Page 1

3GPP TSG-WG1 Meeting #29
Tdoc (
R1-02-1363

Shangai, China, Nov 5 – 8, 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	25.222
	CR
	105
	(

rev
	-
	(

Current version:
	5.2.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	X
	Core Network
	

	

	Title:
(

	Correction of table 1 and table 2 to include transport channel HS-DSCH

	
	

	Source:
(

	Motorola

	
	

	Work item code:
(

	HSDPA-Phys
	
	Date: (

	31/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Transport channel HS-DSCH is missing in table 1 and table 2.

	
	

	Summary of change:
(

	Transport channel HS-DSCH is added in table 1 and table 2.

	
	

	Consequences if
(

not approved:
	Specification is not consistent. Section 4.2.3 is refered to in section 4.5. But HS-DSCH is not mentioned in 4.2.3.

	
	

	Clauses affected:
(

	4.2

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	25.212 version 5.2.0

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

4.2
General coding/multiplexing of TrCHs

This section only applies to the transport channels: DCH, RACH, DSCH, USCH, BCH, FACH and PCH. Other transport channels which do not use the general method are described separately below.

Figure 1 illustrates the overall concept of transport-channel coding and multiplexing. Data arrives to the coding/multiplexing unit in form of transport block sets, once every transmission time interval. The transmission time interval is transport-channel specific from the set {5 ms(*1), 10 ms, 20 ms, 40 ms, 80 ms}.

Note: (*1)
may be applied for PRACH for 1.28 Mcps TDD

The following coding/multiplexing steps can be identified:

-
add CRC to each transport block (see subclause 4.2.1);

-
TrBk concatenation / Code block segmentation (see subclause 4.2.2);

-
channel coding (see subclause 4.2.3) ;

-
radio frame size equalization (see subclause 4.2.4);

-
interleaving (two steps, see subclauses 4.2.5 and 4.2.10);

-
radio frame segmentation (see subclause 4.2.6);

-
rate matching (see subclause 4.2.7);

-
multiplexing of transport channels (see subclause 4.2.8);

-
bit scrambling (see subclause 4.2.9);

-
physical channel segmentation (see subclause 4.2.10);

-
sub-frame segmentation(see subclause 4.2.12 only for 1.28Mcps TDD)

-
mapping to physical channels (see subclause 4.2.13).

The coding/multiplexing steps for uplink and downlink are shown in figures 1 and 2.

[image: image1.wmf]

Rate

matching

Physical channel

segmentati

on

Ph

CH#1

Ph

CH#2

i

iT

i

i

i

d

d

d

d

,

,

,

,

3

2

1

K

i

iN

i

i

i

e

e

e

e

,

,

,

,

3

2

1

K

Radio frame segmentation

i

iV

i

i

i

f

f

f

f

,

,

,

,

3

2

1

K

S

s

s

s

s

,

,

,

,

3

2

1

K

p

pU

p

p

p

u

u

u

u

,

,

,

,

3

2

1

K

t

U

t

t

t

t

v

v

v

v

,

3

,

2

,

1

,

,

,

,

,

K

2

nd

 interleaving

Physical channel mapping

i

iE

i

i

i

c

c

c

c

,

,

,

,

3

2

1

K

i

irK

ir

ir

ir

o

o

o

o

,

,

,

,

3

2

1

K

Channel coding

i

imA

im

im

im

a

a

a

a

,

,

,

,

3

2

1

K

Rate matching

i

imB

im

im

im

b

b

b

b

,

,

,

,

3

2

1

K

TrBk concatenation /

Code block segmentation

CRC attachment

i

iT

i

i

i

t

t

t

t

,

,

,

,

3

2

1

K

Radio frame

equalisation

1

st

 interleaving

TrCH

 Multiplexing

p

pU

p

p

p

w

w

w

w

,

,

,

,

3

2

1

K

S

h

h

h

h

,

,

,

,

3

2

1

K

Bit Scrambling

Figure 1: Transport channel multiplexing structure for uplink and downlink for 3.84Mcps TDD

[image: image2.wmf]

Rate

matching

Physical channel

segmentati

on

Ph

CH#1

Ph

CH#2

i

iT

i

i

i

d

d

d

d

,

,

,

,

3

2

1

K

i

iN

i

i

i

e

e

e

e

,

,

,

,

3

2

1

K

Radio frame segmentation

i

iV

i

i

i

f

f

f

f

,

,

,

,

3

2

1

K

S

s

s

s

s

,

,

,

,

3

2

1

K

p

pU

p

p

p

u

u

u

u

,

,

,

,

3

2

1

K

t

U

t

t

t

t

v

v

v

v

,

3

,

2

,

1

,

,

,

,

,

K

2

nd

 interleaving

Physical channel mapping

i

iE

i

i

i

c

c

c

c

,

,

,

,

3

2

1

K

i

irK

ir

ir

ir

o

o

o

o

,

,

,

,

3

2

1

K

Channel coding

i

imA

im

im

im

a

a

a

a

,

,

,

,

3

2

1

K

Rate matching

i

imB

im

im

im

b

b

b

b

,

,

,

,

3

2

1

K

TrBk concatenation /

Code block segmentation

CRC attachment

i

iT

i

i

i

t

t

t

t

,

,

,

,

3

2

1

K

Radio frame

equalisation

1

st

 interleaving

TrCH

 Multiplexing

p

pU

p

p

p

w

w

w

w

,

,

,

,

3

2

1

K

S

h

h

h

h

,

,

,

,

3

2

1

K

Bit Scrambling

Figure 2: Transport channel multiplexing structure for uplink and downlink of 1.28Mcps TDD

Primarily, transport channels are multiplexed as described above, i.e. into one data stream mapped on one or several physical channels. However, an alternative way of multiplexing services is to use multiple CCTrCHs (Coded Composite Transport Channels), which corresponds to having several parallel multiplexing chains as in figures 1 and 2, resulting in several data streams, each mapped to one or several physical channels.

4.2.1
CRC attachment
Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The size of the CRC is 24, 16, 12, 8 or 0 bits and it is signalled from higher layers what CRC size that should be used for each transport channel.
4.2.1.1
CRC calculation

The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated by one of the following cyclic generator polynomials:
gCRC24(D) = D24 + D23 + D6 + D5 + D + 1

gCRC16(D) = D16 + D12 + D5 + 1

gCRC12(D) = D12 + D11 + D3 + D2 + D + 1

gCRC8(D) = D8 + D7 + D4 + D3 + D + 1

Denote the bits in a transport block delivered to layer 1 by [image: image3.wmf]i

imA

im

im

im

a

a

a

a

,

,

,

,

3

2

1

K

, and the parity bits by [image: image4.wmf]i

imL

im

im

im

p

p

p

p

,

,

,

,

3

2

1

K

. Ai is the size of a transport block of TrCH i, m is the transport block number, and Li is the number of parity bits. Li can take the values 24, 16, 12, 8, or 0 depending on what is signalled from higher layers.
The encoding is performed in a systematic form, which means that in GF(2), the polynomial:

[image: image5.wmf]24

1

23

22

2

23

1

24

22

2

23

1

im

im

im

im

imA

A

im

A

im

p

D

p

D

p

D

p

D

a

D

a

D

a

i

i

i

+

+

+

+

+

+

+

+

+

+

K

K

yields a remainder equal to 0 when divided by gCRC24(D), polynomial:

[image: image6.wmf]16

1

15

14

2

15

1

16

14

2

15

1

im

im

im

im

imA

A

im

A

im

p

D

p

D

p

D

p

D

a

D

a

D

a

i

i

i

+

+

+

+

+

+

+

+

+

+

K

K

yields a remainder equal to 0 when divided by gCRC16(D), polynomial:

[image: image7.wmf]12

1

11

10

2

11

1

12

10

2

11

1

im

im

im

im

imA

A

im

A

im

p

D

p

D

p

D

p

D

a

D

a

D

a

i

i

i

+

+

+

+

+

+

+

+

+

+

K

K

yields a remainder equal to 0 when divided by gCRC12(D) and the polynomial:

[image: image8.wmf]8

1

7

6

2

7

1

8

6

2

7

1

im

im

im

im

imA

A

im

A

im

p

D

p

D

p

D

p

D

a

D

a

D

a

i

i

i

+

+

+

+

+

+

+

+

+

+

K

K

yields a remainder equal to 0 when divided by gCRC8(D).

If no transport blocks are input to the CRC calculation (Mi = 0), no CRC attachment shall be done. If transport blocks are input to the CRC calculation (Mi (0) and the size of a transport block is zero (Ai = 0), CRC shall be attached, i.e. all parity bits equal to zero.
4.2.1.2
Relation between input and output of the CRC attachment block
The bits after CRC attachment are denoted by [image: image9.wmf]i

imB

im

im

im

b

b

b

b

,

,

,

,

3

2

1

K

, where Bi = Ai + Li. The relation between aimk and bimk is:

[image: image10.wmf]imk

imk

a

b

=

k = 1, 2, 3, …, Ai

[image: image11.wmf]))

(

1

(

i

i

A

k

L

im

imk

p

b

-

-

+

=

k = Ai + 1, Ai + 2, Ai + 3, …, Ai + Li
4.2.2
Transport block concatenation and code block segmentation

All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than the maximum size of a code block, then code block segmentation is performed after the concatenation of the transport blocks. The maximum size of the code blocks depends on whether convolutional, turbo coding or no coding is used for the TrCH.

4.2.2.1
Concatenation of transport blocks

The bits input to the transport block concatenation are denoted by [image: image12.wmf]i

imB

im

im

im

b

b

b

b

,

,

,

,

3

2

1

K

 where i is the TrCH number, m is the transport block number, and Bi is the number of bits in each block (including CRC). The number of transport blocks on TrCH i is denoted by Mi. The bits after concatenation are denoted by [image: image13.wmf]i

iX

i

i

i

x

x

x

x

,

,

,

,

3

2

1

K

, where i is the TrCH number and Xi=MiBi. They are defined by the following relations:

[image: image14.wmf]k

i

ik

b

x

1

=

k = 1, 2, …, Bi
[image: image15.wmf])

(

,

2

,

i

B

k

i

ik

b

x

-

=

k = Bi + 1, Bi + 2, …, 2Bi
[image: image16.wmf])

2

(

,

3

,

i

B

k

i

ik

b

x

-

=

k = 2Bi + 1, 2Bi + 2, …, 3Bi

[image: image17.wmf]K

[image: image18.wmf])

)

1

(

(

,

,

i

i

i

B

M

k

M

i

ik

b

x

-

-

=

k = (Mi – 1)Bi + 1, (Mi – 1)Bi + 2, …, MiBi
4.2.2.2
Code block segmentation

Segmentation of the bit sequence from transport block concatenation is performed if Xi>Z. The code blocks after segmentation are of the same size. The number of code blocks on TrCH i is denoted by Ci. If the number of bits input to the segmentation, Xi, is not a multiple of Ci, filler bits are added to the beginning of the first block. If turbo coding is selected and Xi < 40, filler bits are added to the beginning of the code block. The filler bits are transmitted and they are always set to 0. The maximum code block sizes are:

-
convolutional coding: Z = 504;

-
turbo coding: Z = 5114;

-
no channel coding: Z = unlimited.

The bits output from code block segmentation, for Ci (0, are denoted by [image: image19.wmf]i

irK

ir

ir

ir

o

o

o

o

,

,

,

,

3

2

1

K

, where i is the TrCH number, r is the code block number, and Ki is the number of bits per code block.

Number of code blocks:

[image: image20.wmf]é

ù

ï

î

ï

í

ì

¹

=

=

=

¹

=

0

and

when

1

0

and

when

0

when

i

i

i

i

X

unlimited

Z

X

unlimited

Z

unlimited

Z

Z

X

C

Number of bits in each code block (applicable for Ci (0 only):

if Xi < 40 and Turbo coding is used, then

Ki = 40

else

Ki = (Xi / Ci(
end if
Number of filler bits: Yi = CiKi – Xi
for k = 1 to Yi

-- Insertion of filler bits
[image: image21.wmf]0

1

=

k

i

o

end for

for k = Yi+1 to Ki
[image: image22.wmf])

(

,

1

i

Y

k

i

k

i

x

o

-

=

end for

r = 2

-- Segmentation

while r (Ci
for k = 1 to Ki
[image: image23.wmf])

)

1

(

(

,

i

i

Y

K

r

k

i

irk

x

o

-

×

-

+

=

end for

r = r+1

end while

4.2.3
Channel coding

Code blocks are delivered to the channel coding block. They are denoted by [image: image24.wmf]i

irK

ir

ir

ir

o

o

o

o

,

,

,

,

3

2

1

K

, where i is the TrCH number, r is the code block number, and Ki is the number of bits in each code block. The number of code blocks on TrCH i is denoted by Ci. After encoding the bits are denoted by [image: image25.wmf]i

irY

ir

ir

ir

y

y

y

y

,

,

,

,

3

2

1

K

, where Yi is the number of encoded bits. The relation between oirk and yirk and between Ki and Yi is dependent on the channel coding scheme.

The following channel coding schemes can be applied to transport channels:

-
convolutional coding;
-
turbo coding;

-
no coding.

Usage of coding scheme and coding rate for the different types of TrCH is shown in tables 1 and 2. The values of Yi in connection with each coding scheme:

-
convolutional coding with rate 1/2: Yi = 2*Ki + 16; rate 1/3: Yi = 3*Ki + 24;

-
turbo coding with rate 1/3: Yi = 3*Ki + 12;

-
no coding: Yi = Ki.

Table 1: Usage of channel coding scheme and coding rate for 3.84Mcps TDD

	Type of TrCH
	Coding scheme
	Coding rate

	BCH
	Convolutional coding
	1/2

	PCH
	
	

	RACH
	
	

	DCH, DSCH, FACH, USCH
	
	1/3, 1/2

	
	No coding

	
	Turbo coding
	1/3

	HS-DSCH
	
	

Table 2: Usage of channel coding scheme and coding rate for 1.28Mcps TDD

	Type of TrCH
	Coding scheme
	Coding rate

	BCH
	Convolutional coding
	1/3

	PCH
	
	1/3, 1/2

	RACH
	
	1/2

	DCH, DSCH, FACH, USCH
	
	1/3, 1/2

	
	No coding

	
	Turbo coding
	1/3

	HS-DSCH
	
	

4.2.3.1
Convolutional coding
Convolutional codes with constraint length 9 and coding rates 1/3 and 1/2 are defined.

The configuration of the convolutional coder is presented in figure 3.
Output from the rate 1/3 convolutional coder shall be done in the order output 0, output 1, output 2, output 0, output 1, output 2, output 0,…,output 2. Output from the rate 1/2 convolutional coder shall be done in the order output 0, output 1, output 0, output 1, output 0, …, output 1.
8 tail bits with binary value 0 shall be added to the end of the code block before encoding.
The initial value of the shift register of the coder shall be "all 0" when starting to encode the input bits.
[image: image26.wmf]Output 0

G

0

 = 557 (

octal)

Input

D

D

D

D

D

D

D

D

Output 1

G

1

 = 663 (

octal)

Output 2

G

2

 = 711 (

octal)

Output 0

G

0

 = 561 (

octal)

Input

D

D

D

D

D

D

D

D

Output 1

G

1

 = 753 (

octal)

(a)

Rate 1/2

convolutional

coder

(b)

Rate 1/3

convolutional

coder

Figure 3: Rate 1/2 and rate 1/3 convolutional coders

4.2.3.2
Turbo coding

4.2.3.2.1
Turbo coder

The scheme of Turbo coder is a Parallel Concatenated Convolutional Code (PCCC) with two 8-state constituent encoders and one Turbo code internal interleaver. The coding rate of Turbo coder is 1/3. The structure of Turbo coder is illustrated in figure 4.
The transfer function of the 8-state constituent code for PCCC is:

G(D)= [image: image27.wmf]ú

û

ù

ê

ë

é

)

(

)

(

,

1

0

1

D

g

D

g

,

where

g0(D) = 1 + D2 + D3,

g1 (D) = 1 + D + D3.

The initial value of the shift registers of the 8-state constituent encoders shall be all zeros when starting to encode the input bits.

Output from the Turbo coder is , Y'(0), X(1), Y(1), Y'(1), etc:

x1, z1, z'1, x2, z2, z'2, …, xK, zK, z'K,

where x1, x2, …, xK are the bits input to the Turbo coder i.e. both first 8-state constituent encoder and Turbo code internal interleaver, and K is the number of bits, and z1, z2, …, zK and z'1, z'2, …, z'K are the bits output from first and second 8-state constituent encoders, respectively.
The bits output from Turbo code internal interleaver are denoted by x'1, x'2, …, x'K, and these bits are to be input to the second 8-state constituent encoder.

[image: image28.wmf]x

k

x

k

z

k

Turbo code

internal

interleaver

x

’

k

z

’

k

D

D

D

D

D

D

Input

Output

Input

Output

x

’

k

1st

constituent encoder

2nd

constituent encoder

Figure 4: Structure of rate 1/3 Turbo coder (dotted lines apply for trellis termination only)
4.2.3.2.2
Trellis termination for Turbo coder

Trellis termination is performed by taking the tail bits from the shift register feedback after all information bits are encoded. Tail bits are padded after the encoding of information bits.

The first three tail bits shall be used to terminate the first constituent encoder (upper switch of figure 4 in lower position) while the second constituent encoder is disabled. The last three tail bits shall be used to terminate the second constituent encoder (lower switch of figure 4 in lower position) while the first constituent encoder is disabled.

The transmitted bits for trellis termination shall then be:

xK+1, zK+1, xK+2, zK+2, xK+3, zK+3, x'K+1, z'K+1, x'K+2, z'K+2, x'K+3, z'K+3.

4.2.3.2.3
Turbo code internal interleaver

The Turbo code internal interleaver consists of bits-input to a rectangular matrix with padding, intra-row and inter-row permutations of the rectangular matrix, and bits-output from the rectangular matrix with pruning. The bits input to the Turbo code internal interleaver are denoted by [image: image29.wmf]K

x

x

x

x

,

,

,

,

3

2

1

K

, where K is the integer number of the bits and takes one value of 40 [image: image30.wmf]£

 K [image: image31.wmf]£

 5114. The relation between the bits input to the Turbo code internal interleaver and the bits input to the channel coding is defined by [image: image32.wmf]irk

k

o

x

=

 and K = Ki.
The following subclause specific symbols are used in subclauses 4.2.3.2.3.1 to 4.2.3.4.3.3:

K
Number of bits input to Turbo code internal interleaver

R
Number of rows of rectangular matrix

C
Number of columns of rectangular matrix

p
Prime number

v
Primitive root

[image: image33.wmf](

)

{

}

2

,

,

1

,

0

-

Î

p

j

j

s

L

Base sequence for intra-row permutation

qi
Minimum prime integers

ri
Permuted prime integers

[image: image34.wmf](

)

{

}

1

,

,

1

,

0

-

Î

R

i

i

T

L

Inter-row permutation pattern

[image: image35.wmf](

)

{

}

1

,

,

1

,

0

-

Î

C

j

j

i

U

L

Intra-row permutation pattern of i-th row
i
Index of row number of rectangular matrix

j
Index of column number of rectangular matrix

k
Index of bit sequence

4.2.3.2.3.1
Bits-input to rectangular matrix with padding
The bit sequence [image: image36.wmf]K

x

x

x

x

,

,

,

,

3

2

1

K

 input to the Turbo code internal interleaver is written into the rectangular matrix as follows.

(1)
Determine the number of rows of the rectangular matrix, R, such that:
[image: image37.wmf]ï

î

ï

í

ì

=

£

£

£

£

£

£

=

e)

other valu

any

(

if

20,

))

530

481

(

or

)

200

160

((

if

10,

)

159

40

(

if

5,

K

K

K

K

R

.

The rows of rectangular matrix are numbered 0, 1, …, R - 1 from top to bottom.
(2)
Determine the prime number to be used in the intra-permutation, p, and the number of columns of rectangular matrix, C, such that:
if (481 [image: image38.wmf]£

 K [image: image39.wmf]£

 530) then
p = 53 and C = p.
else
Find minimum prime number p from table 3 such that
[image: image40.wmf](

)

1

+

´

£

p

R

K

,
and determine C such that
[image: image41.wmf]ï

î

ï

í

ì

<

´

+

´

£

<

-

´

-

´

£

-

=

K

p

R

if

p

p

R

K

p

R

if

p

p

R

K

if

p

C

1

)

1

(

)

1

(

1

.

end if

The columns of rectangular matrix are numbered 0, 1, …, C - 1 from left to right.

Table 3: List of prime number p and associated primitive root v
	p
	v
	p
	v
	p
	v
	p
	v
	p
	v

	7
	3
	47
	5
	101
	2
	157
	5
	223
	3

	11
	2
	53
	2
	103
	5
	163
	2
	227
	2

	13
	2
	59
	2
	107
	2
	167
	5
	229
	6

	17
	3
	61
	2
	109
	6
	173
	2
	233
	3

	19
	2
	67
	2
	113
	3
	179
	2
	239
	7

	23
	5
	71
	7
	127
	3
	181
	2
	241
	7

	29
	2
	73
	5
	131
	2
	191
	19
	251
	6

	31
	3
	79
	3
	137
	3
	193
	5
	257
	3

	37
	2
	83
	2
	139
	2
	197
	2
	
	

	41
	6
	89
	3
	149
	2
	199
	3
	
	

	43
	3
	97
	5
	151
	6
	211
	2
	
	

(3)
Write the input bit sequence [image: image42.wmf]K

x

x

x

x

,

,

,

,

3

2

1

K

 into the R [image: image43.wmf]´

C rectangular matrix row by row starting with bit y1 in column 0 of row 0:

[image: image44.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

+

-

+

-

+

-

+

+

+

C

R

C

C

C

R

C

R

C

R

C

C

C

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

2

)

3

)

1

((

)

2

)

1

((

)

1

)

1

((

)

3

(

)

2

(

)

1

(

3

2

1

.
where yk = xk for k = 1, 2, …, K and if R[image: image45.wmf]´

C[image: image46.wmf]>

K, the dummy bits are padded such that [image: image47.wmf]1

0

or

y

k

=

 for k = K + 1, K + 2, …, R[image: image48.wmf]´

C. These dummy bits are pruned away from the output of the rectangular matrix after intra-row and inter-row permutations.

4.2.3.2.3.2
Intra-row and inter-row permutations

After the bits-input to the R[image: image49.wmf]´

C rectangular matrix, the intra-row and inter-row permutations for the R[image: image50.wmf]´

C rectangular matrix are performed stepwise by using the following algorithm with steps (1) – (6).
(1)
Select a primitive root v from table 3 in section 4.2.3.2.3.1, which is indicated on the right side of the prime number p.
(2)
Construct the base sequence [image: image51.wmf](

)

{

}

2

,

,

1

,

0

-

Î

p

j

j

s

L

 for intra-row permutation as:

[image: image52.wmf](

)

(

)

(

)

p

j

s

j

s

mod

1

-

´

=

n

,
j = 1, 2,… (p - 2), and s(0) = 1.

(3)
Assign q0 = 1 to be the first prime integer in the sequence [image: image53.wmf]{

}

1

,

,

1

,

0

-

Î

R

i

i

q

L

, and determine the prime integer qi in the sequence [image: image54.wmf]{

}

1

,

,

1

,

0

-

Î

R

i

i

q

L

 to be a least prime integer such that g.c.d(qi, p - 1) = 1, qi > 6, and qi > q(i - 1) for each i = 1, 2, …, R – 1. Here g.c.d. is greatest common divisor.

(4)
Permute the sequence [image: image55.wmf]{

}

1

,

,

1

,

0

-

Î

R

i

i

q

L

 to make the sequence [image: image56.wmf]{

}

1

,

,

1

,

0

-

Î

R

i

i

r

L

 such that
rT(i) = qi, i = 0, 1, …. , R - 1,
where [image: image57.wmf](

)

{

}

1

,

,

1

,

0

-

Î

R

i

i

T

L

 is the inter-row permutation pattern defined as the one of the four kind of patterns, which are shown in table 4, depending on the number of input bits K.
Table 4: Inter-row permutation patterns for Turbo code internal interleaver
	Number of input bits
K
	Number of rows R
	Inter-row permutation patterns

<T(0), T(1), …, T(R - 1)>

	(40[image: image58.wmf]£

K[image: image59.wmf]£

159)
	5
	<4, 3, 2, 1, 0>

	(160[image: image60.wmf]£

K[image: image61.wmf]£

200) or (481[image: image62.wmf]£

K[image: image63.wmf]£

530)
	10
	<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>

	(2281[image: image64.wmf]£

K[image: image65.wmf]£

2480) or (3161[image: image66.wmf]£

K[image: image67.wmf]£

3210)
	20
	<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 16, 13, 17, 15, 3, 1, 6, 11, 8, 10>

	K = any other value
	20
	<19, 9, 14, 4, 0, 2, 5, 7, 12, 18, 10, 8, 13, 17, 3, 1, 16, 6, 15, 11>

(5)
Perform the i-th (i = 0,1, …, R - 1) intra-row permutation as:

if (C = p) then

[image: image68.wmf](

)

(

)

(

)

(

)

1

mod

-

´

=

p

r

j

s

j

U

i

i

, j = 0, 1, …, (p - 2), and Ui(p - 1) = 0,

where Ui(j) is the original bit position of j-th permuted bit of i-th row.
end if
if (C = p + 1) then

[image: image69.wmf](

)

(

)

(

)

(

)

1

mod

-

´

=

p

r

j

s

j

U

i

i

, j = 0, 1, …, (p - 2). Ui(p - 1) = 0, and Ui(p) = p,

where Ui(j) is the original bit position of j-th permuted bit of i-th row, and

if (K =R[image: image70.wmf]´

C) then

Exhange UR-1(p) with UR-1(0).
end if

end if
if (C = p - 1) then

[image: image71.wmf](

)

(

)

(

)

(

)

1

1

mod

-

-

´

=

p

r

j

s

j

U

i

i

, j =0, 1, …, (p - 2),

where Ui(j) is the original bit position of j-th permuted bit of i-th row.

end if
(6)
Perform the inter-row permutation for the rectangular matrix based on the pattern [image: image72.wmf](

)

{

}

1

,

,

1

,

0

-

Î

R

i

i

T

L

,

where T(i) is the original row position of the i-th permuted row.
4.2.3.2.3.3
Bits-output from rectangular matrix with pruning

After intra-row and inter-row permutations, the bits of the permuted rectangular matrix are denoted by y'k:
[image: image73.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

´

+

-

+

-

+

+

+

+

R

C

R

C

R

C

R

R

R

R

R

R

R

y

y

y

y

y

y

y

y

y

y

y

y

'

'

'

'

'

'

'

'

'

'

'

'

)

2

)

1

((

)

1

)

1

((

3

2

)

2

2

(

)

2

(

2

)

1

2

(

)

1

(

1

M

K

K

M

M

M

K

K

The output of the Turbo code internal interleaver is the bit sequence read out column by column from the intra-row and inter-row permuted R [image: image74.wmf]´

 C rectangular matrix starting with bit y'1 in row 0 of column 0 and ending with bit y'CR in row R - 1 of column C - 1. The output is pruned by deleting dummy bits that were padded to the input of the rectangular matrix before intra-row and inter row permutations, i.e. bits y'k that corresponds to bits yk with k > K are removed from the output. The bits output from Turbo code internal interleaver are denoted by x'1, x'2, …, x'K, where x'1 corresponds to the bit y'k with smallest index k after pruning, x'2 to the bit y'k with second smallest index k after pruning, and so on. The number of bits output from Turbo code internal interleaver is K and the total number of pruned bits is:

R[image: image75.wmf]´

C – K.

4.2.3.3
Concatenation of encoded blocks

After the channel coding for each code block, if Ci is greater than 1, the encoded blocks are serially concatenated so that the block with lowest index r is output first from the channel coding block, otherwise the encoded block is output from channel coding block as it is. The bits output are denoted by [image: image76.wmf]i

iE

i

i

i

c

c

c

c

,

,

,

,

3

2

1

K

, where i is the TrCH number and Ei = CiYi. The output bits are defined by the following relations:

[image: image77.wmf]k

i

ik

y

c

1

=

k = 1, 2, …, Yi

[image: image78.wmf])

(

,

2

,

i

Y

k

i

ik

y

c

-

=

k = Yi + 1, Yi + 2, …, 2Yi

[image: image79.wmf])

2

(

,

3

,

i

Y

k

i

ik

y

c

-

=

k = 2Yi + 1, 2Yi + 2, …, 3Yi

[image: image80.wmf]K

[image: image81.wmf])

)

1

(

(

,

,

i

i

i

Y

C

k

C

i

ik

y

c

-

-

=

k = (Ci - 1)Yi + 1, (Ci - 1)Yi + 2, …, CiYi

If no code blocks are input to the channel coding (Ci = 0), no bits shall be output from the channel coding, i.e. Ei = 0.

4.2.4
Radio frame size equalisation

Radio frame size equalisation is padding the input bit sequence in order to ensure that the output can be segmented in Fi data segments of same size as described in the subclause 4.2.6.

The input bit sequence to the radio frame size equalisation is denoted by[image: image82.wmf]i

iE

i

i

i

c

c

c

c

,

,

,

,

3

2

1

K

, where i is TrCH number and Ei the number of bits. The output bit sequence is denoted by[image: image83.wmf]i

iT

i

i

i

t

t

t

t

,

,

,

,

3

2

1

K

, where Ti is the number of bits. The output bit sequence is derived as follows:

tik = cik, for k = 1… Ei and

tik = {0 , 1} for k= Ei +1… Ti, if Ei < Ti
where

Ti = Fi * Ni and

[image: image84.wmf]é

ù

i

i

i

F

E

N

=

 is the number of bits per segment after size equalisation.

4.2.5
1st interleaving

The 1st interleaving is a block interleaver with inter-column permutations. The input bit sequence to the block interleaver is denoted by [image: image85.wmf]i

X

i

i

i

i

x

x

x

x

,

3

,

2

,

1

,

,

,

,

,

K

, where i is TrCH number and Xi the number of bits. Here Xi is guaranteed to be an integer multiple of the number of radio frames in the TTI. The output bit sequence from the block interleaver is derived as follows:
1)
select the number of columns C1 from table 5 depending on the TTI. The columns are numbered 0, 1, …, C1 - 1 from left to right.
2)
determine the number of rows of the matrix, R1 defined as

R1 = Xi / C1.

The rows of the matrix are numbered 0, 1, …, R1 - 1 from top to bottom.
3)
write the input bit sequence into the R1 [image: image86.wmf]´

 C1 matrix row by row starting with bit [image: image87.wmf]1

,

i

x

 in column 0 of row 0 and ending with bit [image: image88.wmf])

C1

R1

(

,

´

i

x

 in column C1 - 1 of row R1 – 1:

[image: image89.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

´

+

´

-

+

´

-

+

´

-

+

+

+

)

C1

R1

(

,

)

C1

2

(

,

C1

,

)

3

C1

)

1

R1

((

,

)

2

C1

)

1

R1

((

,

)

1

C1

)

1

R1

((

,

)

3

C1

(

,

)

2

C1

(

,

)

1

C1

(

,

3

,

2

,

1

,

i

i

i

i

i

i

i

i

i

i

i

i

x

x

x

x

x

x

x

x

x

x

x

x

M

K

K

M

M

M

K

K

4)
Perform the inter-column permutation for the matrix based on the pattern [image: image90.wmf](

)

{

}

1

C1

,

,

1

,

0

C1

1

P

-

Î

K

j

j

 shown in table 5, where P1C1(j) is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by yi,k:

[image: image91.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

+

´

-

+

´

-

´

´

+

´

+

+

´

+

)

R1

C1

(

,

)

2

R1

)

1

C1

((

,

)

1

R1

)

1

C1

((

,

)

R1

3

(

,

)

R1

2

(

,

R1

,

)

2

R1

2

(

,

)

2

R1

(

,

2

,

)

1

R1

2

(

,

)

1

R1

(

,

1

,

i

i

i

i

i

i

i

i

i

i

i

i

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

5)
Read the output bit sequence [image: image92.wmf])

R1

C1

(

,

3

,

2

,

1

,

,

,

,

,

´

i

i

i

i

y

y

y

y

K

 of the block interleaver column by column from the inter-column permuted R1 [image: image93.wmf]´

 C1 matrix. Bit [image: image94.wmf]1

,

i

y

 corresponds to row 0 of column 0 and bit [image: image95.wmf])

C1

R1

(

,

´

i

y

 corresponds to row R1 - 1 of column C1 - 1.

Table 5 Inter-column permutation patterns for 1st interleaving
	TTI
	Number of columns C1
	Inter-column permutation patterns <P1C1(0), P1C1(1), …, P1C1(C1-1)>

	5ms(*1), 10 ms
	1
	<0>

	20 ms
	2
	<0,1>

	40 ms
	4
	<0,2,1,3>

	80 ms
	8
	<0,4,2,6,1,5,3,7>

(*1) can be used for PRACH for 1.28 Mcps TDD

4.2.5.1
Relation between input and output of 1st interleaving
The bits input to the 1st interleaving are denoted by [image: image96.wmf]i

T

i

i

i

i

t

t

t

t

,

3

,

2

,

1

,

,

,

,

,

K

, where i is the TrCH number and Ti the number of bits. Hence, xi,k = ti,k and Xi = Ti.
The bits output from the 1st interleaving are denoted by [image: image97.wmf]i

T

i

i

i

i

d

d

d

d

,

3

,

2

,

1

,

,

,

,

,

K

, and di,k = yi,k.
4.2.6
Radio frame segmentation

When the transmission time interval is longer than 10 ms, the input bit sequence is segmented and mapped onto consecutive Fi radio frames. Following radio frame size equalisation the input bit sequence length is guaranteed to be an integer multiple of Fi.

The input bit sequence is denoted by [image: image98.wmf]i

iX

i

i

i

x

x

x

x

,

,

,

,

3

2

1

K

 where i is the TrCH number and Xi is the number bits. The Fi output bit sequences per TTI are denoted by [image: image99.wmf]i

i

i

i

i

Y

n

i

n

i

n

i

n

i

y

y

y

y

,

3

,

2

,

1

,

,

,

,

,

K

where ni is the radio frame number in current TTI and Yi is the number of bits per radio frame for TrCH i. The output sequences are defined as follows:

[image: image100.wmf]k

n

i

i

y

,

= [image: image101.wmf](

)

(

)

k

Y

n

i

i

i

x

+

×

-

1

,

, ni = 1…Fi, k = 1…Yi
where

Yi = (Xi / Fi) is the number of bits per segment.

The ni –th segment is mapped to the ni –th radio frame of the transmission time interval.

The input bit sequence to the radio frame segmentation is denoted by [image: image102.wmf]i

iT

i

i

i

d

d

d

d

,

,

,

,

3

2

1

K

, where i is the TrCH number and Ti the number of bits. Hence, xik = dik and Xi = Ti.
The output bit sequence corresponding to radio frame ni is denoted by [image: image103.wmf]i

iN

i

i

i

e

e

e

e

,

,

,

,

3

2

1

K

, where i is the TrCH number and Ni is the number of bits. Hence, [image: image104.wmf]k

n

i

k

i

i

y

e

,

,

=

and Ni = Yi.

4.2.7
Rate matching

Rate matching means that bits on a TrCH are repeated or punctured. Higher layers assign a rate-matching attribute for each TrCH. This attribute is semi-static and can only be changed through higher layer signalling. The rate-matching attribute is used when the number of bits to be repeated or punctured is calculated.

The number of bits on a TrCH can vary between different transmission time intervals. When the number of bits between different transmission time intervals is changed, bits are repeated to ensure that the total bit rate after TrCH multiplexing is identical to the total channel bit rate of the allocated physical channels.

If no bits are input to the rate matching for all TrCHs within a CCTrCH, the rate matching shall output no bits for all TrCHs within the CCTrCH.
Notation used in subclause 4.2.7 and subclauses:

Nij :

Number of bits in a radio frame before rate matching on TrCH i with transport format combination j.

[image: image105.wmf]j

i

N

,

D

 :
If positive – number of bits to be repeated in each radio frame on TrCH i with transport format

If negative – number of bits to be punctured in each radio frame on TrCH i with transport format combination j.

RMi :

Semi-static rate matching attribute for TrCH i. Signalled from higher layers.

PL :

Puncturing limit. This value limits the amount of puncturing that can be applied in order to minimise the number of physical channels. Signalled from higher layers. The allowed puncturing in % is actually equal to (1-PL)*100.

Ndata,j :
Total number of bits that are available for a CCTrCH in a radio frame with transport format combination j.

P :

number of physical channels used in the current frame.

Pmax :

maximum number of physical channels allocated for a CCTrCH.

Up :

Number of data bits in the physical channel p with p = 1...P.

I :

Number of TrCHs in a CCTrCH.

Zij :

Intermediate calculation variable.

Fi :

Number of radio frames in the transmission time interval of TrCH i.

ni :

Radio frame number in the transmission time interval of TrCH i (0 (ni < Fi).

q :
Average puncturing or repetition distance(normalised to only show the remaining rate matching on top of an integer number of repetitions).

P1F(ni) :
The column permutation function of the 1st interleaver, P1F(x) is the original position of column with number x after permutation. P1 is defined on table 5 of section 4.2.5 (note that P1F self-inverse).

S[n] :

The shift of the puncturing or repetition pattern for radio frame ni when [image: image106.wmf](

)

i

F

n

n

i

1

P

=

.

TFi(j) :

Transport format of TrCH i for the transport format combination j.

TFS(i) :
The set of transport format indexes l for TrCH i.

eini :

Initial value of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.
eplus :

Increment of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.

eminus :

Decrement of variable e in the rate matching pattern determination algorithm of subclause 4.2.7.3.

b :

Indicates systematic and parity bits.

b=1: Systematic bit. X(t) in subclause 4.2.3.2.1.

b=2: 1st parity bit (from the upper Turbo constituent encoder). Y(t) in subclause 4.2.3.2.1.

b=3: 2nd parity bit (from the lower Turbo constituent encoder). Y'(t) in subclause 4.2.3.2.1.
4.2.7.1
Determination of rate matching parameters

The following relations, defined for all TFC j, are used when calculating the rate matching pattern:

[image: image107.wmf]0

,

0

=

j

Z

[image: image108.wmf]ú

ú

ú

ú

ú

û

ú

ê

ê

ê

ê

ê

ë

ê

´

÷

÷

ø

ö

ç

ç

è

æ

´

÷

ø

ö

ç

è

æ

´

=

å

å

=

=

I

m

j

m

m

j

data

i

m

j

m

m

j

i

N

RM

N

N

RM

Z

1

,

,

1

,

,

for all i = 1 ... I (1)
[image: image109.wmf]j

i

j

i

j

i

j

i

N

Z

Z

N

,

,

1

,

,

-

-

=

D

-

for all i = 1 ... I
Puncturing can be used to minimise the required transmission capacity. The maximum amount of puncturing that can be applied is 1-PL, PL is signalled from higher layers. The possible values for Ndata depend on the number of physical channels Pmax , allocated to the respective CCTrCH, and on their characteristics (spreading factor, length of midamble and TFCI code word, usage of TPC and multiframe structure), which is given in [7].

For each physical channel an individual minimum spreading factor Spmin is transmitted by means of the higher layers. Denote the number of data bits in each physical channel by Up,Sp , where p indicates the sequence number 1(p(Pmax and Sp indicates the spreading factor with the possible values {16, 8, 4, 2, 1} of this physical channel. The index p is described in section 4.2.13 with the following modifications: spreading factor (Q) is replaced by the minimum spreading factor Spmin and k is replaced by the channelization code index at Q= Spmin. Then, for Ndata one of the following values in ascending order can be chosen:

[image: image110.wmf](

)

{

}

min

max

max

min

min

min

min

min

,

2

,

2

1

,

1

2

,

2

1

,

1

1

,

1

...

,

,

SP

P

S

S

S

S

S

U

U

U

U

U

U

+

+

+

+

Optionally, if indicated by higher layers for the UL the UE shall vary the spreading factor autonomously, so that Ndata is one of the following values in ascending order:

[image: image111.wmf](

)

{

}

min

max

max

min

min

max

min

min

min

min

min

min

,

2

,

2

1

,

1

16

,

2

,

2

1

,

1

2

,

2

1

,

1

16

,

2

1

,

1

1

,

1

16

,

1

...

,...,

...

,...,

,...,

,

,...,

SP

P

S

S

P

S

S

S

S

S

S

U

U

U

U

U

U

U

U

U

U

U

U

+

+

+

+

+

+

+

+

Ndata, j for the transport format combination j is determined by executing the following algorithm:
SET1 = { Ndata such that [image: image112.wmf]{

}

j

x

I

x

x

data

y

I

y

N

RM

PL

N

RM

,

1

1

min

´

´

-

´

÷

ø

ö

ç

è

æ

å

=

£

£

 is non negative }

Ndata, j = min SET1

The number of bits to be repeated or punctured, (Ni,j, within one radio frame for each TrCH i is calculated with the relations given at the beginning of this subclause for all possible transport format combinations j and selected every radio frame. The number of physical channels corresponding to Ndata, j, shall be denoted by P.
If (Ni,j = 0 then the output data of the rate matching is the same as the input data and the rate matching algorithm of subclause 4.2.7.3 does not need to be executed.

Otherwise, the rate matching pattern is calculated with the algorithm described in subclause 4.2.7.3. For this algorithm the parameters eini, eplus, eminus, and Xi are needed, which are calculated according to the equations in subclauses 4.2.7.1.1 and 4.2.7.1.2.

4.2.7.1.1
Uncoded and convolutionally encoded TrCHs

a = 2
(Ni = (Ni,j
Xi = Ni,j
R = (Ni,j mod Ni,j -- note: in this context (Ni,j mod Ni,j is in the range of 0 to Ni,j-1 i.e. -1 mod 10 = 9.
if R (0 and 2(R (Ni,j
then q = (Ni,j / R(
else
q = (Ni,j / (R - Ni,j)(

endif

NOTE 1:
q is a signed quantity.
If q is even

then q' = q + gcd((q(, Fi) / Fi -- where gcd ((q(, Fi) means greatest common divisor of (q(and Fi
NOTE 2:
q' is not an integer, but a multiple of 1/8.

else

q' = q

endif

for x = 0 to Fi-1

S[((x(q'((mod Fi] = (((x*q'((div Fi)

end for

eini = (a (S[P1Fi(ni)] (|(Ni | + 1) mod (a (Ni,j)

eplus = a (Xi
eminus = a (|(Ni|
puncturing for (Ni <0, repetition otherwise.

4.2.7.1.2
Turbo encoded TrCHs

If repetition is to be performed on turbo encoded TrCHs, i.e. (Ni,j >0, the parameters in subclause 4.2.7.1.1 are used.

If puncturing is to be performed, the parameters below shall be used. Index b is used to indicate systematic (b=1), 1st parity (b=2), and 2nd parity bit (b=3).

a = 2 when b=2

a = 1 when b=3
[image: image113.wmf]ë

û

é

ù

î

í

ì

=

D

=

D

=

D

3

,

2

2

,

2

,

,

b

N

b

N

N

j

i

j

i

i

If [image: image114.wmf]i

N

D

 is calculated as 0 for b=2 or b=3, then the following procedure and the rate matching algorithm of subclause 4.2.7.3 don't need to be performed for the corresponding parity bit stream.
Xi = (Ni,j /3(,

q = (Xi /|(Ni| (
if(q[image: image115.wmf]£

2)

for r=0 to Fi-1

S[(3(r+b-1) mod Fi] = r mod 2;

end for

else
if q is even
then q(= q – gcd(q, Fi)/ Fi -- where gcd (q, Fi) means greatest common divisor of q and Fi
NOTE:
q(is not an integer, but a multiple of 1/8.
else
q(= q
endif

for x=0 to Fi –1

r = (x(q'(mod Fi;

S[(3(r+b-1) mod Fi] = (x(q((div Fi;

endfor

endif
For each radio frame, the rate-matching pattern is calculated with the algorithm in subclause 4.2.7.3, where:

Xi is as above,
eini = (a(S[P1 Fi (ni)]((|(Ni| + Xi) mod (a(Xi), if eini = 0 then eini = a(Xi
eplus = a(Xi
eminus = a(|(Ni|
4.2.7.2
Bit separation and collection for rate matching

The systematic bits of turbo encoded TrCHs shall not be punctured, the other bits may be punctured. The systematic bits, first parity bits, and second parity bits in the bit sequence input to the rate matching block are therefore separated into three sequences.

The first sequence contains:

-
All of the systematic bits that are from turbo encoded TrCHs.

-
From 0 to 2 first and/or second parity bits that are from turbo encoded TrCHs. These bits come into the first sequence when the total number of bits in a block after radio frame segmentation is not a multiple of three.

-
Some of the systematic, first parity and second parity bits that are for trellis termination.

The second sequence contains:

-
All of the first parity bits that are from turbo encoded TrCHs, except those that go into the first sequence when the total number of bits is not a multiple of three.

-
Some of the systematic, first parity and second parity bits that are for trellis termination.

The third sequence contains:

-
All of the second parity bits that are from turbo encoded TrCHs, except those that go into the first sequence when the total number of bits is not a multiple of three.

-
Some of the systematic, first parity and second parity bits that are for trellis termination.

The second and third sequences shall be of equal length, whereas the first sequence can contain from 0 to 2 more bits. Puncturing is applied only to the second and third sequences.

The bit separation function is transparent for uncoded TrCHs, convolutionally encoded TrCHs, and for turbo encoded TrCHs with repetition. The bit separation and bit collection are illustrated in figures 5 and 6.

[image: image116.wmf]Radio frame

segmentation

Bit separation

Rate matching

algorithm

Bit

collection

TrCH

Multiplexing

Rate matching

e

ik

x

2

ik

x

1

ik

x

3

ik

y

2

ik

y

3

ik

y

1

ik

f

ik

Rate matching

algorithm

Figure 5: Puncturing of turbo encoded TrCHs

[image: image117.wmf]Radio frame

segmentation

Bit separation

Rate matching

algorithm

Bit

collection

TrCH

Multiplexing

Rate matching

e

ik

x

1

ik

y

1

ik

f

ik

Figure 6: Rate matching for uncoded TrCHs, convolutionally encoded TrCHs,
and for turbo encoded TrCHs with repetition

The bit separation is dependent on the 1st interleaving and offsets are used to define the separation for different TTIs. b indicates the three sequences defined in this section, with b=1 indicating the first sequence, b = 2 the second one, and b = 3 the third one.

The offsets (b for these sequences are listed in table 6.

Table 6: TTI dependent offset needed for bit separation

	TTI (ms)
	(1
	(2
	(3

	10, 40
	0
	1
	2

	20, 80
	0
	2
	1

The bit separation is different for different radio frames in the TTI. A second offset is therefore needed. The radio frame number for TrCH i is denoted by ni. and the offset by [image: image118.wmf]i

n

b

.

Table 7: Radio frame dependent offset needed for bit separation

	TTI (ms)
	(0
	(1
	(2
	(3
	(4
	(5
	(6
	(7

	10
	0
	NA
	NA
	NA
	NA
	NA
	NA
	NA

	20
	0
	1
	NA
	NA
	NA
	NA
	NA
	NA

	40
	0
	1
	2
	0
	NA
	NA
	NA
	NA

	80
	0
	1
	2
	0
	1
	2
	0
	1

4.2.7.2.1
Bit separation

The bits input to the rate matching are denoted by [image: image119.wmf]i

N

i

i

i

i

e

e

e

e

,

3

,

2

,

1

,

,

,

,

,

K

, where i is the TrCH number and Ni is the number of bits input to the rate matching block. Note that the transport format combination number j for simplicity has been left out in the bit numbering, i.e. Ni=Nij. The bits after separation are denoted by [image: image120.wmf]i

X

i

b

i

b

i

b

i

b

x

x

x

x

,

,

3

,

,

2

,

,

1

,

,

,

,

,

,

K

. For turbo encoded TrCHs with puncturing, b indicates the three sequences defined in section 4.2.7.2, with b=1 indicating the first sequence, and so forth. For all other cases b is defined to be 1. Xi is the number of bits in each separated bit sequence. The relation between ei,k and xb,i,k is given below.

For turbo encoded TrCHs with puncturing:

[image: image121.wmf]3

mod

)

(

1

)

1

(

3

,

,

,

1

1

i

n

k

i

k

i

e

x

b

a

+

+

+

-

=

k = 1, 2, 3, …, Xi

Xi = (Ni /3(
[image: image122.wmf]ë

û

ë

û

k

N

i

k

N

i

i

i

e

x

+

+

=

3

/

3

,

3

/

,

,

1

k = 1, …, Ni mod 3

Note: When (Ni mod 3) = 0 this row is not needed.

[image: image123.wmf]3

mod

)

(

1

)

1

(

3

,

,

,

2

2

i

n

k

i

k

i

e

x

b

a

+

+

+

-

=

k = 1, 2, 3, …, Xi

Xi = (Ni /3(
[image: image124.wmf]3

mod

)

(

1

)

1

(

3

,

,

,

3

3

i

n

k

i

k

i

e

x

b

a

+

+

+

-

=

k = 1, 2, 3, …, Xi

Xi = (Ni /3(
For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

[image: image125.wmf]k

i

k

i

e

x

,

,

,

1

=

k = 1, 2, 3, …, Xi

Xi = Ni
4.2.7.2.2
Bit collection

The bits xb,i,k are input to the rate matching algorithm described in subclause 4.2.7.3. The bits output from the rate matching algorithm are denoted [image: image126.wmf]i

Y

i

b

i

b

i

b

i

b

y

y

y

y

,

,

3

,

,

2

,

,

1

,

,

,

,

,

,

K

.

Bit collection is the inverse function of the separation. The bits after collection are denoted by [image: image127.wmf]i

Y

i

b

i

b

i

b

i

b

z

z

z

z

,

,

3

,

,

2

,

,

1

,

,

,

,

,

,

K

. After bit collection, the bits indicated as punctured are removed and the bits are then denoted by [image: image128.wmf]i

V

i

i

i

i

f

f

f

f

,

3

,

2

,

1

,

,

,

,

,

K

, where i is the TrCH number and Vi = Ni,j+(Ni,j. The relations between yb,i,k, zb,i,k, and fi,k are given below.
For turbo encoded TrCHs with puncturing (Yi=Xi):
[image: image129.wmf]k

i

k

i

y

z

i

n

,

,

1

3

mod

)

(

1

)

1

(

3

,

1

=

+

+

+

-

b

a

k = 1, 2, 3, …, YI

[image: image130.wmf]ë

û

ë

û

k

N

i

k

N

i

i

i

y

z

+

+

=

3

/

,

,

1

3

/

3

,

k = 1, …, Ni mod 3

Note: When (Ni mod 3) = 0 this row is not needed.

[image: image131.wmf]k

i

k

i

y

z

i

n

,

,

2

3

mod

)

(

1

)

1

(

3

,

2

=

+

+

+

-

b

a

k = 1, 2, 3, …, Yi
[image: image132.wmf]k

i

k

i

y

z

i

n

,

,

3

3

mod

)

(

1

)

1

(

3

,

3

=

+

+

+

-

b

a

k = 1, 2, 3, …, Yi
After the bit collection, bits zi,k with value (, where (({0, 1}, are removed from the bit sequence. Bit fi,1 corresponds to the bit zi,k with smallest index k after puncturing, bit fi,2 corresponds to the bit zi,k with second smallest index k after puncturing, and so on.

For uncoded TrCHs, convolutionally encoded TrCHs, and turbo encoded TrCHs with repetition:

[image: image133.wmf]k

i

k

i

y

z

,

,

1

,

=

k = 1, 2, 3, …, Yi
When repetition is used, fi,k=zi,k and Yi=Vi.

When puncturing is used, Yi=Xi and bits zi,k with value (, where (({0, 1}, are removed from the bit sequence. Bit fi,1 corresponds to the bit zi,k with smallest index k after puncturing, bit fi,2 corresponds to the bit zi,k with second smallest index k after puncturing, and so on.

4.2.7.3
Rate matching pattern determination

The bits input to the rate matching are denoted by [image: image134.wmf]i

X

i

i

i

i

x

x

x

x

,

3

,

2

,

1

,

,

,

,

,

K

, where i is the TrCH and Xi is the parameter given in subclauses 4.2.7.1.1 and 4.2.7.1.2.
NOTE:
The transport format combination number j for simplicity has been left out in the bit numbering.

The rate matching rule is as follows:

if puncturing is to be performed

e = eini
-- initial error between current and desired puncturing ratio

m = 1

-- index of current bit

do while m <= Xi

e = e – eminus

-- update error

if e <= 0 then

-- check if bit number m should be punctured

set bit xi,m to (where (({0, 1}

e = e + eplus

-- update error

end if

m = m + 1

-- next bit

end do

else

e = eini
-- initial error between current and desired puncturing ratio

m = 1

-- index of current bit

do while m <= Xi

e = e – eminus

-- update error

do while e <= 0

-- check if bit number m should be repeated

repeat bit xi,m
e = e + eplus
-- update error

end do

m = m + 1

-- next bit

end do

end if

A repeated bit is placed directly after the original one.

4.2.8
TrCH multiplexing

Every 10 ms, one radio frame from each TrCH is delivered to the TrCH multiplexing. These radio frames are serially multiplexed into a coded composite transport channel (CCTrCH). If the TTI is smaller than 10ms, then no TrCH multiplexing is performed.
The bits input to the TrCH multiplexing are denoted by [image: image135.wmf]i

V

i

i

i

i

f

f

f

f

,

3

,

2

,

1

,

,

,

,

,

K

, where i is the TrCH id number and Vi is the number of bits in the radio frame of TrCH i. The number of TrCHs is denoted by I. The bits output from TrCH multiplexing are denoted by [image: image136.wmf]S

h

h

h

h

,

,

,

,

3

2

1

K

, where S is the number of bits, i.e. [image: image137.wmf]å

=

i

i

V

S

. The TrCH multiplexing is defined by the following relations:

[image: image138.wmf]k

k

f

h

,

1

=

k = 1, 2, …, V1
[image: image139.wmf])

(

,

2

1

V

k

k

f

h

-

=

k = V1+1, V1+2, …, V1+V2
[image: image140.wmf]))

(

(

,

3

2

1

V

V

k

k

f

h

+

-

=

k = (V1+V2)+1, (V1+V2)+2, …, (V1+V2)+V3

[image: image141.wmf]K

[image: image142.wmf]))

(

(

,

1

2

1

-

+

+

+

-

=

I

V

V

V

k

I

k

f

h

K

k = (V1+V2+…+VI-1)+1, (V1+V2+…+VI-1)+2, …, (V1+V2+…+VI-1)+VI

4.2.9
Bit Scrambling

The bits output from the TrCH multiplexer are scrambled in the bit scrambler. The bits input to the bit scrambler are denoted by[image: image143.wmf]S

h

h

h

h

,

,

,

,

3

2

1

K

, where S is the number of bits input to the bit scrambling block equal to the total number of bits on the CCTrCH. The bits after bit scrambling are denoted [image: image144.wmf]S

s

s

s

s

,

,

,

,

3

2

1

K

.

Bit scrambling is defined by the following relation:

[image: image145.wmf]k

k

k

p

h

s

Å

=

 [image: image146.wmf]S

k

,

2

,

1

K

=

and [image: image147.wmf]k

p

 results from the following operation:

[image: image148.wmf]2

mod

16

1

÷

ø

ö

ç

è

æ

×

=

å

=

-

i

i

k

i

k

p

g

p

; [image: image149.wmf]1

;

0

<

=

k

p

k

 ; [image: image150.wmf]1

1

=

p

; [image: image151.wmf]{

}

1

,

0

,

1

,

1

,

0

,

1

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

,

0

=

g

4.2.10
Physical channel segmentation

When more than one PhCH is used, physical channel segmentation divides the bits among the different PhCHs. The bits input to the physical channel segmentation are denoted by [image: image152.wmf]S

s

s

s

s

,

,

,

,

3

2

1

K

, where S is the number of bits input to the physical channel segmentation block. The number of PhCHs after rate matching is denoted by P, as defined in subclause 4.2.7.1.
The bits after physical channel segmentation are denoted [image: image153.wmf]p

U

p

p

p

p

u

u

u

u

,

3

,

2

,

1

,

,

,

,

,

K

, where p is PhCH number and Up is the in general variable number of bits in the respective radio frame for each PhCH. The relation between sk and up,k is given below.
Bits on first PhCH after physical channel segmentation:
[image: image154.wmf]k

k

s

u

=

,

1

k = 1, 2 , …, U1

Bits on second PhCH after physical channel segmentation:
[image: image155.wmf])

(

,

2

1

U

k

k

s

u

+

=

k = 1, 2 , …, U2
…
Bits on the Pth PhCH after physical channel segmentation:
[image: image156.wmf])

(

,

1

1

-

+

+

+

=

P

U

U

k

k

P

s

u

K

k = 1, 2 , …, UP
4.2.11
2nd interleaving

The 2nd interleaving is a block interleaver and consists of bits input to a matrix with padding, the inter-column permutation for the matrix and bits output from the matrix with pruning. The 2nd interleaving can be applied jointly to all data bits transmitted during one frame, or separately within each timeslot, on which the CCTrCH is mapped. The selection of the 2nd interleaving scheme is controlled by higher layer.

4.2.11.1
Frame related 2nd interleaving

In case of frame related 2nd interleaving, the bits input to the block interleaver are denoted by [image: image157.wmf]U

x

x

x

x

,

,

,

,

3

2

1

K

, where U is the total number of bits after TrCH multiplexing transmitted during the respective radio frame with [image: image158.wmf]å

=

=

p

p

U

U

S

.

The relation between xk and the bits up,k in the respective physical channels is given below:
[image: image159.wmf]k

k

u

x

,

1

=

k = 1, 2 , …, U1
[image: image160.wmf]k

U

k

u

x

,

2

)

(

1

=

+

k = 1, 2 , …, U2

…
[image: image161.wmf]k

P

U

U

k

u

x

P

,

)

...

(

1

1

=

-

+

+

+

k = 1, 2 , …, UP

The following steps have to be performed once for each CCTrCH:
(1)
Assign C2 = 30 to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2, …, C2 - 1 from left to right.

(2)
Determine the number of rows of the matrix, R2, by finding minimum integer R2 such that:

U (R2 X C2.

The rows of rectangular matrix are numbered 0, 1, 2, …, R2 - 1 from top to bottom.
(3)
Write the input bit sequence [image: image162.wmf]U

x

x

x

x

,

,

,

,

3

2

1

K

 into the R2 [image: image163.wmf]´

 C2 matrix row by row starting with bit [image: image164.wmf]1

y

 in column 0 of row 0:

[image: image165.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

´

+

´

-

+

´

-

+

´

-

+

+

+

)

C2

R2

(

C2)

2

(

C2

)

3

C2

)

1

R2

((

)

2

C2

)

1

R2

((

)

1

C2

)

1

R2

((

)

3

C2

(

)

2

C2

(

)

1

C2

(

3

2

1

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

where [image: image166.wmf]k

k

x

y

=

 for k = 1, 2, …, U and if R2 (C2 > U, the dummy bits are padded such that [image: image167.wmf]k

y

 = 0 or 1 for k = U + 1, U + 2, …, R2 (C2. These dummy bits are pruned away from the output of the matrix after the inter-column permutation.
(4)
Perform the inter-column permutation for the matrix based on the pattern [image: image168.wmf](

)

{

}

1

C2

,

,

1

,

0

2

P

-

Î

K

j

j

 that is shown in table 8, where P2(j) is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by [image: image169.wmf]k

y

'

.

[image: image170.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

+

´

+

´

´

´

+

´

+

+

´

+

)

R2

C2

(

)

2

R2

)

1

-

C2

((

)

1

R2

)

1

-

C2

((

)

R2

3

(

)

R2

2

(

R2

)

2

R2

2

(

)

2

R2

(

2

)

1

R2

2

(

)

1

R2

(

1

'

'

'

'

'

'

'

'

'

'

'

'

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

(5)
The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted R2 [image: image171.wmf]´

 C2 matrix. The output is pruned by deleting dummy bits that were padded to the input of the matrix before the inter-column permutation, i.e. bits [image: image172.wmf]k

y

'

 that corresponds to bits [image: image173.wmf]k

y

 with k > U are removed from the output. The bits at the output of the block interleaver are denoted by
[image: image174.wmf]U

z

z

z

,

,

,

2

1

K

, where z1 corresponds to the bit [image: image175.wmf]k

y

'

 with smallest index k after pruning, z2 to the bit [image: image176.wmf]k

y

'

 with second smallest index k after pruning, and so on.

The bits
[image: image177.wmf]U

z

z

z

,

,

,

2

1

K

 shall be segmented as follows:

[image: image178.wmf]k

k

z

u

=

,

1

k = 1, 2 , …, U1

[image: image179.wmf])

(

,

2

1

U

k

k

z

u

+

=

k = 1, 2 , …, U2
…

[image: image180.wmf])

(

,

1

1

-

+

+

+

=

P

U

U

k

k

P

z

u

K

k = 1, 2 , …, UP
The bits after frame related 2nd interleaving are denoted by
[image: image181.wmf]t

U

t

t

t

v

v

v

,

2

,

1

,

,...,

,

, where t refers to the timeslot sequence number and Ut is the number of bits transmitted in this timeslot during the respective radio frame.

Let T be the number of time slots in a CCTrCH during the respective radio frame (where for 1.28Mcps TDD, the respective radio frame includes subframes 1 and 2), and
[image: image182.wmf]T

t

,

,

1

K

=

. The physical layer shall assign the time slot sequence number t in ascending order of the allocated time slots in the CCTrCH in the respective radio frame. In time slot t, Rt refers to the number of physical channels within the respective time slot and
[image: image183.wmf]t

R

r

,

,

1

K

=

. The relation between r and t and the physical channel sequence number p as detailed in 4.2.13.1 is given by:

[image: image184.wmf]1

=

=

t

r

p

[image: image185.wmf]T

t

r

R

R

R

p

t

£

<

+

+

=

-

1

,

,

1

2

1

K

Defining the relation ut,r,k = up,k and denoting
[image: image186.wmf]tr

U

 as the number of bits for physical channel r in time slot t, the relation between vt,k and ut,r,k is given below:

[image: image187.wmf]k

t

k

t

u

v

,

1

,

,

=

k = 1, 2 , …,
[image: image188.wmf]1

t

U

[image: image189.wmf]k

t

U

k

t

u

v

t

,

2

,

)

(

,

1

=

+

k = 1, 2 , …,
[image: image190.wmf]2

t

U

…

[image: image191.wmf](

)

k

R

t

U

U

k

t

t

t

R

t

t

u

v

,

,

)

...

(

,

1

1

=

-

+

+

+

k = 1, 2 , …,
[image: image192.wmf]t

tR

U

4.2.11.2
Timeslot related 2nd interleaving

In case of timeslot related 2nd interleaving, the bits input to the block interleaver are denoted by [image: image193.wmf]t

U

t

t

t

t

x

x

x

x

,

3

,

2

,

1

,

,

,

,

,

K

, where t is the timeslot sequence number, and Ut is the number of bits transmitted in this timeslot during the respective radio frame.
Let T be the number of time slots in a CCTrCH during the respective radio frame (where for 1.28Mcps TDD, the respective radio frame includes subframes 1 and 2), and
[image: image194.wmf]T

t

,

,

1

K

=

. The physical layer shall assign the time slot sequence number t in ascending order of the allocated time slots in the CCTrCH in the respective radio frame. In timeslot t, Rt refers to the number of physical channels within the respective timeslot and
[image: image195.wmf]t

R

r

,

,

1

K

=

. The relation between r and t and the physical channel sequence number p as detailed in 4.2.13.1 is given by:

[image: image196.wmf]1

=

=

t

r

p

[image: image197.wmf]T

t

r

R

R

R

p

t

£

<

+

+

=

-

1

,

,

1

2

1

K

 Defining the relation ut,r,k = up,k and denoting
[image: image198.wmf]tr

U

 as the number of bits for physical channel r in time slot t, the relation between xt,k and ut,r,k is given below:
[image: image199.wmf]k

t

k

t

u

x

,

1

,

,

=

k = 1, 2 , …, [image: image200.wmf]1

t

U

[image: image201.wmf]k

t

U

k

t

u

x

t

,

2

,

)

(

,

1

=

+

k = 1, 2 , …, [image: image202.wmf]2

t

U

…

[image: image203.wmf](

)

k

R

t

U

U

k

t

t

t

R

t

t

u

x

,

,

)

...

(

,

1

1

=

-

+

+

+

k = 1, 2 , …,
[image: image204.wmf]t

tR

U

The following steps have to be performed for each timeslot t, on which the respective CCTrCH is mapped:

(1)
Assign C2 = 30 to be the number of columns of the matrix. The columns of the matrix are numbered 0, 1, 2, …, C2 - 1 from left to right.

(2)
Determine the number of rows of the matrix, R2, by finding minimum integer R2 such that:

Ut (R2 (C2.
The rows of rectangular matrix are numbered 0, 1, 2, …, R2 - 1 from top to bottom.
(3)
Write the input bit sequence [image: image205.wmf]t

U

t

t

t

t

x

x

x

x

,

3

,

2

,

1

,

,

,

,

,

K

 into the R2 [image: image206.wmf]´

 C2 matrix row by row starting with bit [image: image207.wmf]1

,

t

y

 in column 0 of row 0:

[image: image208.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

´

+

´

-

+

´

-

+

´

-

+

+

+

)

C2

R2

(

,

C2)

2

(

,

C2

,

)

3

C2

)

1

R2

((

,

)

2

C2

)

1

R2

((

,

)

1

C2

)

1

R2

((

,

)

3

C2

(

,

)

2

C2

(

,

)

1

C2

(

,

3

,

2

,

1

,

t

t

t

t

t

t

t

t

t

t

t

t

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

where [image: image209.wmf]k

t

k

t

x

y

,

,

=

 for k = 1, 2, …, Ut and if R2 (C2 > Ut, the dummy bits are padded such that [image: image210.wmf]k

t

y

,

 = 0 or 1 for k = Ut + 1, Ut + 2, …, R2 (C2. These dummy bits are pruned away from the output of the matrix after the inter-column permutation.
(4)
Perform the inter-column permutation for the matrix based on the pattern [image: image211.wmf](

)

{

}

1

C2

,

,

1

,

0

2

P

-

Î

K

j

j

 that is shown in table 8, where P2(j) is the original column position of the j-th permuted column. After permutation of the columns, the bits are denoted by [image: image212.wmf]k

t

y

,

'

.

[image: image213.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

´

+

´

+

´

´

´

+

´

+

+

´

+

)

R2

C2

(

,

)

2

R2

)

1

-

C2

((

,

)

1

R2

)

1

-

C2

((

,

)

R2

3

(

,

)

R2

2

(

,

R2

,

)

2

R2

2

(

,

)

2

R2

(

,

2

,

)

1

R2

2

(

,

)

1

R2

(

,

1

,

'

'

'

'

'

'

'

'

'

'

'

'

t

t

t

t

t

t

t

t

t

t

t

t

y

y

y

y

y

y

y

y

y

y

y

y

M

K

K

M

M

M

K

K

(5)
The output of the block interleaver is the bit sequence read out column by column from the inter-column permuted R2 [image: image214.wmf]´

 C2 matrix. The output is pruned by deleting dummy bits that were padded to the input of the matrix before the inter-column permutation, i.e. bits [image: image215.wmf]k

t

y

,

'

 that corresponds to bits [image: image216.wmf]k

t

y

,

 with k > Ut are removed from the output. The bits after time slot 2nd interleaving are denoted by [image: image217.wmf]t

U

t

t

t

v

v

v

,

2

,

1

,

,

,

,

K

, where vt,1 corresponds to the bit [image: image218.wmf]k

t

y

,

'

 with smallest index k after pruning, vt,2 to the bit [image: image219.wmf]k

t

y

,

'

 with second smallest index k after pruning, and so on.
Table 8 Inter-column permutation pattern for 2nd interleaving
	Number of Columns C2
	Inter-column permutation pattern
< P2(0), P2(1), …, P2(C2-1) >

	30
	<0, 20, 10, 5, 15, 25, 3, 13, 23, 8, 18, 28, 1, 11, 21,

6, 16, 26, 4, 14, 24, 19, 9, 29, 12, 2, 7, 22, 27, 17>

4.2.12
Sub-frame segmentation for the 1.28 Mcps option

In the 1.28Mcps TDD, it is needed to add a sub-frame segmentation unit between 2nd interleaving unit and physical channel mapping unit. The operation of rate-matching guarantees that the bit streams is a even number and can be subdivided into 2 sub-frames. The transport channel multiplexing structure for uplink and downlink is shown in figure 2.

The input bit sequence is denoted by [image: image220.wmf]i

iX

i

i

i

x

x

x

x

,

,

,

,

3

2

1

K

 where i is the TrCH number and Xi is the number bits. The two output bit sequences per radio frame are denoted by [image: image221.wmf]i

i

i

i

i

Y

n

i

n

i

n

i

n

i

y

y

y

y

,

3

,

2

,

1

,

,

,

,

,

K

where ni is the sub-frame number in current radio frame and Yi is the number of bits per radio frame for TrCH i. The output sequences are defined as follows:

[image: image222.wmf]k

n

i

i

y

,

= [image: image223.wmf](

)

(

)

k

Y

n

i

i

i

x

+

×

-

1

,

, ni = 1 or 2, k = 1…Yi
where

Yi = (Xi / 2) is the number of bits per sub-frame,

[image: image224.wmf]ik

x

 is the kth bit of the input bit sequence and

[image: image225.wmf]k

n

i

i

y

,

is the kth bit of the output bit sequence corresponding to the nth sub-frame

The input bit sequence to the sub-frame segmentation is denoted by
[image: image226.wmf]t

U

t

t

t

t

v

v

v

v

,

3

,

2

,

1

,

,

,

,

,

K

, xik = vt,k and Xi = Ut.

The output bit sequence corresponding to subframe ni is denoted by [image: image227.wmf]p

pU

p

p

g

g

g

,

,

,

2

1

K

, where p is the PhCH number and Up is the number of bits in one subframe for the respective PhCH. Hence, [image: image228.wmf]k

n

i

pk

i

y

g

,

=

and Up = Yi.

4.2.13
Physical channel mapping

4.2.13.1
Physical channel mapping for the 3.84 Mcps option

The PhCH for both uplink and downlink is defined in [6]. The bits after physical channel mapping are denoted by [image: image229.wmf]p

U

p

p

p

w

w

w

,

2

,

1

,

,

,

,

K

, where p is the PhCH number corresponding to the sequence number 1(p(P of this physical channel as detailed below, Up is the number of bits in one radio frame for the respective PhCH, and P(. Pmax. The bits wp,k are mapped to the PhCHs so that the bits for each PhCH are transmitted over the air in ascending order with respect to k.

The physical layer shall assign the physical channel sequence number p to the physical channels of the CCTrCH in the respective radio frame, treating each allocated timeslot in ascending order. If within a timeslot there are multiple physical channels they shall first be ordered in ascending order of the spreading factor (Q) and subsequently by channelisation code index (k), as shown in [9].

The mapping of the bits
[image: image230.wmf]t

U

t

t

t

v

v

v

,

2

,

1

,

,...,

,

 is performed like block interleaving, writing the bits into columns, but a PhCH with an odd number is filled in forward order, whereas a PhCH with an even number is filled in reverse order.

The mapping scheme, as described in the following subclause, shall be applied individually for each timeslot t used in the current frame. Therefore, the bits [image: image231.wmf]t

U

t

t

t

v

v

v

,

2

,

1

,

,...,

,

 are assigned to the bits of the physical channels [image: image232.wmf]t

tP

t

t

t

U

P

t

U

t

U

t

w

w

w

...

1

,

,

...

1

,

2

,

...

1

,

1

,

,...,

,

2

1

 in each timeslot.

In uplink there are at most two codes allocated (P(2). If there is only one code, the same mapping as for downlink is applied. Denote SF1 and SF2 the spreading factors used for code 1 and 2, respectively. For the number of consecutive bits to assign per code bsk the following rule is applied:

if

SF1 >= SF2 then bs1 = 1 ; bs2 = SF1/SF2 ;

else

SF2 > SF1 then bs1 = SF2/SF1; bs2 = 1 ;

end if

In the downlink case bsp is 1 for all physical channels.

4.2.13.1.1
Mapping scheme

Notation used in this subclause:

P t:

number of physical channels for timeslot t , Pt = 1..2 for uplink ; Pt = 1...16 for downlink

Ut,p:
capacity in bits for the physical channel p in timeslot t

Ut.:

total number of bits to be assigned for timeslot t

bsp:
number of consecutive bits to assign per code

for downlink all bsp = 1

for uplink

if SF1 >= SF2 then bs1 = 1 ; bs2 = SF1/SF2 ;

if SF2 > SF1 then bs1 = SF2/SF1; bs2 = 1 ;

fbp:
number of already written bits for each code

pos:
intermediate calculation variable

for p=1 to P t

-- reset number of already written bits for every physical channel

fbp = 0

end for

p = 1

-- start with PhCH #1

for k=1 to Ut.
do while (fbp == Ut,p)

-- physical channel filled up already ?

p = (p mod Pt) + 1;

end do

if (p mod 2) == 0

pos = Ut,p - fbp

-- reverse order

else

pos = fbp + 1

-- forward order

endif

wt,p,pos = vt,k

-- assignment

fbp = fbp + 1

-- Increment number of already written bits

if (fbp mod bsp) == 0

-- Conditional change to the next physical channel

p = (p mod Pt) + 1;

end if

end for

4.2.13.2
Physical channel mapping for the 1.28 Mcps option

The bit streams from the sub-frame segmentation unit are mapped onto code channels of time slots in sub-frames.

The bits after physical channel mapping are denoted by [image: image233.wmf]p

pU

p

p

w

w

w

,

,

,

2

1

K

, where p is the PhCH number and Up is the number of bits in one sub-frame for the respective PhCH. The bits wpk are mapped to the PhCHs so that the bits for each PhCH are transmitted over the air in ascending order with respect to k.

The mapping of the bits[image: image234.wmf]p

pU

p

p

g

g

g

,

,

,

2

1

K

is performed like block interleaving, writing the bits into columns, but a PhCH with an odd number is filled in forward order, were as a PhCH with an even number is filled in reverse order.

The mapping scheme, as described in the following subclause, shall be applied individually for each timeslot t used in the current subframe. Therefore, the bits [image: image235.wmf]p

pU

p

p

g

g

g

,

,

,

2

1

K

are assigned to the bits of the physical channels [image: image236.wmf]t

tP

t

t

t

U

tP

U

t

U

t

w

w

w

...

1

,

...

1

,

2

...

1

,

1

,...,

,

2

1

 in each timeslot.

In uplink there are at most two codes allocated (P(2). If there is only one code, the same mapping as for downlink is applied. Denote SF1 and SF2 the spreading factors used for code 1 and 2, respectively. For the number of consecutive bits to assign per code bsk the following rule is applied:

if

SF1 >= SF2 then bs1 = 1 ; bs2 = SF1/SF2 ;

else

SF2 > SF1 then bs1 = SF2/SF1; bs2 = 1 ;

end if

In the downlink case bsp is 1 for all physical channels.

4.2.13.2.1
Mapping scheme

Notation used in this subclause:

P t:
number of physical channels for timeslot t , Pt = 1..2 for uplink ; Pt = 1...16 for downlink

Utp:
capacity in bits for the physical channel p in timeslot t

Ut.:
total number of bits to be assigned for timeslot t

bsp:
number of consecutive bits to assign per code

for downlink all bsp = 1

for uplink

if SF1 >= SF2 then bs1 = 1 ; bs2 = SF1/SF2 ;

if SF2 > SF1 then bs1 = SF2/SF1; bs2 = 1 ;

fbp:
number of already written bits for each code

pos:
intermediate calculation variable

for p=1 to P t

-- reset number of already written bits for every physical channel

fbp = 0

end for

p = 1

-- start with PhCH #1

for k=1 to Ut.

do while (fbp == Ut,p)

-- physical channel filled up already ?

p = (p mod P t) + 1 ;

end do

if (p mod 2) == 0

pos = Ut,p - fbp

-- reverse order

else

pos = fbp + 1

-- forward order

end if

wtp,pos = gt,k

-- assignment

fbp = fbp + 1

-- Increment number of already written bits

If (fbp mod bsp) == 0

-- Conditional change to the next physical channel

p = (p mod P t) + 1 ;

end if

end for

4.2.14
Multiplexing of different transport channels onto one CCTrCH, and mapping of one CCTrCH onto physical channels

Different transport channels can be encoded and multiplexed together into one Coded Composite Transport Channel (CCTrCH). The following rules shall apply to the different transport channels which are part of the same CCTrCH:

1)
Transport channels multiplexed into one CCTrCh shall have co-ordinated timings. When the TFCS of a CCTrCH is changed because one or more transport channels are added to the CCTrCH or reconfigured within the CCTrCH, or removed from the CCTrCH, the change may only be made at the start of a radio frame with CFN fulfilling the relation

CFN mod Fmax = 0,

where Fmax denotes the maximum number of radio frames within the transmission time intervals of all transport channels which are multiplexed into the same CCTrCH, including any transport channels i which are added reconfigured or have been removed, and CFN denotes the connection frame number of the first radio frame of the changed CCTrCH.

After addition or reconfiguration of a transport channel i within a CCTrCH, the TTI of transport channel i may only start in radio frames with CFN fulfilling the relation

CFNi mod Fi = 0.

2)
Different CCTrCHs cannot be mapped onto the same physical channel.

3)
One CCTrCH shall be mapped onto one or several physical channels.

4)
Dedicated Transport channels and common transport channels cannot be multiplexed into the same CCTrCH.

5)
For the common transport channels, only the FACH and PCH may belong to the same CCTrCH.

6)
Each CCTrCH carrying a BCH shall carry only one BCH and shall not carry any other Transport Channel.

7)
Each CCTrCH carrying a RACH shall carry only one RACH and shall not carry any other Transport Channel.

Hence, there are two types of CCTrCH.

CCTrCH of dedicated type, corresponding to the result of coding and multiplexing of one or several DCH.

CCTrCH of common type, corresponding to the result of the coding and multiplexing of a common channel, i.e. RACH and USCH in the uplink and DSCH, BCH, FACH or PCH in the downlink, respectively.

Transmission of TFCI is possible for CCTrCH containing Transport Channels of:

-
dedicated type;

-
USCH type;

-
DSCH type;

-
FACH and/or PCH type.

4.2.14.1
Allowed CCTrCH combinations for one UE

4.2.14.1.1
Allowed CCTrCH combinations on the uplink

The following CCTrCH combinations for one UE are allowed, also simultaneously:

1)
several CCTrCH of dedicated type;

2)
several CCTrCH of common type.

4.2.14.1.2
Allowed CCTrCH combinations on the downlink

The following CCTrCH combinations for one UE are allowed, also simultaneously:

3)
several CCTrCH of dedicated type;

4)
several CCTrCH of common type.

4.2.15
Transport format detection

Transport format detection can be performed both with and without Transport Format Combination Indicator (TFCI). If a TFCI is transmitted, the receiver detects the transport format combination from the TFCI. When no TFCI is transmitted, so called blind transport format detection may be used, i.e. the receiver side uses the possible transport format combinations as a priori information.
4.2.15.1
Blind transport format detection
Blind Transport Format Detection is optional both in the UE and the UTRAN. Therefore, for all CCTrCH a TFCI shall be transmitted, including the possibility of a TFCI code word length zero, if only one TFC is defined.

4.2.15.2
Explicit transport format detection based on TFCI

4.2.15.2.1
Transport Format Combination Indicator (TFCI)

The Transport Format Combination Indicator (TFCI) informs the receiver of the transport format combination of the CCTrCHs. As soon as the TFCI is detected, the transport format combination, and hence the individual transport channels' transport formats are known, and decoding of the transport channels can be performed.

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1072854472.unknown

_1075133460.unknown

_1075133506.unknown

_1079348709.doc
[image: image1.wmf]i

irK

ir

ir

ir

o

o

o

o

,

,

,

,

3

2

1

K

[image: image2.wmf]i

iE

i

i

i

c

c

c

c

,

,

,

,

3

2

1

K

[image: image3.wmf]i

imA

im

im

im

a

a

a

a

,

,

,

,

3

2

1

K

[image: image4.wmf]t

U

t

t

t

t

v

v

v

v

,

3

,

2

,

1

,

,

,

,

,

K

[image: image5.wmf]p

pU

p

p

p

u

u

u

u

,

,

,

,

3

2

1

K

[image: image6.wmf]S

h

h

h

h

,

,

,

,

3

2

1

K

[image: image7.wmf]p

pU

p

p

p

w

w

w

w

,

,

,

,

3

2

1

K

[image: image8.wmf]i

imB

im

im

im

b

b

b

b

,

,

,

,

3

2

1

K

[image: image9.wmf]S

s

s

s

s

,

,

,

,

3

2

1

K

[image: image10.wmf]i

iV

i

i

i

f

f

f

f

,

,

,

,

3

2

1

K

[image: image11.wmf]i

iN

i

i

i

e

e

e

e

,

,

,

,

3

2

1

K

[image: image12.wmf]i

iT

i

i

i

d

d

d

d

,

,

,

,

3

2

1

K

[image: image13.wmf]i

iT

i

i

i

t

t

t

t

,

,

,

,

3

2

1

K

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Radio frame segmentation

Physical channel mapping

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Rate

matching

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

TrCH Multiplexing

2nd interleaving

PhCH#2

PhCH#1

� EMBED Equation.3 ���

Physical channel segmentation

Rate matching

1st interleaving

Radio frame equalisation

CRC attachment

Channel coding

TrBk concatenation /

Code block segmentation

� EMBED Equation.3 ���

Bit Scrambling

_995872496.unknown

_997688166.unknown

_1009350112.unknown

_1035890726.unknown

_1079348715.unknown

_1009350127.unknown

_997745612.unknown

_996989038.unknown

_996992256.unknown

_996385493.unknown

_995866548.unknown

_995868825.unknown

_995865400.unknown

_1079349223.unknown

_1075127930.unknown

_1075129698.unknown

_1075132755.unknown

_1075129685.unknown

_1075125797.unknown

_1075126975.unknown

_1075127808.unknown

_1072854536.unknown

_1072853398.unknown

_1072853406.unknown

_1072854421.unknown

_1072853261.unknown

_1009351820.unknown

_1028353809.unknown

_1009351803.unknown

