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In this contribution, we will investigate different decoding aspects of a complex and flexible LDPC code design. They include different decoding algorithms, different decoding architectures, and IR-HARQ decoder, and very short information block. 
Decoding Algorithms
BP Decoder
Flooding-BP (Belief-propagation) is an optimal MPA (message passing algorithm) decoding algorithm in which each check node updates by a ‘tanh’ operation per iteration. 
 (
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)
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Figure 1	Generic Diagram of Sum-Product Decoder 
According to [2], the performance of a Flooding-BP decoder is sensitive to an SNR estimation error that affects the precision of input channel LLRs (known as LLR-mismatch), mainly due to the ‘tanh’ function. This phenomenon is confirmed by the simulation given in Figure 5 and Figure 6.  
The ‘tanh’ operation on each check node is executed with high computational complexity and long latency either on the fly or by LUT (look-up-table). Moreover, a fixed-point precision of ‘tanh’ operation affects its performance too. In the end,  a Flooding-BP decoding algorithm is known for its slow convergence speed.
Observation-1: A Flooding-BP decoder is not implementable on any commercial chip. 
Min-Sum Decoder
Layered-offset-min-sum decoder
LOMS is a simplified decoder in which each check node subtracts the minimum value among the incoming messages by an offset value and then outputs this result onto the output edges. 
 (
Offset min-sum
Check node update:
Bit node update:
)
Figure 2	Generic Diagram of Offset Min-Sum Decoder 

As one of the simplest LDPC decoding algorithms, it is widely implemented on commercial chips such as IEEE802.11n, IEEE802.15.3c, and IEEE802.16e etc. However, its performance is sensitive to the SNR estimation error [3].  The estimation error may cause amplitude mismatch between Qmn and , which will lead to serious performance degradation.
Observation-2: A LOMS algorithm allows a low complex implementation but its performance is sensitive to SNR estimation error.
Layered-normalized-min-sum decoder
On each check node, a LNMS decoder multiplies the minimum input message by a scale factor instead of subtracting an offset value. 
 (
Normalized min-sum
Bit node update:
Check node update:
)
[bookmark: _Ref465694388]Figure 3	Generic Diagram of Normalized Min-Sum Decoder 
On one hand, because the scaling operation does not affect the amplitude of channel LLRs, the performance of a LNMS decoder is insensitive to the SNR estimation errors, which makes it more robust in a real system. On the other hand, a LNMS decoder usually has comparable performance as a LOMS decoder if SNR estimation error is limited below certain level. However， the scale factor used in LNMS algorithm need to be optimized according to different combination of information length and coding rate as shown in the following figure.
[image: ]
Figure 4 Effects of scale factor used in LNMS
Observation-3: LNMS is insensitive to SNR estimation error. However, scale factor used in LNMS need to be optimized according to the combination of information length and coding rate.
LAdjMS 
“ … Suppose again that the incoming LLR magnitudes are given by , with  being the minimum incoming magnitude LLR. Then, along the minimum incoming magnitude LLR, , the message sent is the one computed by the SP(Sum-Product) rule. And along the rest of the edges the message obtained by applying the SP rule to all the incoming messages, . Note the difference to the SP (Sum-Product)decoder is that along any edge , the outgoing message is computed using all except one message magnitude (incoming along the edge ) in the set  . …
At the check node side, for the SP decoder the outgoing LLR magnitude is computed as follows [1]:

Although [1] deliberately names this decoding algorithm as LAdjMS algorithm and promotes it as a variant type of min-sum-based decoder, it is actually a layered-adjusted-sum-product (LAdjSP). This is because every check node needs to update two ‘tanh’ operations for two outgoing message magnitudes.  
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Figure 5		Generic Diagram of “AdjMS” (adjSP) Decoder 
This “LadjMS” (LadjSP) decoder inherits all the issues of FOSP: each check node needs to complete the two ‘tanh’ operations with high computational complexity and long latency no matter how the ‘tanh’ operation is finished on the fly or by LUT (look-up-table), and sensitive with the SNR estimation error too.
 [image: ]
Figure 6		Sensitivity to SNR Estimation Error of “AdjMS”(AdjSP)
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Figure 7		Sensitivity to SNR Estimation Error of “AdjMS”(AdjSP) 
Observation-4: Complexity of the “LadjMS” (LadjSP) decoding algorithm is much higher than LOMS or LNMS decoding ones, and it cannot overcome the sensitivity to the SNR estimation error.  
To overcome the performance degradation caused by SNR estimation error, [1] proposed a ‘scale invariance’ method. However, scale invariance brings not only limited capability to mitigate the effects of SNR mismatch but also high computational and implemental complexity, hence huge decoding latency.
Scale Invariance
To overcome the vulnerability of Flooding-BP, LOMS, and “LadjMS” (LadjSP) to the SNR estimation error, [1] introduce ‘scale invariance’ to normalize the input channel LLRs:  
“…a pre-processing step is presented which can be applied to the received LLRs so that the decoder becomes scale invariant. The scale factor is computed based on the equation below which assumes a target operating capacity and uses the (unknown) scaled LLR of received values. More precisely, assume that  represents the scaled (unknown) magnitudes of the LLRs of received values. Here  is the total length of the codeword. Since we know the capacity (operating point) we solve for the unknown scaling constant given by  as follows. 

where  is the binary entropy function and  is the target capacity or the operating point capacity. In [11] an efficient implementation to determine this scaling constant is also described. Once the scaling constant is obtained, it is applied to the LLRs and supplied to the decoder.” 
Performance Concerns
For our best knowledge, scale invariance is to find an optimal scale-factor (α) that maximizes a target capacity (Ct) of an AWGN channel characterized by |LLR| and averaged over a N-sized codeword average them. Our major concerns w.r.t. scale invariance are: 
· The scale-factor (α) only depends on the capacity () rather than channel itself.  
· As  to derive binary modulation alphabets, it may not work well for larger modulation schemes over fading channels.
· Although  is nonlinear in function of LLR, the resultant α scales all the input LLRs linearly. Thus, it is highly risky that a wrong value is applied for the capacity. 
· As the LDPC code is targeted at the much finer granularity than 11n and 16e LDPC code, the scale-factor (α) must be scanned over a larger range for NR LDPC code than any standardized LDPC codes. 
One paradox of this method is that it uses a SNR estimation with an error to generate the target channel capacity from which a correct factor (α) is found and used to compensate this error. Although [8] provides the simulation results of LadjMS” (LadjSP) in a fading channel, it assumes a perfect estimation of SNR value so that the simulation results are insufficient to justify if and how successfully the ‘scale invariance’ helps to overcome the sensitivity to a SNR estimation error. 
 Complexity Concerns
For our best knowledge,  is realized only by a LUT. g(LLR,α) table consists of several sub-tables in terms of a given alpha (α). The final performance is strongly related to the number (m) and quantization (q) of g(LLR,α) table. Therefore, a trade-off between performance and implementation cost should be provided and evaluated. 
The most efficient method to approach this optimal scaling factor (α) is through an interpolation that is described as the following three steps: 
1) To obtain the target capacity  by LUT (look-up-table) following . 
2) To set m-  as  , then get m corresponding capacities  by  LUT (g(LLR,α)). 
3) To use the target capacity  and parabolic interpolate an optimal .
Once this scaling factor (α) is obtained, the demodulator multiplies it to all input channel LLRs.
Note that these three steps should be kept updated, because the MCS (modulation and coding scheme) varies from one code block to another. 
From the above analysis, the computational complexity is summarized as:
Table 1	Computational Complexity of Scale-Invariance Operation
	Operation
	Complexity

	Get the target 
	1 LUT

	Get 
	m∙N LUTs, m∙N ADDs

	Interpolate to get 
	At least 1 MUL

	Scale the LLR
	N MULs

	Total
	(m∙N+1) LUT; m∙N ADD, (N+1) MULs


As an example of K=8000 bits, R = 1/5 and m=8 (N=40,000-bit), the computational complexity of scale-invariance is as below:
Table 2	An Example of Computational Complexity of Scale-Invariance Operation
	operation
	complexity

	Get the target 
	1 LUT

	Get 
	320,000 LUTs/320,000/ADDs

	Interpolate to get 
	At least 1 MUL

	Scale the LLR
	40,000 MULs

	Total
	320,001  LUTs/320,000  ADD/ 40,000  MULs


Observation-5: The complexity of scale-Invariance operation is too high to be implemented and no such operation has been reported in any literature and chip implementation.   
Decoding Architecture 
In addition to the performance and computational complexity, we should evaluate the implementation complexity of a LDPC decoder considering the decoding algorithm and decoding architecture simultaneously. Among the LDPC code designs proposed in the previous meetings, [11] and [9] describe not only their code designs in more details but also their targeted decoding architectures. Both decoding architectures represent two widely used decoding architectures to implement fully flexible layered-min-sum decoding algorithm (LOMS or LNMS) to support fine-granularity and high decoding throughput. 
[bookmark: _GoBack]Table 3	 Key Parameters of  LDPC design in [1] and [4]
	example
	Code Design 
	Nb of Kernels 
	Implementation
Parallelism Degree 
	Max. Lifting Value, Zmax
	Decoding Architecture

	A
	Scheme A[1]
	3
	384 [9]
	892 [10]
	Block-Parallel Decoding 

	B
	Scheme B [4]
	1
	~200 [11]
	256 [4] 
	Row-Parallel Decoding


Block-Parallel Decoding Architecture 
Scheme-A recommends using a block-parallel decoding architecture. 


Figure 8	Flexible LDPC Decoder Architecture (Figure 2 of [9])
This decoding architecture is widely adopted for 11n LDPC decoding implementation for its full flexibility to support multiple code lengths and code rates. Nevertheless, none of this architecture has been proven significant area & energy efficiency improvement against LTE-Turbo decoding implementation. For example, [12] summarizes the most recent literature disclosures about high-throughput LDPC decoding implementation. But all highlighted implementation use the row-parallel decoding architecture rather than block-parallel one.  What’s more, as shown in the throughput analysis of [9], only 7.1Gbps can be achieved using block parallel decoder architecture by implementing a LOMS decoding algorithm with reduced number of iterations.
Even compared with 11n LDPC code whose maximum information block (Kmax) is 1944 bit and maximum lifting value (Zmax) is 81, the area and energy efficiency of this decoding architecture would drop greatly due to the support for Kmax = 8000 bit and Zmax = 896. As mentioned in [9], the complexity of its permutation network (with LTU controller) would grow by Zmax *(  log2(Zmax) – 1), disproportionally with the complexity increase for computation units by Kmax. 


Figure 9		Complexity of Permutation Network Grows from Zmax = 81 to Zmax = 320/896 
This presents the challenges on area reduction and timing closure [13].  
Observation-6: A complex and flexible LDPC decoder on a block-parallel decoding architecture needs much more die area than IEEE802.11n LDPC one to deliver 20Gbp peak throughput.   
Row-Parallel decoding 
Although chip-proven implementation-efficient and peak-throughput-achievable, a row-parallel decoding architecture is designed for inflexible decoder such as IEEE802.11ad and IEEE802.15.3c LDPC. When the scheme-B recommends using a row-parallel decoding architecture for a fully flexible decoder, it cannot ensure the area and energy efficiency and even targeted decoding throughput. 


Figure 10   High-level architecture for row-parallel LDPC decoder of IEEE802.15.3c[Figure-1 of [11]]  
A row-parallel decoding architecture includes two interconnection networks: route-network (pre-routes and post-routes) and shift-network (back shifter and front shifter). The route-network connects the check nodes (CNs) and variable node groups. In designing the PCM (parity-check-matrix) of IEEE802.11ad and IEEE802.15.3c LDPC, their inflexibility allows to optimize the matrix to simplify the implementation of the route-network. However, it become challenging to do the similar optimization on a flexible LDPC code. 


 
(a)   IEEE802.11ad LDPC						              (b) Scheme-B
Figure 11		Route-Network Interconnection
The issue with the shift-network is similar to that with the permutation network of a block-parallel decoding architecture but much worse. As the shift networks interconnect the variable nodes and route-network, its complexity grows drastically if both Kmax and Zmax increase significantly. For example, according to [11], the shift-network would take 2,568,192 2-MUX. 


Figure 12		Complexity Grows from Zmax = 21 Nmax = 672 to Zmax =256 Nmax = 8000 
 This presents the challenges on area reduction and timing closure [13].  
Observation-7: A complex and flexible LDPC decoder on a row-parallel decoding architecture needs much more die area than IEEE802.11ad or IEEE802.15.3c LDPC one to deliver 20Gbp peak throughput.   
IR-HARQ Decoder
The lowest code rate of LDPC code is determined once the parity check matrix is given. With IR-HARQ, the code rate decreases with the retransmissions. If the lowest rate is reached, the left part can only do CC-HARQ. In this way, the coding gain of HARQ is limited by the lowest rate of the parity check matrix. For LDPC in [1], for the code rate of 1/2, the high or medium family should be selected for the initial transmission. When reaching the 4th transmission, the code rate becomes 1/8, for which the low LDPC family should be selected but impossible. For LDPC in [4], the supportable lowest code rate is 1/3. It cannot enjoy any coding gain when the code rate is below 1/3, while about 0.8dB coding gain can be obtained in AWGN channel via extending the code rate to 1/6 by the low LDPC family in [1].
Another aspect is the decoder structure in IR-HARQ process. For the implementable LDPC decoders, e.g., LNMS or LOMS, the performance heavily depends on the decoder parameters, including scale and offset factors. These parameters should be optimized for each code length and code rate to guarantee a stable performance. In IR-HARQ process, the code length and code rate will change in each (re-)transmission, which requires the decoder to change the parameters, leading to more computational and implemental complexity. Due to the essential nature of LDPC codes, the parity-check matrix is much larger at low code rate, where the IR-HARQ process can easily reach. For this large parity-check matrix, LDPC decoder needs much more iterations to converge, which brings very high decoding latency and further computational and implemental complexity. 
Observation 8: For LDPC HARQ, the capability to obtain coding gain is not flexible and limited by the designed parity-check matrix. 
 Non existence of iteratively decodable LDPC codes
A LDPC code is a linear block code of length N and dimension K which can be decoded by an iterative decoding algorithm based on Belief Propagation. Using a parity check matrix of the code H, we can represent it via a bipartite graph where, if H is full rank, the number of variable nodes (left side of the graph) is N and the number of check nodes (right side of the graph) is N-K. Since the discovery of LDPC codes by R. Gallager in his famous monograph [6], we know that short cycles in the bipartite graph have to be avoided. The length of smallest cycles in a graph is called the girth of the graph. The girth of a LDPC code, denoted g, is always an even number. Its minimal possible value is 4. LDPC codes with girth 4 have very poor performance when they are decoded using any iterative algorithm. We will say that: 
Any linear block code represented by a bipartite graph of girth 4 is not iteratively decodable, for any iterative decoding algorithm.
The design of a LDPC code of finite length is always the design of a bipartite graph with large girth under some constraints (a given degree distribution, an algebraic structure like quasi-cyclicity for complexity issues …). 
We prove here that there is no LDPC code with girth  corresponding to the smallest info block length and highest rate of NR eMBB channels. 
Let K be the info. block length of a LDPC code and R be its rate. Then the codelength is N=K/R. Assuming a full rank parity check matrix, the number of variable nodes of the graph is K/R and the number of check nodes is . 
In [7], theoretical lower bounds for both the length of the code and its redundancy for a given girth and average degree distribution are given. These bounds are not even tight, which means that the results that we obtain are even optimistic for LDPC codes. The average variable degree of the code depends on the code rate and the channel. It is always strictly larger than 2. 
For a Gaussian channel and BPSK constellation, we consider code rate  and we evaluate the smallest length for which a LDPC code may have no cycle of length 4. 
Figure 13 gives the minimal value of info. block length to obtain no cycle of length 4 in the graph as a function of the average variable degree distribution (this average value has to be strictly larger than 2). We see that even for an average degree distribution equal to 2 (which does not correspond to any practical code), then the minimal info block length below which there is no possible BP decodable LDPC is still larger than 100, which is the smallest value for NR eMBB channels. Moreover, a density evolution run for a Gaussian channel and corresponding to rate 8/9 shows that the optimal average variable degree for an irregular LDPC code is about 4.3. With this value, the minimum info block length for which we could avoid cycles of length 4 is K=750. 
Figure 14 is the same as figure 13, for a code of girth 8 (no cycle of length 4 and 6). It is given as an illustration for a higher girth. Now, with the optimal value of the average variable degree, the minimal info block length for which cycles of length 4 and 6 could be avoided is K=2700. 
[image: ].
Figure. 13: No cycle of length 4; Rate 8/9 ; Min info block length value is 119
[image: ]
Figure 14: No cycle of length 4 and 6; Rate 8/9; Min info block length value is 224
Observation-9: There is no code corresponding to info block length 100 and rate 8/9 which can be decoded iteratively.
Observation-10: LDPC codes with iterative decoding cannot be considered for the shortest blocklengths and highest rates of NR eMBB channels. 
Conclusion 
Observation-1: a Flooding-BP decoder is not implementable on any commercial chip. 
Observation-2: A LOMS algorithm allows a low complex implementation but its performance is sensitive to SNR estimation error.
Observation-3: LNMS is insensitive to SNR estimation error. However, scale factor used in LNMS need to be optimized according to the combination of information length and coding rate.
Observation-4: Complexity of the “LadjMS” (LadjSP) decoding algorithm is much higher than LOMS or LNMS decoding ones, and it cannot overcome the sensitivity to the SNR estimation error..  
Observation-5: The complexity of scale-Invariance operation is too high to be implemented and no such operation has been reported in any literature and chip implementation.   
Observation-6: A complex and flexible LDPC decoder on a block-parallel decoding architecture needs much more die area than IEEE802.11n LDPC one to deliver 20Gbp peak throughput.   
Observation-7: A complex and flexible LDPC decoder on a row-parallel decoding architecture needs much more die area than IEEE802.11ad or IEEE802.15.3c LDPC one to deliver 20Gbp peak throughput.   
Observation-8: For LDPC HARQ, the capability to obtain coding gain is not flexible and limited by the designed parity-check matrix. 
Observation-9: There is no code corresponding to info block length 100 and rate 8/9 which can be decoded iteratively.
Observation-10: LDPC codes with iterative decoding cannot be considered for the shortest blocklengths and highest rates of NR eMBB channels. 
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