3GPP TSG RAN WG1 Meeting #87 		R1-1612585
Reno, USA 14th - 18th November 2016
Source: 	Intel
[bookmark: Title]Title:	Discussion on EMBB data channel coding for block lengths less than X
[bookmark: DocumentFor]Document for:	Decision
1. Introduction
In last RAN1 meeting, LDPC was agreed as the channel coding scheme for EMBB data at least for block size > X..
Agreement:
· The channel coding scheme for eMBB data is LDPC, at least for information block size > X
· FFS until RAN1#87 one of Polar, LDPC, Turbo is supported for information block size of eMBB data <= X
· The selection will focus on all categories of observation, including overall implementation complexity, regardless of the number of coding schemes in the resulting solution (except if other factors are generally roughly equal)
· The value of X is FFS until RAN1#87, 128 <= X <= 1024 bits, taking complexity into account
· The channel coding scheme(s) for URLLC, mMTC and control channels are FFS

In this contribution, we discuss the following topics related to selection of EMBB data channel coding for blocks length than X and the value of X.
· Adjusted min-sum algorithm(and other variants for performance improvements)
· Typical block sizes for EMBB data channel
· Saturated min-sum
· Importance of IR HARQ for short packets
· Some aspects related to Parity-check Polar coding and incremental freezing HARQ
2. Min-Sum and variants
Considering an LDPC decoder, at each check node processing, conventionally the values of outgoing LLR messages on all connected edges are stored. This storage may require a significant amount of memory which in turn can contribute to a large hardware area. However, as discussed in [1], approximate-min* (also known as adjusted min-sum, i.e. variant of min-sum) decoder can address the memory requirement with equivalent performance as the sum-product (or exact kernel) decoder with exact check-node processing. In this decoding method, at each check-node the magnitude of the message sent to the least reliable adjacent variable-node is computed exactly as in SP (which excludes the incoming message from that variable-node). The message sent to every other variable-node adjacent to that check-node are set to the same magnitude which is computed by applying the check-node operation to ALL incoming messages, without any exclusion. The signs for all these variable-nodes (other than the one contributed to the least reliable LLR) are calculated as in SP.
Hence, at each check-node instead of storing the messages for all adjacent edges, there are only two magnitude values need to be computed and/or stored: one for the variable node contributing to the minimum incoming LLR, and one for all other variable-nodes. The memory saving is significant, while as we show next, that the performance is close to SP.
Min-sum algorithm and its variants (including Offset min-sum, Normalized min-sum and adjusted min-sum, etc) have been popular in literature for the benefits they offer in terms of implementation. Key benefits is the reduction in edge memory (or outgoing messages out of a check node update) and computation complexity, e.g. only two values need to be stored/computed per edge. Variants of Min-Sum such as OMS, NMS are simple to implement using simple addition/scaling adjustments and provide good performance at medium to high code rates ([9]), the performance for lower rates can be improved using an AMS, wherein the correction factor can be based on lookup table (LUT) or an equivalent logic equations. While the LUT can add latency (relative to plain min-sum) to the check node update, it is implementable (as demonstrated in [1] and other works of the authors of [1], and in additional references [2]-[6]) and the potential latency can be minimal as it is required only for decoding lower-rates, while at higher rates, OMS/NMS can be used instead of LUT.
a. Performance of AMS
In the following, we present simulation results using the exact check-node kernel (SP decoder) and the adjusted min-sum decoder. The parity-check matrices (PCMs) used are our LDPC design for short block lengths [104, 200, 400]. As Figure 1 shows, there’s almost no performance loss in performance when using the adjusted min-sum relative to SP.
Simulation settings are listed in table below (parity-check matrices and raw data are in attachment):
Table 1. Simulation settings for comparison of SP and adjusted min-sum.
	Modulation
	QPSK

	Number of information bit column punctured
	1

	Number of iterations
	25

	Z value
	[13 25 50]

	Parity-check matrix
	r1/3 extended to r1/6 (similar to [10]

	Code-Rates
	[1/5 1/3]

	Number of information bits
	[104 200 400]

[image:]
Figure 1. Required SNR to achieve 1% BLER vs information block length.
Observation 1: Adjusted min-sum demonstrates almost no performance loss compared to sum-product decoder, while having reduced complexity/memory.
3. Typical Block sizes of interest for data channel
In typical wireless networks (e.g. 4G), TCP-like traffic drives bulk of packets going over the air. From TCP/IP perspective, some of the main packet sizes are 1500 bytes, and associated TCP SYN and ACKs, the smallest of which are 40 bytes or larger. From LTE physical layer perspective, additional overhead (e.g. a few bytes) gets added to the TCP packets due to LTE protocol overhead. While there may be some packets smaller than 40 bytes, majority of the packet sizes (that drive system performance) will correspond to ~44-50 bytes (i.e. 350~400 bits) or larger. Therefore, we think the primary range of interest for data channel coding schemes (i.e. designed/optimized for) is ~400 bits or larger.
We plot below the comparison of LDPC and polar code in the range of interest between 400 and 1000 bits. The figure below shows the comparison of an example of LDPC with AMS (from R1-1610140) compared to List-8 polar code from R1-1608864, for rate-1/3 and rate-1/5. The figure shows that LDPC can achieve performance comparable (or better than) to polar code.
[image: C:\Users\animbalk\AppData\Local\Microsoft\Windows\INetCache\Content.Word\for_tdocSNR_Block_adjusted_25iter_r13_all_v6.jpg]
Figure 2. Comparing LDPC with AMS vs Polar code with List L=8 (data from R1-1608864).
Observation 2: For block lengths 400 and 1000 bits, LDPC demonstrates comparable BLER performance as list-8 polar code.
4. Saturated min-sum
For the extremely short block sizes (e.g. 100 bits or so), polar code may show a performance advantage with list decoding over LDPC. However, list-decoding algorithms are also feasible/applicable for LDPC and such techniques can improve LDPC decoder performance further. In fact, as discussed in last meeting, Quasi-ML decoding algorithms exist, based on which performance of coding schemes (including BCH, Polar, LDPC, etc.) at very short block sizes can be improved to reach the ML bound. In particular, a saturated Min-sum algorithm [7,8] can be implemented to improve LDPC performance reusing existing decoder resources e.g. any unused decoder hardware (e.g. check node updates, memory), but using additional computational complexity (e.g. equivalent to running more iterations). Hardware implementation through a parallel architecture are still possible and these are discussed in [8].
The below simulation results show the improvement for block length of ~100 bit and 200 bits for Saturated min-sum with size S=6 (6 least reliable bits flipped i.e. equivalent to decoding 26 = 64 codewords, etc) and 10 (10 least reliable bits flipped). The SMS10 result is shown only for reference as such large amount of computational complexity may be difficult to support in hardware, but as noted in [7,8], some potential hardware implementations for SMS are possible. For reference, we also show the data available from L8 Polar code of R1-1608864 (only two data points are available, and one for polar code). Polar code with list 32 can further improve the performance by 0.25 dB or so. In general we note that as block size increases or code rate decreases, saturated min-sum can require larger S value for performance improvement and hence is not applicable to block sizes (>a few hundred bits). However, as mentioned in previous sections, we think for data channel, block sizes that are of key interest would be ~400 and more, and for those sizes AMS would be adequate.
[image: forTdoc2_SMS_SNR_Block_adjusted_25iter_r13_all_v5]
Figure 3. Saturated Min-Sum (SMS) LDPC vs list 8 PC for 100 and 200 bits
Observation 3: Saturated MS decoder can further improve LDPC performance by ~0.5 dB at block length 104.
5. LDPC flexibility to support small block sizes
In last meeting, there was a comment regarding the efficiency of LDPC decoder to small and large block lengths simultaneously, particularly in terms of power, area and latency. However, in our understanding, with LDPC decoders, power savings can be achieved by selectively enabling or driving the check node update and memory units based on the shift size to be supported. As discussed in previous meetings, even with a flexible shift network, the main contributors to the overall area of the decoder would still be the update unit of memory and check node.
Another comment was that the full parallelism of the decoder may not be realizable for all code block lengths. However, our view is that one of the most important criteria in NR is to fulfill the design requirement in an efficient manner– e.g. latency and/or processing times. Therefore, striving to utilize full decoder parallelism always may not be desirable in this context as how to utilize hardware resources to satisfy the requirement would typically be an implementation issue. On the other hand, similar to Turbo code, the latency for LDPC code would be much more predictable than Polar code and can be characterized by the number of edges in the base matrix, by the number of iterations, etc and those could be taken into account in the parity-check matrix structure.
Since LDPC is already agreed for large information bit sizes, any decoder design for large information bit size for LDPC can easily support the implementation for smaller information bit sizes including direct reuse of features of Hybrid ARQ (IR), soft combining, rate-matching, HARQ related signaling, etc., if LDPC is also used for smaller information bit size. Defining a second coding scheme for data channel can bring additional complexities discussed in later part of this document.
Observation 4: LDPC decoders can efficiently support both small block sizes and large block sizes.
6. Polar coding aspects for data channel
In this section we discuss a few aspects related to polar coding on data channels.
Parity-check (PC) polar coding
Parity-check polar coding was proposed in RAN1#86 and some additional details were provided in RAN1#86bis [11,12]. We provide our understanding below of the steps involved in PC-polar encoding an information block of length K based on a rate-r. On a very high-level parity-check polar coding has three main procedures:
1. Identify what each of the N = 2n positions on the input side corresponds - possible choices are shortening bit positions, PC-frozen bit positions, data bit (or information bit) positions and frozen bit positions.
2. Fill each of the N = 2n positions on the input side with the corresponding bits (shortening/data/frozen), while also simultaneously encoding the data bits to obtain the PC-frozen bit value to place in PC-frozen bit locations.
3. After the 2N positions are filled, follow the Polar code encoding graph to obtain the codeword on the output side.
The actual steps are given below.
· Step 0: For given info size (K) and rate-r, determine N=2n (N >=k/r), denote M = N-k/r
· Step 1 : A fixed permutation of length-N identifies input positions arranged in decreasing order of reliabilities (e.g. so that it is possible to place K data bits in the K indices identified by the permutation QN)
· Step 2: Shortened bits (Bit-reversal) - Identify M positions on input side which cannot contain data bits – Prune fixed permutation (QN) to obtain variable permutation QꞌN-M
· Step 3:PC-Frozen bits - Identify P positions from the remaining N-M positions, based on the QꞌN-M, block length (K),
· Note “based” step includes identifying K most reliable positions from QꞌN-M, find least row-weight (dmin) of Kronecker matrix, and determine n as the number of positions having dmin, and so on (details in [12])
· Step 4: Data (or information) bits - Identify K positions from the remaining N-M-P positions
· Step 5: Frozen bits - Identify the remaining N-M-P-K positions
· Step 6 : Place Data bits and Frozen bits in identified positions on the input side
· Step 7 : Determine the values to place in PC-Frozen positions on the input side
· A cyclic shift on a register with length of a prime value is used for the parity check function
 Note : All N = 2n positions on the input side are filled now
· Step 8: Polar encoding to determine output codeword of length-N
· Step 9: From the output codeword, discard M positions corresponding to shortened positions to obtain the rate-matched codeword output
In our understanding, while the fixed reliability location (Q) is a pre-determined permutation (i.e. in step 1), the identifying part can be composed of up to four steps (steps 2-5) and the steps may have to be done in a sequential order due to dependencies – e.g. there is pruning (e.g. in step 2), and scanning over K values (e.g. find dmin and number of positions having dmin), and marking some of those as PC-frozen, then identifying data bit locations, etc. After these steps, data bits are encoded using parity-check to generate the PC-frozen bits and then finally the polar encoder can encode to obtain a codeword.
While it is possible that some aspects (such as step 0,1 (generation of permutation offline), etc) can be parallelized or simplified (offline computation, or pre-stored in lookup table), it is not clear that all steps are parallelizable (especially steps 2,3,4 and step 7) because of the interdependency in the steps. Therefore, we think there is an inherent latency issue due to the required serialized processing. It is possible that some of this latency (for pre-processing of PC-polar) could be masked in practice (parallel operation while another function is ongoing e.g. LLR demodulation). However, if the pre-processing takes a lot of clock cycles (even if masked by another function), it can impact power consumption e.g. relative to another coding scheme which may not require a lot of clock cycles for pre-processing. Therefore, it would be good to clarify how much is the latency of pre-processing steps and overall latency of PC-polar coding for encoding/decoding.
For LDPC/turbo/TBCC, the encoding/pre-processing steps are fairly straightforward (e.g. K/2 clock cycles for radix-4 TBCC encoding, K is number of information bits) and for LDPC, the overall encoding latency is dependent on the number of edges in the base matrix e.g. if there are 200 edges in the base matrix, the encoding latency may be at most twice the number of edges in the base graph ~400 cycles (and can be much less due to straightforward pipelining of encoding/preprocessing steps).
For PC-polar, latency of the parity-check polar encoding should take into account the latencies due to the following steps: 1) pre-processing steps to identify data/PC-frozen/frozen/shortening bit positions, and 2) parity-check frozen bit computation and filling the input of polar encoder, and 3) the step of polar coding.
Incremental freezing
It is our understanding that Polar code design generates a separate (and independent) codeword for each block size/rate pair, implying that that Partial Chase combining (e.g. codes for k/n, and k/n+1 may be independent) may not be feasible – i.e. for the two code k/n and k/n+1, the mapping of data bits to the input of Polar encoder may be different, requiring the two codes to be separately decoded (similar to IF-HARQ). Moreover, for HARQ, the polar code Incremental freezing technique ([9]) requires multiple levels of Polar coding, and it is not clear how the quantity of incremental frozen bits is set (across different transmissions and different MCS levels, etc) and decoded efficiently. In addition, on retransmissions in IF-HARQ, only a subset of information bits is encoded for the retransmission. In such case, there can be some performance issues/concerns because the code diversity (or the redundancy in the retransmission) can only benefit a subset of information bits directly, and the remaining bits still have to be recovered using the first transmission. Error propagation can also be a concern if multi-level decoding has to be utilized unlike turbo/LDPC where the (re)transmissions can be obtained from a rate-compatible mother code and all transmissions can be soft-combined and decoded once.
Moreover if, for a given code block, multiple IF code words have to be stored in HARQ memory, and each IF-codeword is resultant of a parity-check polar code with multi-step pre-processing (as mentioned above) implying additional latency in the multi-level polar decoding procedure for the single code block.
The estimated polar decoder area and latency in [11] seems to be based on a particular set of assumptions (selective-path-extension (SPE) with a ratio of 70%, etc) which could be bit restrictive on the hardware implementations (e.g. the SPE ratio tuning might not be as easy given the trade-off between the ratio/performance/latency may not be straight-forward). Moreover, it would be good to be clarified whether the latency values cited in [11] (e.g. in table 10) is an average latency or a worst case latency, and whether the latency can be met for all combinations of block lengths and rates with the same SPE. In contrast, for turbo/LDPC/TBCC, latency is a fairly straightforward controllable decoder parameter (e.g. through number of iterations, etc). Therefore, we think such aspects related to encoding/decoding are important considerations when selecting the coding scheme for data channels.
7. Discussion EMBB data channel for block length < X
In the previous sections, we discussed various aspects related to performance, typical packet sizes of interest for data channel, saturated min-sum to further improve LDPC performance at extremely short block lengths, flexibility of LDPC in supporting smaller and longer block lengths. We also identified some issues/concerns related to PC-polar design, in particular for data channel. Overall, we think that the coding scheme for data channel should be designed taking into account the overall complexity/performance trade-off, and the fact that typical packet sizes of interest for data channels would be ~400+ bits, and that at those sizes the performances of the different coding schemes are comparable to each other.
Supporting two coding schemes on the data channel can incur additional area impact due to very little reuse of hardware (e.g. processing units). Also, multiple coding schemes on data path incur additional complexity on various design parts including rate-matching, HARQ mechanisms, (e.g. IF-HARQ for Polar code vs traditional IR-HARQ for LDPC), and so on. The two coding schemes is likely to allude to different latencies/tputs, which can further complicate h/w implementations. Therefore, based on all above factors, we propose that LDPC is adopted as single channel coding scheme for EMBB data.
 Proposal: The channel coding scheme for eMBB data is LDPC for information block size <= X

8. Conclusion
In this document, we discuss the various aspects related to LDPC and Polar for block sizes less than X. We make the following observations.
Observation 1: Adjusted min-sum demonstrates almost no performance loss compared to sum-product decoder, while having reduced complexity/memory.
Observation 2: For block lengths 400 and 1000 bits, LDPC demonstrates comparable BLER performance as list-8 polar code.
Observation 3: Saturated MS decoder can further improve LDPC performance by ~0.5 dB at block length 104.
Observation 4: LDPC decoders can efficiently support both small block sizes and large block sizes.
Based on the observations and the issues related to PC-polar coding (e.g. latency, IF-HARQ, etc) discussed in this document, we propose the following.
	
Proposal: The channel coding scheme for eMBB data is LDPC for information block size <= X

9. References
[1] C. Jones et al. "Approximate-MIN constraint node updating for LDPC code decoding." Military Communications Conference, 2003. MILCOM'03. 2003 IEEE. Vol. 1. IEEE, 2003.
[2] A. Prabhakar, and K. Narayanan, “A Memory Efficient Serial LDPC Decoder Architecture”, ICASSP '05.
[3] A. Prabhakar and K. Narayanan, “Memory efficient scalable decoder architectures for Low Density Parity Check codes”, 2006.
[4] M. Rovini, F. Rossi, N. E. L’Insalata and L. Fanucci, “HIGH-PRECISION LDPC CODES DECODING AT THE LOWEST COMPLEXITY”, EUSIPCO 2006.
[5] Marchand, C., Conde-Canencia, L. & Boutillon, E. “Architecture and Finite Precision Optimization for Layered LDPC Decoders”, J Sign Process Syst (2011) 65: 185. doi:10.1007/s11265-011-0604-z.
[6] S. Kim, G. E. Sobelman, H. Lee, “Adaptive Quantization in Min-Sum based Irregular LDPC Decoder”, 2008.
[7] Scholl, S., P. Schl, and N. Wehn. "Saturated min-sum decoding: An ”Afterburner” for LDPC decoder hardware." 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016.
[8] Schläfer, P. et al. "A new LDPC decoder hardware implementation with improved error rates." Applied Electrical Engineering and Computing Technologies (AEECT), 2015 IEEE Jordan Conference on. IEEE, 2015.
[9] R1-1612586, Intel, “LDPC design for NR data channel”, RAN1#87, Reno, Nevada.
[10] R1-167703, Intel, Channel coding scheme for URLLC, MMTC, and control channels, RAN1#86 Gothenberg
[11] R1-1608865, Huawei, HiSilicon, Design aspects of Polar Code and LDPC for NR, RAN1#86bis
[12] R1-1608862,	Huawei, HiSilicon, Polar Code Construction for NR	RAN1#86bis
[13] R1-1608864,	Huawei, HiSilicon, Performance Evaluation for NR Channel Coding, RAN1#86bis
[14] R1-1610140, Qualcomm, LDPC decoding with adjusted min-sum, RAN1#86bis

[bookmark: _GoBack]
7 | Page

image1.emf
100150200250300350400

Block Size

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

S

N

R

a

t

0

.

0

1

B

L

E

R

Sum-Product

AMS

r = 1/3

r = 1/5

image2.jpeg

image3.jpeg

