3GPP TSG RAN WG1 Meeting #87	R1-1613006
Reno, USA, Nov 14 - 18, 2016

Agenda Item:	7.1.5.1
Source:	Coherent Logix Inc.
Title:	A Dynamically Configurable Multi-mode NR Decoder Implementation
Document for:	Discussion and Decision

Introduction
The strategy outlined in [1] advocates a BIG-little approach to determining an appropriate error correction coding method for low-rate, small blocks and control information vs. that adopted for large code blocks. The demand for NR low-rate applications is equally important as that for high data rate applications. Selecting a coding method or methods best suited for low-rate applications ensures maximum UE power efficiency.
In this contribution, we show the feasibility of implementing a decoder on a MiNP architecture that can be dynamically configured to meet the throughput demands of high rate coding based on LDPC as well as the low latency and power efficiency requirements of low rate coding based on Polar Codes.
Support for Multi-mode Decoding
In [2], we introduce a CA-SCL polar decoder implemented on the company’s hx3100™ processor, based on 3rd generation HyperX™ technology. The design is scalable in terms of block size (N), code rate (R), and list size (L). A sampling of the NR code configurations implemented to date is listed in Table 1.
[bookmark: _Ref466026304]Table 1: NR Low-Rate Code Block Specifications
	
(I, N, L)
	Information bit length I (Input bit length K = I + 24 bit CRC)

	
	20 (K=44)
	40 (K = 64)
	100 (K = 124)
	200 (K = 224)

	Code rate
	1/6
	(120, 128, 32)
	(240, 256, 32)
	(600, 1024, 16)
	(1200, 2048, 8)

	
	1/3
	(60, 64, 32)
	(120, 128, 32)
	(300, 512, 32)
	(600, 1024, 16)

The company has also implemented a decoder for QC-LDPC codes as specified in [3] on our platform that will serve as a representative code set in describing how one might map LDPC decoders to the same processing platform used to implement the polar decoder. A software defined decoder for TBCC and one for Turbo Codes as used in 3GPP LTE have also been implemented on the processor.

LDPC Decoding Algorithm
[image:]
[bookmark: _Ref466027592]Figure 1: LDPC Decoding Loop
The LDPC Decoding loop operating in the LLR domain is depicted in Figure 1. Let xk be the transmitted value for the kth bit (+1 or –1 corresponding to 0 or 1, respectively), and assume the transmitted values would be received in the absence of noise as +a or –a , with noise amplitude is . Then the initial likelihood ratio for the kth bit, where yk is the raw demodulator output, can be written as:

which reduces to log[exp (2ayk/2)] = yk ∙ 2a/2 for the Gaussian noise density function.
Denote the message from the kth bit node to the jth check node as Qjk and that from the jth check node back to the kth bit node be Rjk. Then the iteration proceeds as follows:
1) The kth bit node sends Qjk = Lk minus the Rjk from the check node phase of the preceding iteration (on the first iteration, Rjk will be zero) to each check node j to which it is linked.
2) The jth check node sends back to the kth bit node the value
		Rjk = k'k sign(Qjk') ∙ [∑k'k (|Qjk'|)]
	where the product and summation are over all bit nodes linked to the jth check node except the kth.
	The function (z) = –1(z) is defined for z > 0 as
		(z) = log [(ez + 1)/(ez – 1)]
3) The kth bit node receives the Rjk messages from its linked check nodes, sums them and adds the sum to the intial LLR value, yk ∙ 2a/2, yielding an updated Lk for the next iteration, which begins again from 1).
The iteration continues until one of the following conditions is met:
a) all parity checks are satisfied;
b) the loop ceases to converge;
c) the maximum number of allowed iterations has been reached.
At this point a “hard” decision is made, taking the kth code bit to be 1 or 0 according to the sign of Lk.
QC-LDPC Decoder Implementation
The codes adopted by ATSC 3.0 are related to those envisioned for NR in that their parity-check matrices can be transformed into a quasi-cyclic (QC) form by a proper row and column permutations. The parity check matrix of a QC-LDPC code consists of square submatrices comprising either the zero matrix or permutations of a base graph with dimension, e.g. L = 360 for the codes adopted by ATSC 3.0. See Figure 2.
ATSC 3.0 specifies long and short codes with frame sizes N = 64800 and 16200 bits, respectively. See Table 2. For each code length, two separate code structures have been adopted, namely irregular repeat accumulate (IRA) and multi-edge type (MET). Generally, the MET code structure has been specified for low code rates whereas IRA structures are applied for high code rates.
[bookmark: _Ref466022222]Table 2: ATSC 3.0 LDPC Code Specs
	Code Rate
	Short Codes
	Long Codes

	
	Type
	Structure
	Ncoded
	Kpayload
	Type
	Structure
	Ncoded
	Kpayload

	2/15
	A
	MET
	16200
	2160
	A
	MET
	64800
	8640

	3/15
	A
	MET
	16200
	3240
	A
	MET
	64800
	12960

	4/15
	A
	MET
	16200
	4320
	A
	MET
	64800
	17280

	5/15
	A
	MET
	16200
	5400
	A
	MET
	64800
	21600

	6/15
	B
	IRA
	16200
	6480
	B
	IRA
	64800
	25920

	7/15
	A
	MET
	16200
	7560
	B
	IRA
	64800
	30240

	8/15
	B
	IRA
	16200
	8640
	B
	IRA
	64800
	34560

	9/15
	B
	IRA
	16200
	9720
	B
	IRA
	64800
	38880

	10/15
	B
	IRA
	16200
	10800
	B
	IRA
	64800
	43200

	11/15
	B
	IRA
	16200
	11880
	B
	IRA
	64800
	47520

	12/15
	B
	IRA
	16200
	12960
	B
	IRA
	64800
	51840

	13/15
	B
	IRA
	16200
	14040
	B
	IRA
	64800
	56160

Both long and short codes have been implemented on the hx3100™ processor, based on 3rd generation HyperX™ technology. However, this contribution emphasizes the 16200-bit short codes as the long codes are considered less relevant to the 3GPP NR discussion. In the interest of brevity, we also focus attention on IRA as opposed to MET codes. The IRA codes are more relevant to high code rate description consistent with the application scenarios for which LDPC is under consideration in NR.
[image:]
[bookmark: _Ref466030082]Figure 2: Parity Check Matrix for ATSC 3.0 Type-B IRA LDPC Codes (a) original; (b) row permuted; (c) row permuted + parity interleaved (Fig. 2 from [3])
The parity check matrix of the IRA codes can be divided on a column boundary between information and the parity portions, respectively. The result is an M x N sparse matrix corresponding to a length N systematic LDPC code carrying K information bits accompanied by with an M x M parity check matrix where M = N-K. The information portion includes a q1-shift parameter, specified per code rate, where q1 = M/L and L = 360. See Figure 2.
We introduce the term layer to correspond to a grouping of rows according to the sub-block code structure, i.e. of dimension L x N. The decoder implementation leverages the observation that rows belonging to the same layer in an LDPC code matrix can be processed independently.
Conceptually the decoder is divided into Controller and multiple Workers assigned per layer as shown in Figure 3.
The Controller (or Distributor) is responsible for:
I/O: receiving input LLRs and sending out decoded bits (black routes)
Maintaining the main LLR buffer and distributing and collecting LLRs to/from Workers.
[bookmark: _GoBack]Workers receive LLRs (green routes), process them and send the updated LLR values back to Controller (red routes) along with locally storing additional intermediate results. This is a conceptual view as the controller and workers might each comprise multiple PEs. The design scales to accommodate different code rates by varying the number of layers distributed per worker in accordance with the respective CPM.
[image:]
[bookmark: _Ref466027744]Figure 3: LDPC Decoder Architecture
Decoder Considerations for Multi-mode FEC Deployment Scenarios
A software defined implementation delivered in a MiNP processor architecture benefits from inherent configurability and dynamic resource allocation. Features enabled by the architecture can be summarized as follows, in the context of QC-LDPC decoding as discussed herein as well as multi-mode code support.
Figure 4 shows a representative decoder implementation supporting ATSC 3.0 LDPC codes. Features of the design include:
· Both long and short block lengths are supported;
· A single integrated design accommodates the full range of code rates;
· The range of code rates spans IRA and MET code structures through parameter settings updated at run-time accordance to the ATSC 3.0 code specification.
· The implementation further illustrates the potential for seamless context switching similar to that shown for Polar decoding as discussed in [2].

[image:]
Figure 4: Example MiNP LDPC Decoder Implementation on the hx3100 processor
The architecture facilitates reuse of processing resources depending on the usage scenario:
· The design can reuse the same processing resources allocated for Polar or TBCC or Turbo decoding.
· Multiple designs can reside alongside one another if the use case requires parallel operation.
· This constitutes multi-mode support consistent with the BIG-little approach advocated in [1].
Conclusion
Observation-1: Implementation on an MiNP DSP architecture can meet the NR latency and throughput requirements for a variety of coding methods, e.g. LDPC, Polar.
Observation-2: MiNP DSP implementation enables dynamic resource allocation to accommodate multi-mode decoding needs in a common set of processing resources.
Observation-3: High-level programming reduces development time – from concept to hardware realization; from initial algorithm exploration through system prototyping and final product deployment to ongoing standards evolution.
Observation-4: The ability to dynamically reconfigure processing resources admits the possibility of system design to accommodate a range of evolving NR decoder architectures.
Recommendation-1: Follow the BIG-little approach indicated in [1] which advocates a separate coding method for high code rate and large block size versus that for low code rate and small block size.
References
[1] [bookmark: _Ref465145735][bookmark: _Ref466028992]R1-1610419, “UE Considerations on Coding Combination for NR Data Channels,” MediaTek Inc., 3GPP TSG RAN WG1 Meeting #86bis, Oct. 2016.
[2] [bookmark: _Ref465951447]R1-1613005, “Polar Decoder Implementation on Memory-In-Network Processor based DSP”, Coherent Logix, 3GPP TSG RAN WG1 Meeting #87, Nov. 2016.
[3] [bookmark: _Ref466021363]K. Kim, S. Myung, S. Park, J. Lee, M. Kan, Y. Shinohara, J. Shin, J. Kim, “LDPC Codes for ATSC 3.0”, IEEE Transactions on Broadcasting, Vol. 62, No. 1, Mar. 2016.
[4] R1-166370, “LDPC Rate Compatible Design”, Qualcomm Incorporated, 3GPP TSG RAN WG1 Meeting #86, Aug. 2016.
image1.emf

image2.emf
1

1

. . .

1

1

. . .

1

1

. . .

q

1

q

1

q

1

1

1

. . .

1

1

. . .

1

1

. . .

q

1

q

1

q

1

1

1

. . .

1

1

. . .

1

1

q

1

q

1

q

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

K

N

M

M

0 360 K-360

b

1,1

b

1,2

b

1,3

(a)

1

11

K

N

M

M

0 360 K-360

0

360

M-360

(b)

K

K

1

11

11

11

11

11

11

11

11

11

K

N

M

M

0 360 K-360

0

360

M-360

(c)

K

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

K+360

image3.emf
...

Input

Output

Controller Worker 0 Worker 1 Worker N-1

image4.png
work4/0

control0/1

work11/0
ntrol0/0 work10/0
) ¥ g o

