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[bookmark: _Ref163224089]Introduction
The following study objectives related to CSI feedback enhancement were identified in the Release 19 work item description [2] :
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 
 


In this contribution, we discuss aspects related to the use case of CSI compression using two-sided model. Specifically, we discuss potential approaches to addressing the inter-vendor collaboration complexity issue, as well as approaches to improve the performance of CSI compression using localized models and temporal compression techniques including joint compression and prediction.
Inter-vendor collaboration aspects
In last meeting, following observations and conclusion are drawn for inter-vendor collaboration option 1 and 2. With such, it is clear that option 1 can be used to ensure RAN4 testing and interoperability. To purse real benefit of data-driven approaches in the field, option 3 / 4 / 5 are worth further investigation. Following agreements were made regarding inter-vendor collaboration option 3 / 4 / 5. As described, further clarifications of these options and the relevant study aspects are identified. In this section, we firstly elaborate on how inter-vendor collaboration complexity can be addressed in general, and secondly discuss how it is addressed with each particular option together with their pros and cons.Agreement
· For Option 3, further define the two sub-options:
· 3a: Parameters received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 3b: Parameters received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.
· For Option 5, further define the two sub-options:
· 5a: Model received at the UE or UE-side goes through offline engineering at the UE-side (e.g., UE-side OTT server), e.g., potential re-training, re-development of a different model, and/or offline testing.
· 5b: Model received at the UE are directly used for inference at the UE without offline engineering, potentially with on-device operations.
· For Option 4, it is clarified that:
· Dataset received at the UE or UE-side goes through offline engineering at the UE- side (e.g., UE-side OTT server), e.g., model training or offline testing.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 
Agreement
· For Option 3/4/5, focus further discussion on the following assumptions:
· Option 3a/5a
· The model(5a)/parameter(3a) exchange originates from the NW-side and ends at the UE-side.
· Model(5a)/parameters(3a) exchanged from the NW-side to UE-side is either CSI generation or reconstruction part or both.
· Option 3a-1/5a-1: Model/Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 3a-2/5a-2: Model/Parameters exchanged from the NW-side to UE-side is CSI reconstruction part.
· Option 3a-3/5a-3: Model/Parameters exchanged from the NW-side to UE-side are both CSI generation part and CSI reconstruction part.
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target 
· Dataset or information related to collecting dataset
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.
· Option 3b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4.
· The parameter exchange is from NW to UE.
· Parameters exchanged from the NW-side to UE-side is CSI generation part.
· Option 5b
· The method of exchanging is over the air-interface via model transfer/delivery Case z4, assuming that the model structure is aligned based on offline inter-vendor collaboration.
· The model exchange is from NW to UE.
· Model exchanged from the NW-side to UE-side is CSI generation part.
· Option 4:
· The dataset exchange originates from the NW-side and ends at the UE-side.
· Option 4-1: Dataset exchanged from the NW-side to UE-side consists of (target CSI,  CSI feedback).
· Option 4-2: Dataset exchanged from the NW-side to UE-side consists of (CSI feedback, reconstructed target CSI).
· Option 4-3: Dataset exchanged from the NW-side to UE-side consists of (target CSI, CSI feedback, reconstructed target CSI).
· Some additional information, if necessary, may be shared from the NW-side to help UE-side offline engineering and provide performance guidance.
· Performance target
· Study different methods of exchanging, e.g., over the air-interface, offline delivery, etc.
· Note: For each option/sub-option of interest, companies to bring discussion on how inter-vendor collaboration complexity, interoperability, and feasibility may be addressed. Companies to strive to provide solution(s) that can address all the following aspects: inter-vendor collaboration complexity, performance, interoperability, and feasibility.
· Note: The descriptions under each option are only for the purpose of simplified discussion and do not mean deprioritizing any other flavors (such as an exchange originating from the UE-side and ending at the NW-side) from potential specification. 

Conclusion:
· Conclude, from RAN1 perspective, that Option 1, if feasible for specification, eliminate the inter-vendor collaboration complexity (e.g., whether bilateral collaboration is required between vendors).
· It is RAN1’s understanding that Option 1 corresponds to RAN4 options, e.g., RAN4-Option3, or RAN4-Option4. Further study and final conclusion on interoperability and RAN4 testing of the RAN4-Option3 and RAN4-Option4 is up to RAN4.
Observation
· Option 1 and 2 may have limited performance in the field compared to Options 3, 4, and 5, further study is needed 
· Option 1 and 2 may require high specification effort from RAN1 perspective.
Conclusion
· Deprioritize Option 2 for inter-vendor training collaboration.
· Note: This deprioritization shall not affect the ongoing discussion in RAN4 on RAN4-Option3 and RAN4-Option4.


General aspects of inter-vendor collaboration complexity
During Rel-18 study, three types of training collaboration were discussed, i.e., joint training at one side with model transfer, joint training at two side (Type2) with gradient exchange, sequential training with data/model exchange (Type3). For any of the training collaborations, pair-wise collaboration is needed and pair-wise model may be resulted. To make the collaboration scalable across vendors, how to address the pair-wise inter-vendor collaboration complexity becomes the key objective of Rel-19 study. To this end, it is essential to identify the main source of the complexity.
Assuming an infra vendor and a UE vendor want to collaborate bilaterally, the procedure may involve following aspects:
1) Model design aspects or structure alignment: 
· This includes rank/layer handling, scalability over subband configurations / antenna port and layout configurations / payload configurations, quantization methods, etc. For example, the quantization methods and payload configuration would impact how the CSI generation model and reconstruction model interpret the UCI bits.
2) Model training / development: 
· This involves procedures for parameter update. Model training / development may consider vendor-specific optimization considering vendor’s capabilities and data distribution.
3) Parameter / model / dataset exchange
· This involves communication between NW vendors and UE vendors
Among these aspects, model design aspects or structure alignment is the major part of the inter-vendor collaboration complexity. If some of them can be standardized, it would be beneficial for designing a CSI generation part or reconstruction part with a good scalability across vendors. Otherwise, it might cost lots of effort aligning them using offline bilateral talk.
Regarding model training / development, for type 2 joint training at two sides and type 3 sequential training, the collaboration complexity is almost none because engineering is isolated at two sides. Vendor-specific optimization can be achieved naturally by training their own model at the respective side. However, type1 training at single side may need some inter-vendor collaboration in terms of optimizing vendor-specific model for the other side.
Parameter / model / dataset exchange is also simple. The only matter may be the overhead it consumes. This pair-wise communication can be further simplified if the procedure and/or the interface of model / dataset exchanging are standardized.
The major source of inter-vendor collaboration complexity lies in the alignment of model design aspects or structure.
Hence, based on the discussion, it can be seen that the most straightforward way to address inter-vendor collaboration is the standardization of model design aspects. With that, offline proprietary model design and signalling are also within the scope. 
[bookmark: _Ref166250988]Conclude that proprietary models and proprietary exchange methods are feasible. Inter-vendor collaboration complexity can be addressed by standardization of model design aspects or leveraging any standardization (e.g., standardized structure) resulting from the listed inter-vendor collaboration options.
Discussion on inter-vendor collaboration options
In this section, we discuss how inter-vendor collaboration complexity is addressed with option 3 / 4 / 5 and their specification impacts.
Option 3a/5a
In our view, in option 3a, the inter-vendor collaboration complexity is negligible as the model design aspects are covered by the standardization of model structure. Similarly, for 5a, although model structure is not standardized, some model design aspects can be standardized to alleviate the inter-vendor collaboration.
Regarding the options of whether transferring the CSI generation part or CSI reconstruction part or both, we think all them are workable in terms of generating UE’s own CSI generation part. More specifically, for CSI generation part exchange in option 3a-1/5a-1, UE-side may generate the mapping between input CSI and CSI feedback bits, then develop its own model based on the generated mapping relationship. For CSI reconstruction part exchange in option 3a-2/5a-2, UE-side can develop powerful CSI generation part given the CSI reconstruction part, similarly for option 3a-3/5a-3. Among them, option 3a-2/5a-2 and 3a-3/5a-3 seem to yield a better CSI generation part because they can handle UE-side input distribution mismatch due to device variations (i.e., develop a UE part that is compatible with the given UE/chipset (considering the form factor, antenna design, RF, and pre-processing of the UE/chipset)). However, with CSI generation part exchange only, the performance may be limited by the fixed mapping between input CSI and CSI feedback provided by the given CSI generation part.
Regarding method of parameter / model exchange, there are generally two options:
· Over-the-air (OTA) signalling: In this case, gNB may forward the parameter / model of the CSI generation/reconstruction part to a representative UE, this UE will relay the received parameters / model to its training entity. The benefit of this approach is that the model transfer can be managed within RAN and it is obvious that the inter-vendor collaboration complexity can be alleviated by specifying the OTA signalling. However, this approach may cause unnecessary cost of radio resource.
· Offline signalling: Since the offline engineering is performed at UE side training entity, this option is more proper as it transfers the parameter or model from NW side training entity to UE side training entity directly without the need of relaying by any UEs. Again, it is worth noting that the inter-vendor collaboration complexity occurred in offline signalling can be addressed by standardization of model design aspects. Besides, the pair-wise offline signalling can be further simplified if the procedure and/or the interface of exchanging the parameters or model are standardized.
Option 3b/5b
In these options, parameters / model of the CSI generation part is transferred to UE are used by UE for inference directly with on-device operation. Thus, the inter-vendor collaboration complexity can be addressed from model design aspects because the model training is handled by NW side. However, as discussed in section 2.1, to purse UE vendor-specific optimization using vendor-specific data needs some inter-vendor collaboration. More specifically, dataset used to develop the CSI generation parameter / model may be mismatched with the input precoder sample at the target UE due to specific antenna design, RF aspects and pre-processing variations, especially for new UEs/chipsets. Ideally, to address the issue, NW may want to collect data from sufficient UE vendors and develop specific CSI generation parameters / models for each UE vendor (but they may be connected to common CSI reconstruction model). 
Moreover, it is important to ensure that it is feasible for UE to run inference with the transferred parameters / models. To this end, the transferred parameters / models should be fully tested for target UE. For example, this could be achieved by having the UE-side involved in the model training and testing process. Thus, from this aspect, the feasibility can be addressed at the cost of additional inter-vendor collaboration complexity.
Regarding the method of signalling, OTA signalling is a proper choice for transferring the parameters / models to UE device for inference directly. Considering OTA signalling for CSI reconstruction model in option 3a, a unified signalling or framework can be studied.

Option 4
In light of the discussion under option 3a/5a, the options of dataset sharing under option 4 all facilitate the development of CSI generation part because the dataset provides mapping between input CSI and CSI feedback, or mapping between CSI feedback and reconstructed CSI. Among the 3 options, option 4a-2/4a-3 may yield a better performance because having access to the CSI reconstruction output allows UE-side to train a decoder model that in turn allows UE-side to use own dataset for compatible encoder training so that the issue of UE-side input distribution mismatch due to device variations can be handled.
Regarding the method of dataset exchange, OTA signalling and offline signalling can be employed. For OTA signalling, the inter-vendor collaboration complexity is addressed, but it will consume even larger radio resource compared to option 3a-2/5a-2 to transmit sufficient amount of data. Offline signalling is a more proper way. The inter-vendor collaboration complexity can be addressed by standardization of dataset format and/or standardization of the procedures for dataset exchange.
Summary
Based on the discussion above, we can see that 
· With the exchange of the parameters or model of CSI reconstruction part, UE-side can develop CSI generation model with UE vendor-specific optimization considering its own capability and dataset.
· With the exchange of the parameters or model of CSI generation part, UE runs the CSI generation model for inference at UE device directly, or UE side could develop a different CSI generation model. To ensure good performance in the field considering UE input distribution mismatch and UE implementation feasibility, some inter-vendor collaboration may be needed.
· OTA signalling and offline signalling can be considered to handle the parameter / model exchange of both CSI generation part and CSI reconstruction part.
Lastly but not least, each NW vendor and each UE vendor may have their own preference of the inter-vendor collaborations, some may favour UE side on-device inference directly, some may favour UE offline engineering with CSI reconstruction part sharing, some others may favour UE offline engineering with CSI reconstruction part sharing. Rathan than discussing down-selection in RAN1, one constructive way may be identifying the common ground of these options and strive to identify unified framework and signalling that can support the options as many as possible. Hence, we propose
[bookmark: _Ref166251000]For parameter / model exchange of CSI reconstruction part with performance requirement to facilitate UE-side offline engineering of developing CSI generation part, Conclude that inter-vendor collaboration complexity and interoperability can be addressed with following consideration on specification impact (either or both)
· Specify over-the-air signalling for decoder transfer.
· Offline exchange methods with standardized procedure (if needed) and / or standardized model design aspects (for option 5a) such as quantization, payload, layer/rank-specific models, scalability to various subband / port configurations, etc.
[bookmark: _Ref166251007]For parameter / model exchange of CSI reconstruction part, conclude that 
· UE side may further go through offline engineering of developing CSI generation part or run inference on device directly
· inter-vendor collaboration complexity can be addressed via (either or both)
· Specified over-the-air signalling for parameter / model transfer.
· Offline exchange methods with standardized procedure (if needed) and / or standardized model design aspects (for option 5a) such as quantization, payload, layer/rank-specific models, scalability to various subband / port configurations, etc
· Feasibility issue and performance limitation due to UE distribution mismatch can be addressed by inter-vendor collaboration.
[bookmark: _Ref166251020]Consider unified framework and signalling for CSI generation part and CSI reconstruction part exchange with and without UE side offline engineering.

UE-side monitoring based on intermediate KPI estimation
For two-sided CSI feedback, the target CSI and output CSI are generated at UE side and NW side separately. To enable monitoring based on inference accuracy, the UE could either generate the monitoring KPI or provide the target CSI to the NW-side. In Rel-18 study, following options regarding model monitoring based on intermediate KPI were discussed. 
	Agreement

In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.

TR 38.843:
-	KPIDiff is considered for:
-	Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
-	[…]
-	Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
-	Case 2-1: the proxy model is a proxy CSI reconstruction part, and KPIActual is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI. Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%. 
-	Case 2-2: the proxy model directly outputs intermediate KPI (KPIActual)
-	[…]




However, reporting target CSI to the NW side would incur large latency, overhead and require additional complexity for UE implementation. Besides, running CSI reconstruction model at UE may also increase UE side implementation complexity. Thus, UE-side monitoring based in intermediate KPI estimation would be more attractive. In this section, we will first discuss estimation accuracy using a UE-side proxy model (Case 2-2), and elaborate its comparison with NW side monitoring and relationship with inter-vendor collaboration options.
Evaluation
In this section, we discuss a scheme that can achieve low complexity, low overhead, high accuracy, and low latency. The scheme is based on UE-side monitoring using a model that estimates the SGCS directly. 
We develop an SGCS estimation model at the UE side which takes the latent information generated inside the UE-side model as input and outputs a predicted intermediate KPI (i.e., SGCS) directly. The total number of weights in the SGCS estimation model is around 13k, which is a very small fraction of the CSI generation model complexity. The block diagram is shown in Figure . 
[image: A diagram of a computer program
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[bookmark: _Ref142649616]Figure 1: SGCS estimation model on UE-side to estimate intermediate KPI
Figure  illustrates the comparison between the predicted SGCS and the actual SGCS value resulted by the reconstructed CSI at NW side. For illustration purpose, we produce the results by randomly selecting 100 samples from total 171000 samples in the testing set. It can be seen that the predicted SGCS value and actual SGCS value are very close. Figure further shows that the CDF of the SGCS prediction and the CDF of the actual SGCS almost overlap. The average gap between the predicted SGCS and actual SGCS is around .
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[bookmark: _Ref142649627]Figure 2: Left: predicted SGCS vs. actual SGCS;    Right: SGCS CDF
Generalization ability of the SGCS estimation model
To explore the generalization ability of the SGCS estimation model, we train it using a dataset A and a dataset B and test the performance on each of them. Here, dataset A is formed by dense urban channel samples (which is the same dataset used to generate Figure 2), while dataset B is formed by random unit-norm vectors across the subbands (rank-1 case). The SGCS label of these samples are obtained from a CSI compression-reconstruction parts pre-trained by dense urban channel samples. Dataset A and dataset B have same number of samples.
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Description automatically generated with medium confidence]
[bookmark: _Ref142651537]Figure 3: predicted SGCS vs. actual SGCS. Left: Dense Urban; Right: random vectors
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[bookmark: _Ref142651549]Figure 4: CDF of SGCS and predicted SGCS. Left: Dense Urban; Right: random vectors
Figure 3 illustrates the prediction results by selecting 100 samples from total 171000 samples. We can see the actual SGCS and predicted SGCS are quite close for both dense urban dataset and random vectors. The average MSE of the actual SGCS and predicted SGCS is 9.6*10^-4 and 3.5*10^-4 for dense urban dataset and random vectors, respectively. Figure 4 further presents that the CDF curve of the SGCS and predicted SGCS are quite close for both datasets. 
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Description automatically generated with medium confidence]
[bookmark: _Ref142651562]Figure 5: SGCS prediction tested on Urban Macro dataset. Left: CDF; Right: prediction error
Further, we test the SGCS prediction accuracy on Urban Macro dataset (using the model trained by dense urban and random vectors). The results are shown in Figure 5. It can be seen that the SGCS estimation model has good generalization ability to Uma dataset. The 50%-tile error is around .
1. [bookmark: _Toc142650092][bookmark: _Toc146882189][bookmark: _Toc146883139][bookmark: _Toc146883686][bookmark: _Toc149905283][bookmark: _Ref166250734][bookmark: _Ref166250738][bookmark: _Ref166250762]The SGCS estimation model can be trained to achieve good generalization ability across various datasets.
1. [bookmark: _Ref166250770]The SGCS estimation model can achieve good SGCS estimation accuracy.
Comparison with NW-side monitoring based on ground truth reporting from UE
In Rel-18 study, proposals from companies have considered the use of higher resolution eType-II format with enhanced parameter combinations to report the target CSI. This approach for model monitoring has several issues.
Overhead and latency
The option of UE reporting the target CSI to the NW-side over the air-interface can only provide a delayed view of the model performance to the NW due to the processing and reporting delays. Moreover, to prevent false alarms due to outlier samples (even within the training distribution), sufficient averaging may be required, and this may result in additional latency. Such latency can prevent timely detection and response.
Also, to detect a performance issue quickly, frequent periodic reports would be needed, but frequent triggers can result in large overhead. This may significantly reduce the overhead reduction benefit of AI/ML-based CSI compression. On demand triggering based on a performance degradation event would anyway result in a delayed detection after the issue has happened. 
[bookmark: _Toc142650091][bookmark: _Toc146882188][bookmark: _Toc146883138][bookmark: _Toc146883685][bookmark: _Toc149905275][bookmark: _Ref166250789][bookmark: _Ref166250792] Model monitoring based on ground-truth provided by UE to the network requires large signaling overhead and may be sensitive to large latency.
UE-side complexity and capability
On the UE-side, this makes the ML-based CSI feature dependent on UE capability for enhanced eType-II, as well as concurrent support of enhanced eType-II and AI/ML-based CSI compression. Such a dependency would make it more difficult to deploy ML-based CSI feedback solutions in practice and should be avoided. In that case however, for UEs that cannot support eType-II capability, a model monitoring solution is still needed. 
To summarize, NW-side monitoring based on ground truth reporting from UE cannot be the only solution for model monitoring of two-sided models.
[bookmark: _Toc149905278][bookmark: _Ref166250797][bookmark: _Ref166250800] NW-side monitoring based on ground truth CSI reporting in enhanced eType-II format would require all UEs to have the capability to support enhanced eType-II feature and to compute ML-based CSI feedback and enhanced eType-II based feedback concurrently.
[bookmark: _Toc149905280][bookmark: _Ref166251034][bookmark: _Ref166251038]Model monitoring solutions should not create a dependency between ML-based CSI feature and UE capability for eType-II or enhanced eType-II CSI feedback features. RAN1 should support a model monitoring solution that will work even for UEs without the capability to support enhanced eType-II based CSI feedback, or the capability to concurrently support eType-II like CSI feedback and ML-based CSI feedback.
In [3], we presented detailed evaluation results according to the agreed evaluation methodology for this scheme and compared it with the NW-side monitoring approach. The tradeoff among monitoring accuracy, latency, and overhead was studied. The results show that the UE-side monitoring approach based on the SGCS-estimator model can achieve low complexity, low overhead, high accuracy, and low latency at the same time. 
[bookmark: _Toc142650093][bookmark: _Toc146882190][bookmark: _Toc146883140][bookmark: _Toc146883687][bookmark: _Toc142650262][bookmark: _Toc146882401][bookmark: _Toc146883852][bookmark: _Toc149905284][bookmark: _Ref166250804] Model monitoring using an SGCS estimation model that outputs the intermediate KPI directly shows an accurate inference accuracy prediction, low complexity, low overhead, and low latency at the same time.
[bookmark: _Toc149905285][bookmark: _Ref166251041][bookmark: _Ref166251044]For model performance monitoring, RAN1 should support the UE-side monitoring method that directly outputs intermediate KPI at the UE side.  
Connection with inter-vendor collaboration options and spec impact
The development of the SGCS estimator can be performed along with the two flavours of inter-vendor collaboration options
For option 3a/5a where UE-side offline engineering is performed at UE side training entity after receiving the parameters / model, the UE side may develop the SGCS estimator after the development of CSI generation part is done. For example, in option 3a-2/5a-2, the UE side may firstly obtain the ground-truth SGCS values by running inference using the developed CSI generation part and transferred CSI reconstruction part. Secondly, the UE-side may take some intermediate output of the CSI generation model as input, and may use the ground-truth SGCS to calculate loss metric for back propagation algorithm so as to update the SGCS estimator. 
For option 3b/5b where the transferred parameter / model of the CSI generation part are used for inference directly, the SGCS estimator is developed by the NW side and transferred to UE side for performance monitoring. In this case, the OTA signaling discussed in section 2.2.2 can be also used to transfer the parameters / model of the proxy model.
[bookmark: _Ref166251048]For inter-vendor collaboration 3a/5a, conclude that the SGCS estimator can be developed by UE side with offline engineering
[bookmark: _Ref166251055]For inter-vendor collaboration 3b/5b, conclude that the SGCS estimator can be developed by NW and transferred from NW to UE. The unified signalling and framework used to transfer CSI generation model and CSI reconstruction model can be also used to transfer SGCS estimator.
For specification impact related to UE-side monitoring using SGCS estimator, mechanisms with NW configuration and UE-initiated report of SGCS metric can be considered. More specifically, the monitoring procedure is firstly configured or triggered by NW with configurations of SGCS threshold / requirement, monitoring occasion, monitoring window, etc. Secondly, the UE may run inference using the SGCS estimator accordingly and report the SGCS metric if it falls below the threshold over a certain number of monitoring occasions or monitoring window. The final decision of model failure, model switching or fallback is determined by NW based on UE report.
[bookmark: _Ref166251063] For UE side monitoring using SGCS estimator, study mechanisms with NW configuration and UE-initiated report of performance metric.
CQI determination
In legacy CSI report using PMI codebook, since the PMI construction algorithm is not complicated, it is feasible for UE to construct the PMI for CQI calculation. In this way, the precoder used in CQI calculation is same as the precoding vectors reported to the gNB. However, in AI/ML based CSI compression and feedback, the CSI reconstruction model and CSI generation model are normally run at gNB side and UE side separately, it may or may not be feasible for UE to follow the legacy principle. In Rel-18, following options of CQI calculation are discussed. In this section, we discuss our view on these options.-	Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
-	Option 1a: CQI is calculated based on target CSI with realistic channel measurement 
-	Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment 
-	Option 1c: CQI is calculated based on legacy codebook
-	Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
-	Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
-	Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW. 
-	Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.   

Option 2a above aligns with the legacy principle and yield an accurate CQI calculation without any bias due to precoder mismatch. However, since running AI/ML for inference is much more complicated than the PMI construction of codebook-based CSI, it may not be feasible for UE to run CSI reconstruction model in addition to CSI generation model. Alternatively, additional CSI processing criteria (to count higher cost of processing unit and memory) or longer timeline maybe needed for UE to calculate CQI using CSI reconstruction output. Besides, option 2b can be supported by current specification using non-PMI based CSI report configuration. Thus, there is no need of further discussion of option 2b in this release.
Option 1 is a little more attractive as the additional cost of CQI calculation is negligible. In our view, option 1a and 1c are similar in the sense that the CQI is reported assuming a biased precoder, i.e., either an optimistic CQI in option 1a or a pessimistic CQI in option 1c. In this flavour, the CQI adjustment can be performed by gNB based on outer-loop link adaptation.  
In option 1b, it is UE’s implementation to adjust the CQI. Intuitively, since the adjustment value is based on the mismatch between the reconstructed CSI and input CSI (or target CSI), it can be determined according to intermediate KPI, e.g., SGCS value. Following the discussion in section 3, an accurate SGCS value can be precoded by a simple proxy model, it is attractive to study whether the predicted SGCS can be used as a guidance to the CQI adjustment. Alternatively, similar to the SGCS estimator design, one can develop another proxy model that outputs the CQI or adjustment directly by taking intermediate output of the CSI generation model as input.
Hence, based on the discussion, we propose
[bookmark: _Ref166251071]Conclude that CQI calculation option 2a (where UE runs CSI reconstruction model and use its output for CQI calculation) can be employed with the consideration of potentially higher timeline and higher cost of processing unit and memory.
[bookmark: _Ref166251078]Further study CQI calculation option 1b (CQI is calculated based on target CSI with realistic channel measurement and potential adjustment) considering adjustment measurement at UE side based on intermediate KPI or intermediate output of the CSI generation model

Options of rank>1 solution
In Rel-18 study, for evaluation purpose, there are 6 options for how to support the CSI compression for rank > 1 case. The 6 options are as follows, and companies were encouraged report the option in their evaluation.-	Option 1-1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference, any specific model operates on multi-layers jointly.
-	Option 1-2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference, the model operates on multi-layers jointly. 
-	Option 2 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
o	Note: input/output type is Precoding matrix
o	Companies to report the setting is 
	Option 2-1: layer specific and rank common (different models applied for different layers; for a specific layer, the same model is applied for all rank values), or 
	Option 2-2: layer specific and rank specific (different models applied for different layers; for a specific layer, different models are applied for different rank values)
-	Option 3 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
o	Note: input/output type is Precoding matrix
o	Companies to report whether the setting is 
	Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference), or 
	Option 3-2: layer common and rank specific (different models applied for different rank values; for a specific rank, the same model is applied for all layers)

As discussed in section 2.1, standardization of model design aspects or model structure is helpful in addressing inter-vendor collaboration. Thus, aligning the solutions of supporting rank > 1 the standardization can be considered to improve the scalability of models across vendors and ease the model development process, though it is normally vendor’s implementation choice in principle. 
Among the options, rank-common or rank-specific model that compress the layers jointly may have higher model complexity and be hard to train because the compression would across spatial, frequency, time and layer domain. In addition, layer specific and/or rank specific structures lead to increased memory requirements at the UE to hold multiple model structures. To achieve a balance between performance, complexity, and specification complexity, a layer-common and rank common (Option 3-1) structure can be standardized and vendors can optionally develop layer-common or layer-specific parameters.
[bookmark: _Ref166251086]Consider layer-common and rank common (Option 3-1) structure for CSI generation model and/or CSI reconstruction model for specified structures. Layer-common (Option 3-1) or layer-specific (Option 2-1) parameters can be upto vendor’s implementation choice. 
· Note: The standardized model structure is used to address inter-vendor collaboration complexity. The specification should be flexible to allow actual model for inference designed using all options 1-1, 1-2, 2-1, 2-2, 3-1 and 3-2.
Quantization alignment
As mentioned in section 2.1, aligning the quantization is necessary for CSI generation and reconstruction model to interpret the UCI bits. Moreover, an evident observation was presented in [3, 4] during Rel-18 study, quantization non-aware training leads to noticeable performance degradation compared with quantization aware training. Thus, it is essential to align quantization method.
In general, the quantization involves two aspects. One is the quantization configuration in terms of total size of the latent message before quantization, length of each segmentation for vector quantization (it collapses to scalar quantization if length-1) and number of bits allocated to each segmentation. The other is regarding the quantization codebook, i.e., the codeword that each bit-sequence represents. There are two levels of quantization alignment
· Level 1: Proprietary quantization configuration and codebook, and exchange of both of them.
· Note: the exchange can be via standardized signalling or proprietary signalling
· Level 2: standardization of quantization configuration and exchange of quantization codebook
· Note: the exchange can be via standardized signalling or proprietary signalling
In Level 1, the quantization is considered as part of the CSI compression / reconstruction model design, and it is optimized considering the UE vendor-specific data distribution. According to [3][4], the results show that compared to fixed quantization method, the best quantization performance is achieved when the quantization method is itself trained together with the UE-side and NW-side model. Thus, allowing the quantization to be trainable provides the best flexibility and performance. The drawback is inter-vendor collaboration complexity and the resultant model may not be scalable across vendors. The quantization configuration codebook is exchanged along with the model parameters (applicable to inter-vendor collaboration Option 3 and 5) via either specified signalling or proprietary signalling.
In Level 2, the inter-vendor collaboration complexity may be addressed to some extent with the standardization of quantization configuration. Also, the model scalability across vendors is improved. Since the codebook is trainable with the models, UE vendor-specific optimization can be achieved. The quantization codebook is exchanged along with the model parameters (applicable to inter-vendor collaboration Option 3 and 5) via either specified signalling or proprietary signalling.
Based on the discussion, we propose
[bookmark: _Ref166251098]Study following levels of quantization alignment from the aspect of scalability across vendors, performance, inter-vendor collaboration complexity
· Level 1: Proprietary quantization configuration and codebook, and exchange of both of them.
· Note: the exchange can be via standardized signalling or proprietary signalling
· Level 2: standardization of quantization configuration and exchange of quantization codebook
· Note: the exchange can be via standardized signalling or proprietary signalling
Temporal domain compression
In RAN1 116 meeting, 5 sub-use-cases were identified depending on how historical CSI report / measurement is used and whether prediction is considered in addition to compression.Agreement 
For the evaluation of temporal domain aspects of AI/ML-based CSI compression using two-sided model in Release 19, adopt the following categorization for study:
Case
Target CSI slot(s)
Whether the UE uses past CSI information
Whether the network uses past CSI information
0
Present slot
No
No
1
Present slot
Yes
No
2
Present slot
Yes
Yes
3
Future slot(s)
Yes
No
4
Future slot(s)
Yes
Yes
5
Present slot
No
Yes

Note 1: For the UE, the past CSI information may include past model inputs and/or any information derived from them. For the network, the past CSI information may include past CSI feedback instances and/or any information derived from them.
Note 2: For case 3 and case 4, the UE may perform prediction as a separate step or jointly with compression. Similarly, the network may perform prediction as a separate step or jointly with reconstruction. Companies to report which option is selected, the number of future slots, and whether the prediction is AI/ML-based or not.
Note 3: “Target CSI slot(s)” refers to the slot(s) to which the CSI feedback in the report corresponds. “Present slot” refers to the slot of the most recent CSI-RS measurement used to generate the CSI report. “Future slot(s)” includes at least one slot after the present slot and may include the present slot as well. 
Note 4: Down-selection is not precluded. 


In this section, we discuss which scenarios are most suitable for studying temporal domain compression. Also, we propose an update to the format of the results table for capturing the results.
Study of Case 2
Standalone evaluation with intermediate KPI
Consider the Dense Urban Scenario, with both indoor and outdoor UEs at 3 kmph doppler, with CSI-RS periodicity of 5 ms. Using 4 TD samples, we try to reconstruct the V-vectors at the decoder. Figure 6 below show the architecture. 
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[bookmark: _Ref163139230]Figure 6: Using 4 TD samples for “Case 2” Compression
To evaluate the performance of AI/ML models that leverage time domain correlations, we have studied two models that are both integrated to a transformer designed for Rel 18 studies to exploit spatial and frequency domain correlations. These models are labelled as Scheme-A and Scheme-B according to whether the processing happens outside or inside the transformer auto-encoder. If the CSI vector of a channel is processed before the transformer encoder, this is termed as scheme-A and if this happens after the transformer encoder or on the latent, we refer to it Scheme-B.
In Scheme-A, there is a time domain encoder to capture the time domain correlations before the transformer encoder (Rel 18 ML model) and a time domain decoder after the relevant transformer decoder. The overall architecture is trained end-to-end, i.e., including the time domain encoder and decoder, transformer encoder and decoder and VQ. 
In Scheme-B, additional processing begins after the transformer encoder or on the latent. Specifically, Scheme-B targets to exploit the differential information among the latent vectors outputted by the transformer encoder. 
For both Scheme-A and Scheme-B, the structure of the transformer is identical to the one used for Rel-18 spatial-frequency domain compression. In Scheme-B, the same transformer parameters are used for each of the CSI-RS observations within the temporal window. Therefore, the complexity increase over the Rel-18 spatial-frequency domain compression is minimal.
The results that compare Scheme-A and Scheme-B with Rel 18 ML spatial-frequency compression (Case 0) and Rel-16 eType2 are illustrated in Figure 7, Figure 8 for the dataset with UE speed 3km and CSI period 5ms. We use 4 time domain samples for both Scheme-A and Scheme-B. These results show that Scheme-B outperforms Scheme-A despite having a much lower complexity.
For all the schemes, the SGCS is expressed as a loss metric in dB scale, i.e., . 
Comparing with Rel-18 ML (case 0), for layer 0, the SGCS gain offered by Scheme B is around 5.3% (-7.11dB vs. -6.2dB on y-axis) at overhead of 80-bit per layer per unit time; the overhead saving is around 37.5% at SGCS value of -5.9 dB (0.743). For layer 1, the SGCS improvement is around 10% (-4.7dB vs. -4dB on y-axis) at overhead of 64-bit per layer per unit time; the overhead saving is around 36% at SGCS value of -4.7dB (0.66).
Comparing with Rel-16 eT2, for layer 0, the SGCS gain offered by Scheme B is around 20% (-7.11 vs. -4.8dB on y-axis) at overhead of 80-bit per layer per unit time; the overhead saving is around 78% at SGCS value of -4.9dB (0.676). For layer 1, the SGCS gain offered by Scheme B is around 40% (-4.7dB vs. -2.8dB on y-axis) at the overhead of 64-bit per layer per time unit; the overhead saving is around 80% at SGCS value of -3.25dB (0.527).


[bookmark: _Ref166111952]Figure 7: Case 2 Layer 0 performance for UE speeds of 3km and CSI period of 5ms

[image: ]
[bookmark: _Ref166111955]Figure 8: Case 2 Layer 1 performance for UE speeds of 3km and CSI period of 5ms

[bookmark: _Ref166270657]For standalone evaluation, comparing with Rel-18 ML (case 0), for layer 0, the SGCS gain offered by temporal compression case 2 is around 5.3% at overhead of 80-bit per layer per unit time; the overhead saving is around 37.5% at SGCS value of 0.743. For layer 1, the SGCS improvement is around 10% at overhead of 64-bit per layer per unit time; the overhead saving is around 36% at SGCS value of 0.66.
[bookmark: _Ref166270668]For standalone evaluation, comparing with Rel-16 eT2, for layer 0, the SGCS gain offered by temporal compression case 2 is around 20% at overhead of 80-bit per layer per unit time; the overhead saving is around 78% at SGCS value of 0.676. For layer 1, the SGCS gain offered by Scheme B is around 40% at the overhead of 64-bit per layer per time unit; the overhead saving is around 80% at SGCS value of 0.527.
System level simulation
System simulation results follow considering same scenario as section 7.1.1. Figure 9 and Figure 10 below show the performance improvement of Case 2 compression using Transformer based NN against Release 16 eType2. The UL PMI overheads are normalized to 5 ms periodicity. For mean throughputs, we observe a gain of 17% around a PMI overhead of 200 bits. In terms of UL overhead, the gain around a mean throughput of 14 Mbps is approximately 75%. For edge throughputs, we observe a gain of 15% around an overhead of 200 bits. At an edge throughput of around 4.7 Mbps, the overhead gain is around 45%. 
[image: ]
[bookmark: _Ref166160367]Figure 9: Mean Throughputs: Case 2 ML CSF vs Release 16 eType2 (Max Rank=2) Full Buffer
[image: ]
[bookmark: _Ref166160373]Figure 10: Edge Throughputs: Case 2 ML CSF vs Release 16 eType2 (Max Rank=2) Full Buffer
[bookmark: _Ref163223978]
[bookmark: _Ref166250820]For mean throughputs, we observe a gain of 17% around a PMI overhead of 200 bits. In terms of UL overhead, the gain around a mean throughput of 14 Mbps is approximately 75%. For edge throughputs, we observe a gain of 15% around an overhead of 200 bits. At an edge throughput of around 4.7 Mbps, the overhead gain is around 45%.

In the above evaluations, we used 4/5ms observation window. The SGCS and UPT gain will likely be higher if a larger observation window is used. Note that such gain comes without increasing the complexity of the AI/ML model.

Study of Case 3
Standalone evaluation with intermediate KPI
To quantify the achievable gain from jointly compressing multiple TD samples, we present in Figure 4 the compression SGCS under ideal prediction for different CSI payloads normalized by number of TD samples (bits per TD sample). In this scenario, we consider a Dense Urban scenario with 80% indoor UEs, UE speeds of 3km/h, and CSI-RS periodicity of 5ms. In particular, we consider an observation/prediction window size of {1, 2, or 4} TD samples and compare their SGCS performance. The compression scheme under ideal and realistic prediction is illustrated in Figure 11.
[bookmark: _Ref163226268]Figure 11: Illustration of compression of multiple TD samples under ideal and realistic prediction algorithms.Compression + ideal  prediction
Compression + realistic prediction 
2 TD samples
Observation window
2 TD samples
Prediction window
2 TD samples
Genie knowledge

We considered two different designs (Design 1 and 2) for Case 3, with different MLP layer complexities. From the results, we observe that compressing multiple TD samples outperforms the ML baseline of compressing 1 TD sample. The gain from compressing multiple TD samples can be realized as SGCS improvement for the same number of bits per TD sample.   
Overhead reduction
Compression gain

[bookmark: _Ref163226326]Figure 12: SGCS compression performance for different number of TD samples under ideal prediction for scenario2 (Design 1)
Also, we compare SGCS performance for compressing multiple TD samples under ideal prediction and realistic precoder prediction algorithm. From the results we observe a minor degradation in SGCS (< 0.62 for 4TD sample and < 0.35 dB for 2TD sample) when comparing the ideal and realistic prediction algorithms. This indicates that for this scenario we can accurately estimate the TD samples in the prediction window and the end-to-end performance is mainly limited by the compression accuracy. 
System level simulation
For the case of 4 TD samples, we performed system simulations, comparing the ML CSF performance against Release 18 eType2 baseline. Figures below show the gains from Case 3 ML CSF over Release 18 eType2. The feedback of Release 18 eType2 follows the (4, 5 ms) observation and (4, 5ms, 5ms) reporting criteria. The report is sent once in 20 ms, and the X-axis for PMI overheads has been scaled down to 5ms reporting rate. Similarly, for Case 3, the UL overhead is once in 20 ms, and the UL overhead is scaled down to the 5 ms reporting rates. Note that for both mean and edge UEs, the Case 3 performance begins to approach the ideal prediction and compression case. Mean throughput is only 15% below the ideal performance, at 256 bit overhead, and 26% below ideal performance for cell edge users. 
For mean throughputs, we observe a gain of 16% at an overhead rate of ~170 bits per 5 ms. Overhead gains around 15 Mbps throughput are more than 60%. For edge throughputs, the throughput gain around 170 bits is 13%. The overhead around 5.2 Mbps edge throughput is around 50%. 

[image: ]
Figure 13: Mean Throughputs: Case 3 ML CSF vs Release 18 eType2 (Max Rank=2) Full Buffer
[image: ]
Figure 14: Mean Throughputs: Case 3 ML CSF vs Release 18 eType2 (Max Rank=2) Full Buffer
[bookmark: _Ref163223991]For a Dense Urban scenario with 80% indoor UEs, 5ms CSI periodicity, and UE speeds of 3km/h, the end-to-end SGCS performance is limited by the compression accuracy. For joint prediction and compression of multiple TD sample, a minor degradation in end-to-end SGCS is observed when comparing the ideal and realistic prediction algorithms.
[bookmark: _Ref166250837]For mean throughputs, we observe a gain of 16% at an overhead rate of ~170 bits per 5 ms. Overhead gains around 15 Mbps throughput are more than 60%. For edge throughputs, the throughput gain around 170 bits is 13%. The overhead around 5.2 Mbps edge throughput is around 50%. 

Localized models
The work item description [2] has identified a study objective associated with performance improvement using cell/site specific models. Due to spatial consistency, the channel samples collected from a local region or site are expected to be more correlated and hence more compressible as compared to the overall data from a much larger layout. Specifically, the distribution of precoders is expected to be sparser, and AI/ML techniques can exploit this to derive a more optimized PMI mapping to feedback the precoder information. Therefore, a model trained on the local training dataset and used for inference on a test dataset from the same local scenario is expected to perform well compared to a model that is trained on the global dataset. Along this route, following agreements were made in last meeting.Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, study the following aspects of the performance/complexity trade-off when comparing the localized model with a benchmark model that is not localized:
· Performance of the localized model that has similar or lower complexity as the benchmark model.
· Model complexity of the localized model that achieves similar or better performance as the benchmark model.

Agreement
For the evaluation of AI/ML-based CSI compression using localized models in Release 19, consider the following options as a starting point to model the spatial correlation in the dataset for a local region:
· Option 1: The dataset is derived from UEs dropped within the local region, with spatial consistency modelling as per TR 38.901. 
· E.g., Dropped in a specific cell or within a specific boundary.
· Option 2: By using a scenario/configuration specific to the local region. 
· E.g., Indoor-outdoor ratio, LOS-NLOS ratio, TXRU mapping, etc.
Note: While modelling the spatial correlation, strive to ensure that the dataset distribution also correctly captures the decorrelation due to temporal variations in the channel. To report methods to generate training and testing dataset.


We next present our evaluation results to quantify the gain from localized models. For this evaluation, we consider three cases for the training dataset – 
· Case 1 (baseline - global dataset): 
· UE-side encoder and NW-side decoder are trained using a dataset from the full dense urban layout.
· Case 2 (local indoor dataset):   
· UE-side encoder and NW-side decoder are trained using data from UEs that are local to a small region within the layout: Indoor UEs at ground level dropped within a 25 m. by 25 m. region and associated to the same cell.
· Case 3 (local outdoor dataset):   
· UE-side encoder and NW-side decoder are trained using data from UEs that are local to a small region within the layout: Outdoor UEs dropped within a 25 m. by 25 m. region associated to the same cell.
Figure 15 shows the SGCS for layer 1 for the cases described above, when those models are used for inference on the local dataset. The SGCS is expressed as a loss metric in dB scale, i.e.,

A lower value of this metric corresponds to better accuracy. 
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[bookmark: _Ref163226408]Figure 15: SGCS for inference on local scenario using models trained on global vs. local scenario
The result is shown for the case of a simple AI/ML model and a model with a complex structure. We make the following observations:
· The plots show that the models trained on local data outperform the models trained on global data when other aspects are the same.
· The plots also show that the simple model trained on local data can achieve performance that is very close to the complex model trained on the global data.
This points to two benefits of training on local data – the SGCS can improve for the same model complexity. Alternately, the same SGCS performance can be achieved using a much simpler AI/ML model.
[bookmark: _Ref163223998]Localized models, which are developed specifically for use within a local region, provide better performance compared to global models of comparable size trained using data from the entire layout. 
[bookmark: _Ref163224000] Localized models provide similar performance with a smaller model complexity compared to global models.
Based on this discussion, we have the following proposals:
[bookmark: _Ref163224362]Study techniques and potential specification impact to enable the use of localized models to achieve the associated improvement in the performance-complexity tradeoff.
Conclusions
In this document, we have discussed aspects related to AI/ML-based CSI compression using two-sided model. We have the following observations:
Observation 1: The SGCS estimation model can be trained to achieve good generalization ability across various datasets.
Observation 2: The SGCS estimation model can achieve good SGCS estimation accuracy.
Observation 3: Model monitoring based on ground-truth provided by UE to the network requires large signaling overhead and may be sensitive to large latency.
Observation 4: NW-side monitoring based on ground truth CSI reporting in enhanced eType-II format would require all UEs to have the capability to support enhanced eType-II feature and to compute ML-based CSI feedback and enhanced eType-II based feedback concurrently.
Observation 5: For mean throughputs, we observe a gain of 17% around a PMI overhead of 200 bits. In terms of UL overhead, the gain around a mean throughput of 14 Mbps is approximately 75%. For edge throughputs, we observe a gain of 15% around an overhead of 200 bits. At an edge throughput of around 4.7 Mbps, the overhead gain is around 45%.
Observation 6:For standalone evaluation, comparing with Rel-18 ML (case 0), for layer 0, the SGCS gain offered by temporal compression case 2 is around 5.3% at overhead of 80-bit per layer per unit time; the overhead saving is around 37.5% at SGCS value of 0.743. For layer 1, the SGCS improvement is around 10% at overhead of 64-bit per layer per unit time; the overhead saving is around 36% at SGCS value of 0.66.
Observation 7:For standalone evaluation, comparing with Rel-16 eT2, for layer 0, the SGCS gain offered by  is around 20% at overhead of 80-bit per layer per unit time; the overhead saving is around 78% at SGCS value of 0.676. For layer 1, the SGCS gain offered by Scheme B is around 40% at the overhead of 64-bit per layer per time unit; the overhead saving is around 80% at SGCS value of 0.527.
Observation 8: For mean throughputs, we observe a gain of 17% around a PMI overhead of 200 bits. In terms of UL overhead, the gain around a mean throughput of 14 Mbps is approximately 75%. For edge throughputs, we observe a gain of 15% around an overhead of 200 bits. At an edge throughput of around 4.7 Mbps, the overhead gain is around 45%.
Observation 9: For a Dense Urban scenario with 80% indoor UEs, 5ms CSI periodicity, and UE speeds of 3km/h, the end-to-end SGCS performance is limited by the compression accuracy. For joint prediction and compression of multiple TD sample, a minor degradation in end-to-end SGCS is observed when comparing the ideal and realistic prediction algorithms.
Observation 10: For mean throughputs, we observe a gain of 16% at an overhead rate of ~170 bits per 5 ms. Overhead gains around 15 Mbps throughput are more than 60%. For edge throughputs, the throughput gain around 170 bits is 13%. The overhead around 5.2 Mbps edge throughput is around 50%.
Observation 11: Localized models, which are developed specifically for use within a local region, provide better performance compared to global models of comparable size trained using data from the entire layout.
Observation 12: Localized models provide similar performance with a smaller model complexity compared to global models. 
We have the following proposals:
Proposal 1: Conclude that proprietary models and proprietary exchange methods are feasible. Inter-vendor collaboration complexity can be addressed by standardization of model design aspects or leveraging any standardization (e.g., standardized structure) resulting from the listed inter-vendor collaboration options. 
Proposal 2: For parameter / model exchange of CSI reconstruction part with performance requirement to facilitate UE-side offline engineering of developing CSI generation part, Conclude that inter-vendor collaboration complexity and interoperability can be addressed with following consideration on specification impact (either or both)
· Specify over-the-air signalling for decoder transfer.
· Offline exchange methods with standardized procedure (if needed) and / or standardized model design aspects (for option 5a) such as quantization, payload, layer/rank-specific models, scalability to various subband / port configurations, etc.
Proposal 3: For parameter / model exchange of CSI reconstruction part, conclude that
· UE side may further go through offline engineering of developing CSI generation part or run inference on device directly
· inter-vendor collaboration complexity can be addressed via (either or both)
· Specified over-the-air signalling for parameter / model transfer.
· Offline exchange methods with standardized procedure (if needed) and / or standardized model design aspects (for option 5a) such as quantization, payload, layer/rank-specific models, scalability to various subband / port configurations, etc
· Feasibility issue and performance limitation due to UE distribution mismatch can be addressed by inter-vendor collaboration.
Proposal 4: Consider unified framework and signalling for CSI generation part and CSI reconstruction part exchange with and without UE side offline engineering.
Proposal 5: Model monitoring solutions should not create a dependency between ML-based CSI feature and UE capability for eType-II or enhanced eType-II CSI feedback features. RAN1 should support a model monitoring solution that will work even for UEs without the capability to support enhanced eType-II based CSI feedback, or the capability to concurrently support eType-II like CSI feedback and ML-based CSI feedback.
Proposal 6: For model performance monitoring, RAN1 should support the UE-side monitoring method that directly outputs intermediate KPI at the UE side.
Proposal 7: For inter-vendor collaboration 3a/5a, conclude that the SGCS estimator can be developed by UE side with offline engineering.
Proposal 8: For inter-vendor collaboration 3b/5b, conclude that the SGCS estimator can be developed by NW and transferred from NW to UE. The unified signalling and framework used to transfer CSI generation model and CSI reconstruction model can be also used to transfer SGCS estimator.
Proposal 9: For UE side monitoring using SGCS estimator, study mechanisms with NW configuration and UE-initiated report of performance metric.
Proposal 10: Conclude that CQI calculation option 2a (where UE runs CSI reconstruction model and use its output for CQI calculation) can be employed with the consideration of potentially higher timeline and higher cost of processing unit and memory.
Proposal 11: Further study CQI calculation option 1b (CQI is calculated based on target CSI with realistic channel measurement and potential adjustment) considering adjustment measurement at UE side based on intermediate KPI or intermediate output of the CSI generation model
Proposal 12: Proposal: Consider layer-common and rank common (Option 3-1) structure for CSI generation model and/or CSI reconstruction model for specified structures. Layer-common (Option 3-1) or layer-specific (Option 2-1) parameters can be upto vendor’s implementation choice.
· Note: The standardized model structure is used to address inter-vendor collaboration complexity. The specification should be flexible to allow actual model for inference designed using all options 1-1, 1-2, 2-1, 2-2, 3-1 and 3-2.
Proposal 13: Study following levels of quantization alignment from the aspect of scalability across vendors, performance, inter-vendor collaboration complexity
· Level 1: Proprietary quantization configuration and codebook, and exchange of both of them.
· Note: the exchange can be via standardized signalling or proprietary signalling
· Level 2: standardization of quantization configuration and exchange of quantization codebook
· Note: the exchange can be via standardized signalling or proprietary signalling
Proposal 14: Study techniques and potential specification impact to enable the use of localized models to achieve the associated improvement in the performance-complexity tradeoff.
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