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1 Introduction

At the previous meeting (RAN1#86b), orthogonal and non-orthogonal basis in advanced CSI have been intensively discussed with no conclusion drawn. Through following up email discussion it was agreed to down-select the basis design at RAN1#87 meeting. In this contribution, we discuss the orthogonal and non-orthogonal basis for advanced CSI. The conclusion is justified through numerology results.
2 Discussion
2.1 Reduced space
Space reduction may be based on orthogonal basis or non-orthogonal basis as discussed in the following.
· Case 1 - Non-orthogonal basis: The reduced space is spanned by W1 in LTE Rel-13, which is a set of selected oversampled DFT vectors. In case of 1D antenna layout, the basis vector may be exemplarily expressed as
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where M is the number of antennas, S is the integral oversampling rate, 
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 is the index of the selected oversampled DFT vector, 
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 is an integer to denote the first index for W1, and 
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 is the number of the selected oversampled DFT vectors.
· Case 2 - Orthogonal basis: The reduced space is spanned by a subset of column vectors from a regular, non-oversampled DFT matrix. The basis vector may be represented by
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where 
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, and A is an orthogonal DFT subset. The reduced space is spanned by the DFT vectors, and 
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is a common phase shift for the reduced space.

Note that when 
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in case 1, the reduced space is the whole complex vector space of dimension M. When 
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 in case2, the reduced space is also the whole complex vector space of dimension M. When 
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in case1, the reduced space is a subset of the complex vector of dimension M. When 
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in case2, the reduce space is a subset of the complex vector of dimension M. 

In case1, the reduced space is generated by a set of oversampled DFT vectors with continuous indices. In case2, the reduced space is generated by an index subset A selected from 
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We have the following theorem from [1].
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Theorem 1: Assume the channel model can be represented by
                                                                                                                                                              (3)
where 
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 is the RX steering vector, 
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 is the TX steering vector. The eigenvectors of 
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 can be represented by a linear combination of 
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Proof: note that we can assume
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Representing  
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Then
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where 
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Obviously, 
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 has the eigenvalue decomposition as following, where 
[image: image29.wmf]X

 is the eigenvector space of non-zero eigenvalues, 
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Therefore
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□
Based on above analysis, if the reduced space spanned by W1 is the same subspace spanned by 
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, the reduced space can represent the eigenvectors.
2.2 MSE analysis
Given the precoding vector 
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 at UE side, the coefficients according to different bases and the associated MSE performance is given below. 
Case 1: In this case, the basis is a set of column vectors of oversampled DFT vectors, denoted by
[image: image36.wmf]O

M

´

G

. Then the coefficients may be written as

[image: image37.wmf]w

B

c

M

O

´

=

,                                                                      (9)
where
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Assuming the estimated precoding vector is given by
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 represents the estimation noise Gaussian distributed with variance
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. Then the coefficient MSE may be represented as
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where 
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 is the eigenvalue of matrix 
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(or square of singular value of 
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, and from Schur-Horn inequalities[2] we have 
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is ill-conditioned, therefore MSE is large.
When quantization is performed on
[image: image51.wmf]c

, large quantization range has to be defined to cover the noise polluted 
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. For a given number of quantization bits, the larger variance of 
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 will lead to large quantization noise. Hence when eNB tend to recover precoding vector, both amplified estimation noise and quantization noise will severely impact the accuracy of precoding vector. 
The condition number is defined as the division of maximal and minimal non-zero singular value, which is the typical criterion to measure the degree of ill-condition for a given matrix.  The following numerical results show condition numbers for a 
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 constructed with continuous beams.
Table 1 Condition Number

	Length of DFT vector
	Oversampling Rate
	Number of vectors in 
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	Condition Number of G

	4
	8
	4
	1684.6

	8
	8
	4
	1051.5

	16
	8
	4
	963.3


Case 2: In this case, the basis set is a subset of column vectors of non-oversampled DFT matrix denoted by 
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where 
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The coefficient MSE can be written as
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Based on above analysis, non-orthogonal basis in case 1 amplifies the noise depending on the distribution of the eigenvalues, but orthogonal basis doesn’t have such an issue. 
For this reason, orthogonal basis is preferred, and the reduced space should be determined accordingly based on the orthogonal basis.
3 Simulation results
In this section, the noise amplifying effect of non-orthogonal basis is evaluated. Assuming a precoder 
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 is a linear combination of several oversampled DFT vectors. Gaussian white noise with variance 
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, which is used to model the UE estimated precoder. Using orthogonal basis (
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, the mean noise variance in estimated weighting can be denoted as 
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 in logarithmic domain is used to measure noise amplification.
Assuming 16Tx and 32 Tx 1D antenna layout, the oversampling factors are 4 and 8. Both orthogonal and non-orthogonal basis have 4 beams. The evaluation results are illustrated in Figure 1.
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Figure1. Noise amplification for 16 Tx and 32 Tx

We observe that non-orthogonal basis significantly amplifies noise in weighting estimation, which made eNB hard to recover precoder after receiving quantized weighting. Orthogonal basis shows more stability from noise amplification perspective.  

4 Conclusion
Based on above analysis, orthogonal basis should be selected for CSI feedback. The reduced space can be determined further.
Proposal: Orthogonal basis for the reduced space should be selected for advanced CSI feedback.
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