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1 Introduction
In TDD systems, channel reciprocity is envisaged to support efficient control of MIMO transmission [1]-[3]. This contribution proposes an efficient CSI reporting exploiting channel reciprocity in TDD/MIMO, as an extended version of [3] for multi-antenna UE.

2 Efficient CSI Reporting in TDD/MIMO Under Asymmetric Interference
In TDD systems, asymmetric interference between UL and DL has been a problem in exploiting channel reciprocity. The proposed CSI reporting solves this problem leading to efficient MIMO control in TDD systems.
2.1 Principle of Proposed CSI Reporting
Fig. 1 shows the concept of channel state information (CSI) reporting which transmits only UL pilot signals exploiting channel reciprocity. In cellular environments, a UE might have strong directional interference from neighboring eNB in downlink. Then, it is important for UE to report the DL interference state for efficient DL MIMO control. 

If UE transmits UL pilot signals without precoding from individual antennas, eNB can get channel knowledge but cannot get the DL interference state. To solve this problem, in the proposed method, UE transmits precoded UL pilot signals where the precoding matrix is determined by DL interference state.  
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Figure 1 : CSI reporting through pilot transmission in TDD systems. 
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Figure 2 : Principle of proposed CSI reporting (a) Downlink (b) Uplink. 

Figure 2 shows the principle of the proposed CSI reporting for TDD/MIMO with N-antenna eNB and M-antenna UE, where 
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 is the DL interference-plus-noise covariance matrix and 
[image: image2.wmf]H

 denotes the DL MIMO channel matrix. Let us consider spatial whitening process of DL interference-plus-noise at UE in Fig. 2(a) which is achieved by multiplying the matrix 
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to the received signal (exact theoretical expression is shown in appendix A). If eNB obtains knowledge of 
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 in Fig. 2 (a), eNB can optimize the precoding vector 
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 supposing white interference-plus-noise components in downlink. Therefore, full CSI reporting is achieved by reporting 
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from UE to eNB.
In fact, the eNB can get knowledge of 
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 from responses of UL pilot signals if the UL signal is precoded by matrix 
[image: image8.wmf]T

IN

R

)

(

2

/

1

-

as shown in Fig. 2 (b). In the proposed method, UE transmits precoded pilot signals and eNB can get full CSI 
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through UL pilot transmission only.  
2.2 Procedure of Proposed CSI Reporting
The exact procedure of the proposed CSI reporting is as follows :

i)   UE measures 
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ii)  UE transmits M precoded pilot signals
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is the vector of pilot signals, 
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 is the number of pilot symbols, and 
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 is a predetermined common parameter between eNB and UE. The M pilot signals 
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iii) eNB receives 
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where 
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is the N x1 interference-plus-noise vector at eNB. In a matrix form, we have
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with 
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. Using 
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, eNB computes
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iv) eNB optimizes 
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with normalized white interference-plus-noise in downlink.

The parameter 
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 is updated slowly such that accumulated pilot power is larger than average interference-plus-noise power at eNB, i.e.,
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The slow update of 
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 does not cost a large amount of signaling. In iv), eNB can use eigenmodes to optimize SU-MIMO as shown in appendix B. Likewise, eNB can optimize MU-MIMO DL, if multiple UEs report CSI using the proposed method.
The proposed method is also applicable to multiple subbands in OFDMA DL, where UE transmits 
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in the l-th subband (l=1, …, L), using subband-specific matrix 
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and a common parameter 
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 to all subbands  As a special case of M=1, the proposed method is equivalent to the CQI reporting in [3]. Thus, the proposed method is a generalized version of [3] including MIMO environments.

2.3 Interference Measurement
In the step i), there are two possible ways of measuring interference 
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Method 1)  UE assumes 
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Method 2)  eNBs in all cells transmit random punctured DL data symbols. UE assumes
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= (the received signals on the punctured symbols of serving eNB).
Further study is needed for interference measurement accuracy.

2.4 Advantages of Proposed CSI Reporting
Main advantages of the proposed method is as follows :
· Full CSI reporting is achieved through pilot transmission only even under asymmetric interference. 

· eNB can optimize DL MIMO considering DL co-channel interference which is also beneficial for inter-cell  interference coordination.

· eNB can apply the same transmission control algorithm in both noise environments and interference environments
3 Scenarios of Applying Proposed Method in LTE-Advanced 
Similarly to [3], there are two scenarios of applying this “precoded pilot” signals in LTE-A.
Scenario I) Current SRS is changed to new SRS  (new SRS=“precoded pilot”)
In this scenario, UE transmits the new SRS(=precoded pilot) instead of current SRS. eNB estimates not only DL CSI 
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 but also UL channel. Then, scheduled UL packet has different precoding vectors in subbands.
Scenario II) Independent transmission of SRS and “precoded  pilot”                                                                          

The proposed pilot signal is used independently of current SRS. In this case, SRS and “precoded pilot” are used for eNB to estimate UL and DL channel state, respectively. In other words, “precoded pilot” signal replaces current signaling of CQI/PMI/RI reporting. This “precoded pilot” signal would not spend much signaling compared to current CQI/PMI/RI reporting.

Actually, current CQI/PMI/RI reporting and proposed CSI reporting could be selected adaptively, depending on availability of channel reciprocity and calibration [4][5].
4 Conclusion
This contribution proposed an efficient CSI reporting in TDD/MIMO with asymmetric co-channel interference. The proposed CSI reporting can be applied to any number of eNB antennas without changing the format or without increasing signaling. Using this method, we could exploit channel reciprocity efficiently for CSI reporting in LTE-Advanced TDD.

Appendix A
Consider that N-antenna eNB transmits the p-th symbol 
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 from the n-th beam with Nx1 precoding vector 
[image: image45.wmf]n

w

 in a subband of OFDMA DL, as shown in Fig. 1(a). Then, the M-antenna UE receives 
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where 
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 is the DL channel matrix, 
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Let us consider spatial whitening process of 
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 and the M x M unitary matrix 
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 obtained from eigen decomposition 
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Given the virtual channel 
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, eNB can optimize the precoding vector 
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 in (1) supposing white interference-plus-noise components at UE. To achieve this optimization, in the proposed method, UE transmits M orthogonal pilot signals using precoding matrix 
[image: image66.wmf](

)

T

IN

R

2

/

1

-

. Then, eNB can get the responses 
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. Note that UL channel matrix is given by 
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 [6]. In the proposed method, eNB can get CSI 
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Appendix B
Let us show an example of downlink transmission control in SU-MIMO

In case of SU-MIMO, eNB can determine 
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where 
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 are the n-th largest eigenvalue and the corresponding eigenvector of the matrix 
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It is well known that eigenvectors of 
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 can maximize channel capacity using water-filling theory [7]. Thus, using the proposed method, eNB can optimize DL transmission considering directions of co-channel interference.
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