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Introduction
[bookmark: OLE_LINK60][bookmark: OLE_LINK61]At the 3GPP TSG RAN1 #88 meeting, the following agreement and working assumption have been achieved [1].
Agreement: 
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {FFS near 8192, 320}
· Number of base graphs for eMBB is FFS between 1 and 2
· Evaluate the potential gains from 2 base-graphs compared to a single base-graph until RAN1#88bis
Conclusion for some code design target:
· At least support 20Gbps decoder information throughput with code rate 8/9
· Also aim for good throughput performance at lower code rate(s)
· FFS the details of how to assess throughput performance at lower code rates, including whether the assessment is relative or absolute, and other constraints (e.g. complexity)
In this contribution, we discuss the impacts of flexibility of LDPC codes on implementation and performance. 
Parallelism-friendly lift size design
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK4] “Friendly” here means decoder implementation should have the freedom to select any applicable parallelism, such as 8, 16, 32, 64, …, 512. The decoder’s maximum parallelism level need not match the size of circular permutation matrix. A parallelism-friendly decoder doesn’t report its max parallelism level to the encoder. 
LTE Turbo code is an example of parallelism friendly design where QPP interleaver is introduced for memory contention free. The complexity of the QPP interleaver depends on parallelism level of decoder. QPP interleaver with a larger max parallelism is more complex, but the latency is lower. LTE Turbo code supports parallelism level of 8, 16, 32 and 64. 
For QC-LDPC code, a large cyclic shift permutation can be decomposed into several smaller cyclic shift permutations only if the lift size is divisible by the decoder’s parallelism. If a decoder’s max parallelism is 8, when using QSN switch for its shift network, it can process codewords with lift size {1x, 2x, 3x, …, 8x}, where x could be any positive integer. For example, the decoder can deal with a lift size 12 by parallelism 6, at the expense of about 2 times latency. However, codewords with prime lift size cannot be supported by this decoder because the prime number size cyclic shift permutation cannot be divided into several smaller ones. 
There is a proposal to adopt LDPC lift size with granularity of 1, which is Z = 1, 2, 3, 4, 5... Zmax. However, this has a big impact on implementation where decoders equipped in UEs or eNBs have to use a large QSN switch of Zmax inputs without considering their parallelism requirement. This may result in wasting of hardware that a complex shift network has to be used for an extremely low parallelism level. It is clear that this design is not implementation friendly. Furthermore, this fine granularity lift size design does not guarantee a better performance as shown in our companion contribution [7].
For example, for a matrix design with kbmax = 16 and Zmax = 512, if shift network is realized by QSN switch, the complexity of a shift network is listed in Table 1 in terms of parallelism. The complexity is counted by the number of 2-1 MUXs. One QSN switch contains log2(PM)+1 stages and PM*(2*log2(PM)-1)+1≈2* PM*log2(PM) “2-1 MUX” per bit width, where PM denotes the maximum parallelism level.
Table 1 QSN shift network complexity comparison @ kbmax = 16 and Zmax = 512
	parallelism
	The QSN network complexity for lift size with granularity of 1 
	Complexity of QSN Networks with matched parallelism
	Former: Latter

	8
	2*512*log2(512) = 9216
	2*8*log2(8) = 48
	192 : 1

	16
	2*512*log2(512) = 9216
	2*16*log2(16) = 128
	72  : 1

	32
	2*512*log2(512) = 9216
	2*32*log2(32) = 320
	28.8 : 1

	64
	2*512*log2(512) = 9216
	2*64*log2(64) = 768
	12  : 1

	128
	2*512*log2(512) = 9216
	2*128*log2(128) =  1792
	5.14 : 1

	256
	2*512*log2(512) = 9216
	2*256*log2(256) =  4096
	2.25 : 1

	512
	2*512*log2(512) = 9216
	2*512*log2(512) =  9216
	1 : 1


For a base graph design with kbmax = 32 and Zmax = 256, if shift network is realized by QSN switch, the complexity of a cyclic shift network is listed in Table 2. The complexity is counted by the number of 2-1 MUXs.
Table 2 QSN shift network complexity comparison @ kbmax = 32 and Zmax = 256
	parallelism
	The QSN network complexity of the 1-bit step lift size design
	Complexity of QSN Networks with Matched Parallelism
	Former: Latter

	8
	2*256*log2(256) = 4096
	2*8*log2(8) = 48
	85.33 : 1

	16
	2*256*log2(256) = 4096
	2*16*log2(16) = 128
	32:1

	32
	2*256*log2(256) = 4096
	2*32*log2(32) = 320
	12.8:1

	64
	2*256*log2(256) = 4096
	2*64*log2(64) = 768
	5.33:1

	128
	2*256*log2(256) = 4096
	2*128*log2(128) =  1792
	2.28:1

	256
	2*256*log2(256) = 4096
	2*256*log2(256) =  4096
	1:1


Parallelism friendly is important for cost performance trade-off. Some decoder implementation may weight cost than throughput. Therefore they are unlikely to have a very large max parallelism level. We think NR LDPC’s lift size should be parallelism friendly designed.
Observation 1: Lift size with granularity of 1 is not implementation friendly, because decoders have to use a large QSN switch of Zmax inputs without considering their parallelism requirement. This may result in low efficiency in hardware implementation.
Proposal 1: NR LDPC’s lift size should be parallelism friendly design; therefore lift size with granularity of 1 should not be adopted by NR LDPC.

Let’s look at the following 2 lift factor designs:
· Case 1: {1:1:8, 8:1:16, 16:2:32, 32:4:64, 64:8:128, 128:16:256, 256:32:512 }
· Case 2: {2:1:8, 8:2:16, 16:4:32, 32:8:64, 64:16:128, 128:32:256, 256:64:512}
For Case 1, a parallelism-friendly decoder needs a QSN switch with 16 inputs. For Case 2, decoder only needs to utilize an 8 inputs QSN switch. The shift network’s complexity of Case 1 is about 2.6 times that of Case 2. Similarly, the number of CNUs of Case 1 is 2 times that of Case 2. Obviously, Case 2 is more appropriate for cost-sensitive devices.
From the perspective of parallelism friendly decoder, we also see the benefits of compact base graph. Because the lift factor of compact base graph is larger comparing to those big base graphs, the latency can be lower. This is good for devices targeting on higher throughput. On the other hand, if the devices are more concerned about the complexity, it can use a low parallelism decoder. Therefore, large lift size does not necessarily lead to high complexity of the decoder, on the contrary, it means better hardware scalability and the ability to achieve higher throughput. In fact, the compact base graph with kbmax=16, can be easily transferred into a larger base paragraph with kbmax=32 by circle shift decomposition introduced in [2]. The max lift size is also changed from 512 to 256 when doing so.
Observation 2: Large lift size does not necessarily lead to high complexity of the decoder, on the contrary it means better hardware scalability and the ability to achieve higher throughput.

Consideration on lift size granularity 
We have proposed to adopt LDPC lift sizes in the form of z = c * 2d. With this design, decoders of parallelism 8, 16, 32, 64, 128, 256 or 512 can deal with all the lift sizes of z = c * 2d by a QSN switch with corresponding number of inputs. Obviously, this design matches the decoder’s different parallelism requirement. Therefore it is parallelism friendly, similar as LTE turbo code.
The main benefits of this form are list as:
(1) with respect to 2d form lift factor design, it can provide enough fine granularity to guarantee performance; and
(2) it allows low cost decoders with simple 2j inputs Banyan network, where j≤d; and
(3) hybrid QSN+Banyan switches can be used to further reduce the complexity of the shift network compared to using QSN switch only. In this hybrid shift network, QSN is responsible for the cyclic shift among words and Banyan is responsible for the cyclic shift within the word.
Because the QSN is more complex than Banyan, the value of c should not be too large, we recommend c not more than 8, such as c could be selected from a subset of {1, 2, 3, 4, 5, 6 ,7,8}, or c∈{4, 5, 6 ,7} as recommended in [4]. 
Table 3 shows the complexity comparison of shift network composed by QSN only and QSN+Banyan switches in terms of parallelism level. The complexity is counted by the number of 2-1 MUXs.  One Banyan switch contains log2(PM)  stages and PM* log2(PM) “2-1 MUX” per bit width, where PM denotes the maximum parallelism level.
Table 3 comparison of shift network’s complexity composed by QSN only and QSN+Banyan switches
	Parallelism
	Pure QSN
	Hybrid QSN+Banyan
	Complexity reduction ratio

	8
	48
	48
	0

	16
	128
	2*[2*8*log2(8)] + 8*[2*log2(2)] = 112
	12.5%

	32
	320
	4*[2*8*log2(8)] + 8*[4*log2(4) ] = 256
	20%

	64
	768
	8*[2*8*log2(8)] + 8*[8*log2(8)] = 576
	25%

	128
	1792
	16*[2*8*log2(8)] + 8*[16*log2(16)] = 1280
	28.6%

	256
	4096
	32*[2*8*log2(8)] + 8*[32*log2(32)] = 2816
	31.25%

	512
	9216
	64*[2*8*log2(8)] + 8*[64*log2(64)] = 6144
	33.33%


Observation 3: Lift factors with the form of c*2d is parallelism and implementation friendly design.
Proposal 2: It is suggested that the lift size of NR LDPC has the form of c*2d, where c is a positive integer and taken from a subset of set C={1,2,3,4,5,6,7,8}; d is a none negative integer and taken from a subset of the set D={0,1,2,3,4,5,6,7,8}.
Flexibility of code block size
According to LTE standard of TS36.213, for LTE turbo codes, code block size (CBS, namely information block size) gaps between two adjacent CBS include 8, 16, 32 and 64. Here the CBS refers to the number of bits for the code block, which is denoted as the parameter “Kr” in section 5.1.2 of [5].
For the smallest CBS range, CBS gap between two adjacent CBS is 8. For the largest CBS scope, CBS gap is 64. According to the contributions related to QPP interleaver, it is known that the CBS gap is related to the supported parallelism of turbo decoder. That is to say, the parallelism of LTE turbo decoder is 8, 16, 32 and 64. 
It is believed that LTE CBS granularity is enough for NR eMBB. So it is preferred that CBS gap of NR channel coding should be 8, 16, 32 and 64.
Proposal 3: It is preferred that CBS gap of NR eMBB data channel coding should be 8, 16, 32 and 64.
A good designed LDPC base graph can have sufficient shortening capability through density evolution and EXIT chart [6]. Here the ‘shortening capability’ means that with padding, the performance will not degrade as kb changes within a certain rang. For this reason, some companies have defined two parameters as kbmax and kbmin to describe the shortening ability. 
For example, for a compact base graph with kbmax = 16 and Zmax = 512, c can take values from {4,5,6,7,8} and d can take values from {1,2,3,4,5,6}. Let’s assume that kbmin = 13, which means that CBS can increase from  kbmin *z =13*z to kbmax *z=16*z with 1 bit step, where each shift size z can be calculated by each pair of c and d by the formula z=c*2d.  As a result, the base graph can almost support any CBS (information bit size with 1 bit granularity), that is to say, it can support almost full flexibility. Let’s assume that  all supported CBS can be denoted by K(i) in ascend order, where i is the index of CBS .The following Figure 1 shows the CBS gap ratios along with the code block sizes. The CBS gap ratio is defined by (K (i + 1) -K (i )) / K (i + 1), where i is the index of the code block size. For detailed information, please refer to [3]. According to Figure 1, the CBS gap ratio does not exceed 2%, which is very small. With this design, the total padding ratios can be limited to no more than 20%.
[image: 3]
Figure 1 CB gap ratio for compact base graph with kbmax = 16 and Zmax = 512
For a base graph with kbmax = 16 and Zmax = 512, full-flexibility can be supported by allowing shortening a bit more than 3 columns to support CBS with 1-bit granularity, which means that the optimal performance can be maintained in this shorting range. Therefore, both lift size z = c * 2d and shortening encoding (padding operation) are used for 1 bit granularity of code block size of LDPC codes. In order to adapt to the forward compatibility, NR LDPC code should have capability of full flexibility of code size, but for the design of TBS table LTE TBS granularity could be continue to be used.
Observation 4: Full flexibility of code size for LDPC can be achieved by combining the variable lift size as z = c*2d and shortening.
Proposal 4: In order to adapt to forward compatibility, NR LDPC code should have full flexibility of code size. And Full flexibility of code size can be achieved by combining variable lift size as z = c*2d and shortening of no more than 20% overhead.
Figure 2 and Figure 3 show the performance of CBS granularity at BLER=0.01 and BLER=0.001 for the base matrix design of kbmax=16 in [3] respectively. Table 4 and Table 5 list the simulation parameters.
Table 4 Simulation parameters @ BLER = 0.01
	Channel
	AWGN

	Modulation
	QPSK

	Coding Scheme
	[3]

	Code rate 
	1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

	Decoding algorithm**
	flooding BP
Max Iteration =50 

	Lift size
	4   6   8  10  12  14  16  20  24  28  32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512

	Info. block length (bits w/o CRC)
	100:4:4000
4016:16:6000
6032:32:8000



[image: ]
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Figure 2 Performance check of code block size granularity @ BLER=0.01
Table 5 Simulation parameters @ BLER = 0.001
	Channel
	AWGN

	Modulation
	QPSK

	Coding Scheme
	[3]

	Code rate 
	1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

	Decoding algorithm**
	flooding BP
Max Iteration =50 

	Lift size
	4   6   8  10  12  14  16  20  24  28  32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512

	Info. block length (bits w/o CRC)
	96:16:256,
288:32:512,
576:64:1024
1152:128:2048,
2304:256:4096
4608:512:8192


[image: 1]
Figure 3 Performance check of code block size granularity @ BLER=0.01

Conclusion
For flexible LDPC design, we have the following observations and proposal:
Observation 1: Lift size with granularity of 1 is not implementation friendly, because decoders have to use a large QSN switch of Zmax inputs without considering their parallelism requirement. This may result in wasting of hardware.
Observation 2: Large lift size does not necessarily lead to high complexity of the decoder, on the contrary it means better hardware scalability and the ability to achieve higher throughput.
Observation 3: Lift factors with the form of c*2d is parallelism and implementation friendly design.
Observation 4: Full flexibility of code size for LDPC can be achieved by combining the variable lift size as z = c*2^d and shortening.
Proposal 1: NR LDPC’s lift size should be parallelism friendly design; therefore lift size of with granularity of 1should not be adopted by NR LDPC.
Proposal 2: It is suggested that the lift size of NR LDPC has the form of c*2d, where c is a positive integer and taken from a subset of set C={1,2,3,4,5,6,7,8}; d is a none negative integer and taken from a subset of the set D={0,1,2,3,4,5,6,7,8}.
Proposal 3: It is preferred that CBS gap of NR eMBB data channel coding should be 8, 16, 32, 64.
Proposal 4: In order to adapt to forward compatibility, NR LDPC code should have full flexibility of code size. And Full flexibility of code size can be achieved by combining variable lift size as z = c*2d and shortening of no more than 20% overhead.
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Appendix:
Cyclic permutation decomposition: 




Supposing  denotes a vector of z entries and z is divisible by q. X is divided into q sub-vectors as   where each group u(k)  has  entries, where .  




Supposing  denotes the cyclic-right permutation of X, i.e. , where P is a base cyclic permutation matrix with size of z*z, z is lift factor, and s is the shift value.  Y can be divided into q sub-vectors as , where. 




Let , and , therefore u(k) can be denoted as cyclic-right permutation of v(k) by  or , as:

, where Q is a base cyclic permutation matrix of size q*q.
One thing need to be aware is that if z is not divisible by q, this cyclic permutation decomposition can’t be performed.



[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Here is an example. Let Y=[x29,x30,…x41,x0,x1,…x26,x27,x28] denote a cycle-right shift by for a data vector X=[x0,x1,x2,…,x41], where both X and Y are with size . This cyclic permutation can be realized as first dividing X into 3 words (or sub-vectors) u(0), u(1),u(2) by equal space sampling, each word has length of, as shown in Figure A1 (a). Then three cycle-right shift inside each word and a cycle-right shift among the 3 words are performed to get sub-vector v(0), v(1) and v(2). Finally, Y, the cycle-right shift version of X are obtained by interlace of v(0), v(1) and v(2), as shown in Figure A1 (b).


(a) Vector X is divided into 3 words u(k), k=0,1,2


(b) cycle-right permutation in each word and cycle-right permutation among 3 words
Figure A1 illustration of cyclic permutation decomposition
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