

1o[123

20[]

21 e[2a1}

2
23

2415

25 239[253}
25[237]

27| o]

2

2s[509]

3o[178] 7]

31 79|

33|

image5.tiff
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
e e e e e e e Y e e Y e e e e Y e e e Y Y Y e Y e Y e e Y e

9 10 11 12 13 14 15 16 17

8

0]

0 -1)-1

01

0 -1)-1]-1

O -1)-1)-1]-1]-1

0 -1)-1)-1]-1

O -1)-1)-1]-1]-1]-1

O -1 -1 -1]-1]-1]-1]-1

O -1 -1 -1 -1 -1)-1)-1)-1] -1

O -1 -1 -1 -1)-1)-1)-1] -1

O -1 -1 -1 -1 -1 -1 -1)-1)-1] -1

O -1 -1 -1 -1 -1 -1 -1 -1)-1)-1] -1

L) e I Y I I I I I I

L) e Y Y I I I I U

1) Y I I I I I U

L) e Y I I I I I U S

L) Y I I I I I I U

L) Y I I I I I U

L) I I B I I I I

1) I B I I I I U

L) B I I I I I U

L) I I I I I I U

L) I I I B I I I U

L) e B I I I I I U

1) e I I I I I I I Y

L) e I B I I I I I U

L) e I I I I I I U

L) e I I I I I I I I

L) e I I I I I I I I

1) I I I I I I

L) e I I I I I B I I U

L) I I

L) e I I I I I B I I I U

-1

11

| e

| e e e

i e e e e

| e e e e e

| e | Y B e e

| i | e e B B e

| | B e e e e e e

| e e e e e e e Y e

e e e e e e e Y e

e e e e e e e e Y e Y

i e e e e e e Y e Y Y e

i e e e e e e e Y e Y Y Y e e

i i B e B e e Y Y e Y Y Y e Y e

e B e e e e e Y e Y Y Y e e e

e e e e e e e e e e e e e e e e

R R R R R R e e e e e e e e e e

e e e e Y e Y Y e Y Y e e e e Y e e e

R R R R R R R e e e e e e e e e e =

e e e e e e B Y e e Y Y e e e Y e Y e Y e

e e e e e e B B e e Y e e e e Y e e e e Y

i e e Y e e Y Y Y e Y Y Y e e e Y e e e Y Y e e

e e e e B e B Y e Y Y e e e e Y e e Y Y e e e e

e I I I I I I I I

R R R R R R R R R R R R R R R R e e R e e e e e e =

iR R R R R R R R R R R R R R R R R R R e e e e e e e =

RiRERR R R R R R R R R R R R R R R R R R e e e e e e e = =

RRRRRRRERR R R R R R R R R R R R R R R R R R e e e = =

0)

0)
-1
-1
-1
-1
-1
-1
-1
-1

-1
-1

-1
-1

—1{405) 1) 1) 1) -1 1) -1 1) -1 -1 1] -1] 1] -1

-1
-1
-1
-1

-1
-1

-1
-1
-1

Ll I I I I I I I I I

-1

85

-1
-1

0)
1
0)

1

-1

1
-1

—1[436)

1
-1

—1f221]

68|

1
1

42]

—1[495]

1

—1{235]

-1
-1

-1

1
1

—1{379]
—1{342]

-1

-1 112] 40

-1
-1
-1

—1{ 109]

-1
-1
-1
-1

1
-1
-1
-1

-1

-1
-1

93] 3344

-1
-1

0] 306

63

—1[356) 123

-1
-1

-1
-1

-1
-1
-1
-1
-1

-1

—1]202) 472

-1

-1

12) 177] 472|

-1

—1{377]

-1

—1{296]
—1{ 160]

-1

-1

-1

-1

-1

-1

—1[383) 434

—1{ 259

-1
-1

—1[413]
-1
-1
-1

—1[448]

—1{248]

-1

-1

—1{255]

-1

-1
-1

-1
-1
-1
-1
-1
-1

-1

—1{294]

-1

-1

-1

-1

-1

1

—1{491]

-1

-1
-1

—1{205]

-1

-1

—1]322]

63

—1{264]
—1{337]

-1

-1
-1

-1

—1{226]

-1
-1

—1{309] 431

-1
-1
-1

—1{218]

-1

—1{209) 314f

-1

28

—1{263]

-1

-1

-1

—1[486

-1
-1

-1

-1[258) 132

-1
-1
-1
-1
-1
32
-1
-1
-1

-1
-1

—1{207]

-1

-1

2| 372 29| 123 394) 451 326

-1
-1
-1

-1
-1
-1

-1
-1

-1

—1{131]

-1

-1

—1{ 143]

8|

—1{440]

-1

—1{387]

-1

—1{203]
—1{331]

-1

1

—1[416]

-1

—1f127]

-1

-1

-1

13|

1
94 458
—1{298]

-1
-1

—1[433]
-1
-1

22

—1{373]

—1{480]

-1

-1

—1{490]

—1f 124]

-1

-1

—1{225]

-1
-1
-1
-1
-1
-1

64]

-1

—1{271]

-1
-1
-1
-1
-1
-1
-1
-1

61

-1
-1

0)
-1
-1

-1

-1

-1
10|

-1

32

-1
-1
-1

38
-1
-1
-1
-1
-1

-1
-1
-1

-1
-1

-1

-1

—1{ 170]

—1[464]

-1

-1

-1

-1

—1[442]

-1

76[36|

-1

—1[155) 169

-1

-1

—1[111) 185[270| 293| 407|

—1[268) 402

—1{205) 399

—1{369]

—1326]

—1[157]

-1

—1{376]

—1{203) 162
—1{256]

1{237) 471 229) 340 278) 508 21) 447 330| 233[510) 475[200] 51

2|

3 147 158]
4] 176/ 433|
5] 466

6] 490 61
7] 481
8|

9] 254/ 389
10] 466

11] 355 172]

12|

13| 191

14]

15| 226| 42
16) 289

17] 140[50|

18]

19) 388
20[201

21[324) 246

22
23

24 380)

25[52| 248
26 502|
27(334]

28

29[62

30[444] 25

32
33

image6.png
i,

image7.png
i

i+fj

image8.tiff
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

9 10 11 12 13 14 15 16 17

8

T TTTTTT-T-TT-T-TT-TT-T-TT-T-T-T-T-T-T-T-T-T-T-T-T-T-1-T=
i il Bl il i il Kl sl sl i i i Kl Kl sl sl i i il Kl Kl Bl Bl Kl Kl Kl Kl il il il il il
=== === == ===~ == =TT~ = === == =2 =
T[T T T T T T T T T T T T T T T LT T
=== ===~ == =TT~ == ===~ = = === ===
T T T T T T T T T T T T T T T
=== === == =TT~ == ==~~~ = ===~ ==
T[T T T T T T T T T T T T T T T T T T
=== === == =TT~ == ===~ = = === = [~ ==
T T T T T T T T T T T[T
=== ===~ == =TT~~~ ===~ = = === == ==
T[T T T T T T T T T T T L T T[T
=== ===~ == ===~~~ ===~ = ==~ == ===
il A Bl il i il Al il il i i i Kl Kl sl sl Kl i i Kl il sl il il il Kl T T[T
=== ===~ === =TT~ == ===~ = == == ===
T[T T T T T T T T T T[T T
=== === =TT~ == ===~ == ===~ == === ===
T[T T T T T T T T T T T T T T T[T
=== ===~ == =TT~ == =TT~~~ == === ==
T T T T T T T T T T T T T[T T
=== ===~ == =TT~~~ === = === === ===
T[T T T T T T T T T T T T T T[T
=== ===~ == =TT~~~ =TT~ [~ === === ===
T T T T T T LT T T T T
=== ===~ == =TT~~~ ===~ = == === ===
T[T T T T T T T LT T T[T T T T T LT
=== ===~ == === === =T~ ==~ === === ===
i il il il i il Bl sl sl K i i Kl il sl sl i i Kl T T T LT
=== ===~ == ===~ === =~ = === === ===
T T T T T T T L T[T
=== ===~ === =TT~~~ =TT~ == === ===
T[T T T T T T T T LT T T T T
=== ===~ == =TT~ =TT~ = === === ===
T[T T T T T T T LT T[T T T T
=== === === = = ===~ = === === ===
T T T T T T T T T T T T T T T T T
=== ===~ == =TT~ == =TT~ = === === ===
T T T T T LT T T[T T T T T L
=== ===~ == ===~ == ===~ = === === ===
T[T T T T T[T T T T T T T T T
=== ===~ ===~ === = ===~ = = === == ===
T T[T T i il il il il il Kl ol il il il il Kl el el el il il il
=== ===~ ===~ == ===~ = === == ===
T[T T T T T T T T T T T T LT
=== ===~ == =TT~ == ===~ === == ===
T T[T T T T T T T T T T T T L
=== === = =TT~ == ===~ = === == ===
T T[T T T T T T T T T T T T T T T
=== ===~ ===~ == ===~ = === === ===
T T[T T T T T T[T T T T T T T T T T T T T
=== ===~ == =TT~ == ===~ = = === == ===
T T[T T T T T[T T T T T T T T T T T
=== == ===~~~ =TT~ == ===~ = === === ===
T[T T T[T T T T T T T T T T T LT
=== ===~~~ =TT~ == ===~ = = === === ==
T T[T i il il il i i i il sl sl i i i Kl Kl sl sl K il il il sl il il il el
=== == === ===~ == ===~ = = === == ===
T T T gl il il il il i i il il il i i i Kl il sl Bl Kl Kl K il il il il il il il
===~ === == ===~ = === == ===
T T[T T T T T T T T T T T T T L
=== =TT~ == =TT~ == ===~ = = === == ===
T T T T[T T T T T T T T T T L
= === === ===~ = ==~ =EE = =~
0 T T T T T T T T T T T T T TR T T T
g 8
hobcoobEEdoEdEEE EEnE EE dobeEE s
ol & < &
SO NEFARERREREERERRERREERRRREREREERRR
TR TS TIE T T T T TR T TS T T TS T T T
HENEINE g 5 8
Sela[===—=Te[== ===~ === ===~ == [~ == e = =2 = ==
SIS T[T T T T T T T T T T T
3% = 8
e~ EEEFEEE TR T = T = T T T = = = = = =
T £5=1 et =1 <1 =1 Al et =4 et e 1--1 £=1 A et Al At At Al A s et el et At Al <1l el et At B
EREEE =]
SHERERRERREREERRREREERRERERRERRRRRRERER
HEDDnENEEE dnEE o E i nbbobbaEaEE
B |s < 3 S <
SelE[= ==~~~ =TT~~~ ==~~~ T~ === === ===
SIS T T[T T TR T T T T T
8|8 &
SEFRERRRRRERERRR R REERRRRREREEERRRRERERERE
Sla| T T[T T T T T TR T T T TS
S| < < & 8
NEEFRERRECSRREERRRERRERERERRERRERRR R
HiobERERE S E nE Db EaE Db E Nk
8 2R R[E = = B 8
FEREEEREARREEREERRRREEREERERRRREREREREREERE
HE R EERERRENE DR E Db EbbnbE bk
g2 8|2 =& & g
Sela[= ===~~~ ==~ T=TB === =TT~ e === ===
SIK| TR T[T T T T T TS T T T T]
2 & 8
SIES[= ===~ === = TE= === ===l = e =TS = = = e
SIS TS T T T T T T T]
I\ = & = 3
S DEEERREEERRRREERRRRRRRERRR AR AR
SabE SRR EE o E R EEREdbbEbnnbnk T T T[T
e 8|3 < g
CERRRREEERRRERREEERERERERER R
HE b EEESnE R ERE DR ENE DB EaaE
3|2 <& <] = 8
OEHERERERREEFRRR N REERRREERRERRRRRREERE
HE DN ERE N EaE NDbE Bk T T[T TS T
S| & & =
HE b EddbbdnobbEEdoSEEE dbdaabE
3|8 = =
SREREEEREEREREEEREREERERRREEREREERRRREREEE
HEBEENEERENEE DD EEnE DB ERBE DbbEBEER
8|2 < g & 3 & g
SREEEREREEEEEREEREEERREEERERRERERER
s|2|8|12| 73| T8[B| TIEIS| IS TB|E T TIR[E(E] TR T TS TS| TIS]E
e HENEENE 8 NE S 5 8|8
EEREEEEEEREEEEREREEEREEEEREREEREEREEERER
e R B = s Y e s e = S S B L e S e L S
S| EISIEIER U SI12)9] 3] R[S F]] B]8]E 3| B[8 IS
BEEEEEEEEEEEEENEEEEERERENEEREREERER
SCARNEER22RSINIIRLNRIB=IS

image1.emf
1 1

1 1

1 1 1

1 1

1 1

image2.emf

