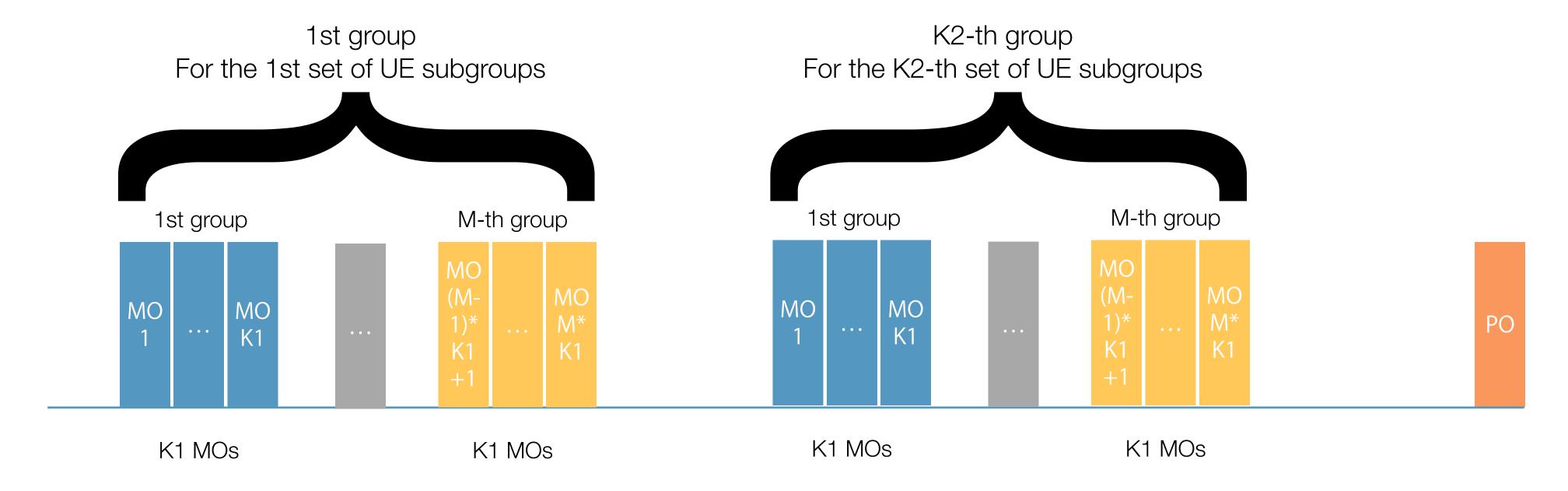

Proposal 1-7

- Option A: K LP-WUS MOs for a beam are divided into M groups of K1 LP-WUS MOs.
 - For each group of K1 LP-WUS MOs, the same LP-WUS is transmitted.
 - Different LP-WUS can be transmitted in different groups of K1 LP-WUS MOs.
 - FFS: UE monitoring behavior.
 - FFS K1=1 or K1>= 1
- Option B: K LP-WUS MOs for a beam are divided into K2 groups of K1*M LP-WUS MOs. A UE monitors one group of K1*M LP-WUS MOs based on its subgroup ID.
 - Each group of K1*M LP-WUS MOs is further divided into M groups of K1 LP-WUS MOs.
 - For each group of K1 LP-WUS MOs, the same LP-WUS is transmitted.
 - Different LP-WUS can be transmitted in different groups of K1 LP-WUS MOs.
 - FFS: UE monitoring behavior.
 - FFS K1=1 or K1>=1
 - K2 > = 1
 - Note: this achieves the same purpose as "Option 3: UEs monitoring the same PO are divided into multiple sets of subgroups, with UEs within each set of subgroups monitoring the same LO."

10/17/24 Apple Confidential

Option A

- Option A: K LP-WUS MOs for a beam are divided into M groups of R LP-WUS MOs.
 - For each group of R LP-WUS MOs, the same LP-WUS is transmitted.
 - Different LP-WUS can be transmitted in different groups of R LP-WUS MOs.
 - FFS: UE monitoring behavior.
 - FFS R=1 or R>= 1
 - M > = 1
- The UE may assume that if LP-WUS is transmitted, the same LP-WUS is transmitted in the group of R LP-WUS MOs. -> This mandates the gNB to transmit all or none.
 - The UE is not required to monitor all R MOs in a group. It may monitor just 1 of the R MOs.



Option B

- Option B: K LP-WUS MOs for a beam are divided into K2 groups of K1*M LP-WUS MOs. A UE monitors one group of K1*M LP-WUS MOs based on its subgroup ID.
 - Each group of K1*M LP-WUS MOs is further divided into M groups of K1 LP-WUS MOs.
 - For each group of K1 LP-WUS MOs, the same LP-WUS [information] is transmitted.
 - Different LP-WUS can be transmitted in different groups of K1 LP-WUS MOs.
 - FFS: UE monitoring behavior.
 - FFS K1=1 or K1>=1
 - K2 > = 1
 - M > = 1

10/17/24

- Note: this achieves the same purpose as "Option 3: UEs monitoring the same PO are divided into multiple sets of subgroups, with UEs within each set of subgroups monitoring the same LO."

Discussion on the Results in Companies Contributions

- [HW/Futurewei] To keep the FAR rate from noise <= 1%, LP-WUS needs >= [12] bits (plus Manchester coding) if UE needs to monitor 4 MOs, [9] bits for 1 MO.
- [HW/Futurewei] The FAR rate from a different code point is very low, lower than the FAR from noise.
 (R1-2403948 Appendix D, BER is obtained from the required BLER 1%)
- [HW/Futurewei] Assuming the same # of UEs and the same per-UE paging rate, different number of subgroups does not have much impact on the # of LP-WUS to be transmitted.
 - See Huawei's comments in the summary for Question 2-1.
 - Reason: Majority LP-WUS transmission is to page a single UE.
- [vivo] Assuming the same # of UEs and the same per-UE paging rate, similar overhead is observed for different number of subgroups.
- LP-WUS duration stays the same regardless of the number of subgroups??

HW

Table 1 Required number of groups/subgroups to achieve effective paging rate <=3%

- To achieve FAR <= 1%, 8-bit payload is needec
- Last row in the table
 - Per-UE paging rate 0.018%
 - -N = 169 UEs per subgroup
 - -M = 649519 UEs per TA
 - -M/N = 3843
 - How many POs?
 - With 64 POs, 649519/64 = 10148 UEs per PO

₩.				
	Number of sites per tracking area <i>M</i> (assuming ISD=500m)	Number of UEs per km ² [4]	Required number of groups/subgroups, <i>K</i>	log ₂ K
	500	10^6	~1.9*106	~21
	100	10^6	~3.8*10 ⁵	~19
	500	104	~1.9*104	~14
	100	104	~3.8*10 ³	~12

In this appendix, we provide the detailed analyzes of required number of groups/subgroups to achieve effective paging rate <=3%.

L represents the ISD of a site. Assuming a hexagon shape of the coverage of a site, the area of a site is $\frac{3\sqrt{3}}{2}L^2$.

M represents the number of sites per tracking area, and ρ represents the density of UEs, then the number of UEs in a tracking area is $\frac{3\sqrt{3}}{2}L^2M\rho$.

According to the TR [1], the relationship between per group paging probability R_G and a per UE paging probability R_E is $R_G = 1 - (1 - R_E)^N$, where N is the number of UEs in the group. Thus, to achieve a target effective paging rate (i.e. the paging rate for a group/subgroup), $N = \log_{(1-R_E)}(1 - R_G)$.

Then, the number of UEs per group/subgroup is $K = \frac{3\sqrt{3}L^2M\rho}{2\log_{(1-R_E)}(1-R_G)}$.

Apple Confidential

Table 1 FAR_c caused by codepoint mapping and required number of MOs to meet FAR $\leq 1\%$

······································		
UE setting	FAR _c by single MO	The number of required LP-WUS MOs to
		meet $FAR_c \leq 1\%$
eMBB set 1	20.2%~30.8% for N _{subgroup} =8~256	[3 4 4 4 4 4] for N _{subgroup} =[8 16 32 64 128 256]
eMBB set 2	$0.4\% \sim 0.6\%$ for $N_{\text{subgroup}} = 8 \sim 256$	[1 1 1 1 1 1] for N_{subgroup} =[8 16 32 64 128 256]
eMBB set 3	$14.8\%\sim22.5\%$ for $N_{\text{subgroup}}=8\sim256$	[3 3 3 4 4 4] for N _{subgroup} =[8 16 32 64 128 256]
IoT set 1	$4.1\%\sim6.2\%$ for $N_{\text{subgroup}}=8\sim256$	[2 2 2 2 2 2] for $N_{subgroup}$ =[8 16 32 64 128 256]
IoT set 2	$12.7\%\sim19.3\%$ for $N_{\text{subgroup}}=8\sim256$	[3 3 3 3 3 3] for N _{subgroup} =[8 16 32 64 128 256]

Table X setting cases for eMBB and IoT

Setting cases			total number of	Number of	per UE
	paging area	UEs with	UE in paging	PO	paging rate
	size [cells]	LPWUS/km2	area		
eMBB set 1	10	5000	3600	32	1%
eMBB set 2	10	10000	7200	64	0.1%
eMBB set 3	10	10000	7200	8	0.1%
IoT set 1	2	1000000	144000	64	0.018%
IoT set 2	2	1000000	144000	32	0.018%

6